THE NUMBER OF FIELDS GENERATED BY THE

SQUARE ROOT OF VALUES OF A GIVEN POLYNOMIAL
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ABSTRACT. The abc-conjecture is applied to various questions involving the number
of distinct fields Q(v/f(n)), as we vary over integers n.

1. INTRODUCTION.
We first investigate the following problem:

Conjecture 1. Suppose that f(x) € Z[z] has degree > 2 and no repeated roots.
Then there are ~ N distinct quadratic fields amongst

(1) QW (1), AV £(2),QVf3)),- -, QLV F(N)).

Conjecture 1 is actually untrue for linear polynomials. Indeed an elementary
argument gives:

Theorem 1A. Let f(z) = ax + b with integers 0 < b < a < N and gcd(a,b) = 1.
There are

—62 [[(1- —12)‘1c(a) N + O(VaN loga),
s p
D

1/m? and M,
2

distinct quadratic fields amongst those in (1) where c(a) = >, s

is the set of integers m, coprime to a, such that there is no | < m with I> = m
(mod a).

By further elementary arguments one can prove conjecture 1 for quadratic poly-
nomials:

Theorem 1B. Suppose that f(z) € Z[z] has degree 2 and no repeated roots. Then
there are N + O(N/log N) distinct quadratic fields amongst

QW (1)), AV F(2),QVf3)), .-, Q(V F(N)).

For higher degree polynomials we have proved the conjecture assuming the abc-
conjecture, using several of the ideas from [3]:
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The abe-conjecture. (Oesterlé, Masser, Szpiro): Fixz e > 0. If a,b, c are coprime
positive integers satisfying a + b = c then

(1) ¢ < N(a,b, C)1+E,

where N(a, b, c) is the product of the distinct primes dividing abc.

A special case of Theorem 1 in [3] states that if we assume the abc-conjecture
then for f(x) € Z[z] without repeated roots with ged{f(n): n € Z} = 1, there
exists a constant ¢y > 0 such that there are ~ cyN positive integers n < N for
which f(n) is squarefree. (Note that this result can be proved unconditionally if f
has degree < 2 using the sieve of Eratosthenes; and was proved unconditionally by
Hooley [5] for f of degree 3 by deeper arguments. Presumably the arguments of [5]
could be used to prove conjecture 1 for degree 3 polynomials unconditionally).

The main result in this paper is to show that conjecture 1 follows from the abe-
conjecture (a weaker consequence of the abc-conjecture was given in Corollary 2 of

3])-

Theorem 1C. If the abc-conjecture is true then Conjecture 1 is also true.

A key component in the proof of Theorem 1C is the following result (which may
be of independent interest) on integral points on f(x)—cf(y), which is proved using
Siegel’s Theorem.

Theorem 2. Suppose that f(x) € Z[x] has at least three distinct roots. For any
fized ¢ > 1 there are at most finitely many integral points (a,b) on the curve f(x)—

cf(y) =0.

A harder though perhaps more important problem is to determine, for a given
f(z) € Z[z] without repeated roots, an estimate for A¢(D), the number of integers
d < D such that there exists some integer n with f(n) = dm? for some integer m.
From Theorem 1C we deduce that A;(D) > D/4¢(f) if the abc-conjecture holds.
To get an upper bound we use Corollary 1 from [3] (which is deduced from (26) of
Elkies’ paper [2]):

Lemma 1. Assume that the abc-conjecture is true. Suppose that f(x) € Zlx| has
no repeated roots. Then

H p > |n|desl)—1—o(1),
primes p|f(n)

Now, note that in the above case

2 2

I ») <[ II »] <@w?=ldfn) < D=0,

primes p|f(n) primes p|dm

and comparing this to Lemma 1 implies that |n| < D1/(dee(/)=2)+o(1) = Thus we
have proved
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Theorem 3B. Assume the abc-conjecture. For a given f(x) € Z[x] without re-
peated roots, let Af(D) be the number of integers d < D such that there exists some
integer n with f(n) = dm? for some integer m. Then

D48 « Af(D) « Des(D)=2)Fo(1),

In particular Ap(D) < DY/2+°W) 4f deg(f) > 4.

In fact we believe that A (D) = D/ des(/)+o(1) if deg(f) # 2, and we will give a
heuristic to justify this for deg(f) > 3 in section 7. For linear polynomials we prove
the following, in section 6.

Theorem 3A. If f(z) =ax + b with (a,b) =1 then
6 D
Ar(D) ~2°@ « 2 pTT —L
#(D) > ll_[Q(p—l-l)’
P

where a(a) = —1 if 8la, and =1 if 2|a but not 4.

For quadratic polynomials we believe that A;(D) = Do) (which might be
provable). More precisely we believe that if f is reducible then A¢(D) ~ c¢¢D, and
if f is irreducible then Af(D) ~ ¢y D/+/log D for some constants ¢y > 0. It is easy
to see that such a dichotomy exists from the following examples:

Example 1. Consider f(z) = 22 — 1. This equaling dm? is equivalent to 22 —dm? =
1, in other words a solution to Pell’s equation. This is known to always have an
integer solution, so A;(D) ~ (6/72)D.

Example 2. Consider f(x) = x?—3. This equaling dm? is equivalent to 22 —dm? =
3; that is, 3 is represented by the principal binary quadratic form of discriminant 4d.
Now 3 is represented by a binary quadratic form of discriminant 4d if and only if d is
a square mod 3, so that d = 0 or 1 (mod 3). If that is the case then 3 is represented
by a binary quadratic form from the principal genus, of discriminant 4d, if and only
if 3 is a square mod p for every prime p dividing d, so that p = 3 or p = +1

(mod 12). In other words we have d = 0 or 1 (mod 3), with no prime factors
= +5 (mod 12): By the fundamental lemma of the sieve [4] there are < D/\/log D
such integers d < D. For such d we know that 3 is represented by some form from
the principal genus, but it is a relatively deep problem to determine which form(s).
However, Cohen and Lenstra conjectured that there is just one class of quadratic
forms in each genus for over 75% of real quadratic discriminants, and we expect this
to be true for the restricted class of discriminants considered here. Thus we surmise
that A2 3(D) ~ D/+/log D, and a more detailed analysis of the Cohen-Lenstra
heuristic leads to the guess that A,z 3(D) ~ D/\/log D.

2. ALGEBRAIC PRELIMINARIES

Lemma 2.1. Suppose that f(x) € Z[z] has no repeated roots. Then there exists a
constant B = By such that for all prime powers q, there are no more than B values
of a (mod q) for which f(a) =0 (mod q).

Proof. Let K be the splitting field for f over QQ, let P be a prime in K lying over a
prime p with ramification index e and with NP = p9 |, let a1,...,a, be the roots
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of f, and let p” be the highest power of p dividing the leading coefficient of f. We
will show that for any m > 0, the number values of a (mod p™) for which f(a) =0

(mod p™) is at most
n

p9(67"+v73,i)
=1

where vp; =}, vp(ar — ;). If p does not divide the discriminant Dy of f then
r = 0 and each vp; = 0, so that By, < n. Therefore B; := max{n, max,|p; B}

Suppose f(a) =0 (mod p™). Select i such that vp(a — ;) = maxg(vp(a—ax)),
so that vp(a; — ax) > min(vp(a — ag),vp(a — a;)) = vp(a — ). Therefore

em < vp(f(a)) =er+ ZUP(G —ax) <er+uvpla— o)+ ZUP(% — ag).
K ki

In other words, vp(a — ;) > em — er — vp ;, so that there are at most (NP)e V7
such values of a (mod p™). Summing over i then finishes the proof.

By the Chinese Remainder Theorem we immediately deduce

Corollary 2.2. Suppose that f(x) € Z]z]| has no repeated roots. Then there exists
a constant B = By such that there are no more than B yalues of a (mod d) for

which f(a) =0 (mod d), where w(d) denotes the number of distinct prime factors
of d.

Lemma 2.3. Suppose that f(z) € Q[z] has at least two distinct roots. If c is
neither zero nor a root of unity then f(x) — cf(y) has no linear factor in Q[x,y].

Proof. If f(x) — cf(y) has a linear factor  — ay — b, with a, b in Q, then the linear
map L(y) = ay + b has the property that f(L(y)) = cf(y). This implies that L
permutes the roots of f, which means that some power L* of L fixes all the roots
of f. Since there are at least two distinct roots, L* must be the identity, but this
is impossible since then f(y) = f(L*(y)) = ¢* f(y) and c is not a root of unity.

Lemma 2.4. Suppose that f(x) € Q[z] has at least three distinct roots. If ¢ is
neither zero nor a root of unity then f(x) — cf(y) has no quadratic factor of the
form 2 — ay? + 2dx + ey + h € Q[z,y].

Proof. Let g(x) = f(x —d) so that g(x) — cg(y) has a factor of the form 2% — ay? +
¢y + q over Q. Define P(x,y) by

(2 — ay® + Ly + @) P(z,y) = g(z) — cg(y),

and let Py (z,y) be the degree k part of P(x,y). Assuming without loss of generality

that g is monic of degree n, we find that z? — ay? divides 2™ — cy™ so that n is

even, say 2m, and ¢ = a™, giving Po,, o(z,y) = (2™ — a™y?™)/(2? — ay?). The

degree 2m — 1 terms in the equation above then give

(Z.Qm . amme)
(? — ay?)

(x2m—1 . .m 2m—1)

(2% — ay®) Pop_3(, ) + Ly a™y
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for some integer u. Replacing x to —x and subtracting, gives

(372 - a’y2)(P2m73($7 y) - P2m73(_m7 y)) - 2ux2m71,

so that 22 — ay? divides 2ux?™~!, which can only happen if u = 0. But then
2? — ay? divides —lyPsp,_o(x,y), which can only happen if £ = 0.

We have proved that our quadratic factor must be of the form 22 — ay® + ¢. In
fact each Py;_1(x,y) = 0 for, if not, select the largest j for which Ps;_1(x,y) # 0
and then (22 — ay?)Psyj—1(z,y) = v(z® ! — a™y?*1), which is impossible. We
deduce that g(z) — a™g(y) has no terms of odd degree, so that g(x) can be written
as G(2?) for some G(t) € Q[t]. Letting X = 22 and Y = 3?2, we deduce that
X —aY +¢q is a factor of G(X) —a™G(Y), and so G has no more than one distinct
root by Lemma 2.3. But then g, and so f, can have no more than two distinct
roots, contradicting the hypothesis.

2

Remark. 1t is plausible, following the two previous results, that f(x)—cf(y) has no
factor of degree < k when c is not a root of unity, and f has more than k£ distinct
roots. However we do not see how to generalize the proofs above.

3. INTEGER POINTS ON f(x) — cf(y)

We will use the following famous theorem due to Siegel, often referred to as
Siegel’s theorem, in what follows. This will involve introducing the idea of points
at infinity, which we now explain. Let h(z,y) be a polynomial in two variables. We
will denote the highest degree part of h(z,y) (which is obtained by homogenizing
h(z,y) and then setting the homogenizing variable to 0) as h(z,y). The linear
factors of h(z,y) correspond to the points at infinity for the curve h(z,y) = 0.

Siegel’s Theorem (see [6], or section 2 of [1] for a contemporary account). Let
h(z,y) be an absolutely irreducible polynomial with coefficients in a number field.
If the curve h(x,y) = 0 has more than two distinct Q-points at infinity, then there
are at most finitely many integer points (a,b) on the curve h(z,y) = 0.

Using this we can proceed to the proof of Theorem 2:
Proof of Theorem 2. Suppose f(x)—cf(y) factors over Q into absolutely irreducible

T
factors as [] hi(zx,y), each of which has degree > 2 by Lemma 2.3. We will show
i=1
that each curve h;(z,y) = 0 has at most finitely many integer points.
ro_ _
Since [] hi(x,y) = 2™ — cy™, and =™ — cy™ has distinct roots, each h;(x,y) has
i=1
deg h; distinct linear factors and so h;(z,y) = 0 has deg h; distinct points at infinity.
Therefore, by Siegel’s theorem (as stated above) we deduce that there are at most
finitely many integral points on h;(z,y) = 0 whenever deg h; > 3.

We are left with the case where deg h; = 2. We may assume that h;(z,y) = 0
can be written with rational coefficients, else h;(z,y) = 0 has at most finitely many
rational solutions (corresponding to its intersection with its conjugate curves). Now
hi(z,y) divides 2™ — cy™ = [] (x — £ay), where « is the positive real n-th root of

gn=1
¢, so that hi(z,y) = (z —&ay)(x — Exay), for two distinct nth roots of unity, &1, &o:
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o If &; is real then &, is real, since h;(x,y) is real, and thus, since they are distinct
real roots of unity, they must be 1 and —1. Therefore h;(x,y) = 2% — ay? where a
is rational, which is impossible by Lemma 2.4.

o If &, = £ is not real then & = &, since h;(z, y) is real. Moreover, the coefficients

a(£4€) and o? are rational, and so &2 +E2 = (a(€+€))?/a?—2 is rational. Therefore
€2 generates a field of degree at most two over the rationals, so that £2 is a primitive
kth root unity where £ = 1,2,3,4 or 6. Now k£ = 1 is impossible as £ is not real,
the case k = 2 gives h;(z,y) = 22 — ay? for some rational a, which is impossible by
Lemma 2.4. The cases k = 3,4, 6 give h;(z,y) = 22 — 2bazy + 4ba’y? for b = 1,2, 3,
respectively, where a is rational. Making the change of variables x = X + aby we
find that h;(z,y) = X2 + Ay? + cX + dy + e where A = b(4 — b)a? is a positive
rational number. By further changes of variables to remove the linear terms, and
scaling up to make solutions integers, we find that integer points on h;(z,y) = 0
correspond to integer points (u,v) on an ellipse of the form u? + Av? = N; evidently
lu| < VN and v < \/N/A so there are finitely many.

4. LARGE SQUARES DIVIDING f(n)

Fix € > 0, and then a sufficiently large integer y < N'/3. We will show that if
N is sufficiently large then

(4.1) #{n < N: m?f(n) for some m >y} < eN,

unconditionally if deg(f) < 2, and assuming the abc-conjecture otherwise.

It follows immediately from Theorem 8 of [3] and the discussion preceding it,
that if we assume that the abc-conjecture is true, then for any fixed ¢ > 0 there are
o(N) integers n < N such that f(n) is divisible by the square of a prime > ¢N.
Of course if f(x) has degree 1 or 2, then |f(n)| < N? for all n < N, so that f(n)
cannot be divisible by the square of a prime > N.

The number of integers n < N for which f(n) is divisible by the square of some
prime in the range y < p < ¢N is, using Lemma 2.1,

N N N
< ) Bf(ﬁ+1)<<5+log]v.

y<p<cN

Finally we must consider those n for which f(n) is divisible by the square of
some integer m > y, all of whose prime factors are < y. For each n we select the
smallest such m and we claim that this is < y?: for if not select any prime factor p
of m so that p < y and let M := m/p which is > y?/y = y and such that M? divides
m? which divides f(n), contradicting the minimality of m. Thus using Corollary
2.2, and since w(m) < logm/loglogm so that B?(m) = m°®), we have that the
number of such n is

w{m N —
< > B )(WJrl) < y"D(N/y+y?) < N/y' oW,
y<m<y?2

The result (4.1) follows from combining the last three paragraphs, so long as y
was chosen sufficiently large.
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5. PROOF OF THEOREMS 1B AND 1C

We want to determine the number of distinct squarefree integers d for which there
exists some integer n < N such that f(n) = dm? for some integer m. Evidently
there are no more than N such values of d. To get a lower bound we remove all
cases where m > y (where y is as defined in section 4), as well as all those d for
which there is more than one such pair m,n with m < y and n < N. In other
words, using (4.1), our quantity is

>(1—¢€)N — Z #{ny #ny < N: f(n1)/m3 = f(ng)/m3 is squarefree}.

m1,ma<y

Note that if m; = mo then we are asking for solutions to f(ny) = f(ng) with ny #
ny. However for any non-constant polynomial, |f(n)| is monotone increasing for n
sufficiently large, so there are at most finitely many such pairs nq,ny. Otherwise,
assuming without loss of generality that m; > mao, each pair (nq,ns) gives rise to
an integer point on the curve

f(2) = cf(z) =0

with ¢ = (my/mg)? > 1. By Theorem 2 there are <. ; 1 such points when deg(f) >
3. Therefore for fixed but large vy,

Z #{ny #no < N: f(ny)/m? = f(ng)/m3 is squarefree} < 1,

mi,ma Sy

which completes the proof of Theorem 1C for deg(f) > 3.

When deg(f) = 2 we can get more uniform bounds. In that case if f(x) =
ax?+bx+c, we can complete the square to get 4af(z) = X2+ A, where X = 2ax+b
and A = —(b? —4ac). Then, if we fix positive integers my, ms < y, take an integral
solution (n1,n2) to f(ni)/m? = f(na)/m3, and let r; = 2an; + b, we obtain an
integral solution (r1,r3) to

(mary —mare)(maory +myry) = A(m% — mg)

This has 7(A(m? —m3)) = y°1) solutions, where 7(.) is the number of divisors of
an integer. Theorem 1B then follows from the proof in section 4 with y = log? N.

6. LINEAR POLYNOMIALS

Proof of Theorem 1A. We wish to find the number of squarefree integers d for

which there exists an integer m such that dm? = an + b for some n < N. For those

d = ¢ (mod a), we select m to be the smallest positive integer for which ¢gm? = b
(mod a) if such an m exists. Thus we need to determine

Z #{Squarefree d < (aN + b)/m?: d=b/m? (mod a)}.

meM,
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By elementary sieve theory we have that the number of squarefree integers d = ¢
(mod a), when (a,q) = 1, is, writing d = ar + g,

SN we= > ul#r<z: glar+q}

r<w g2|lar+q 9<Vaz+q

= > u(g)(z/g* + O(1))
9<VaEFq, (9.0)=1

:xH<1—é)+O(\/a_).

pla

Summing up over m € M, gives the result.

Proof of Theorem 3A. If f(x) is a linear polynomial, say axz + b with (a,b) = 1,
then we are interested in the proportion of squarefree integers d < D for which
there exists some integer m such that dm? = b (mod a). In other words d belongs
to one of a certain set of congruence classes mod a; the number of such congruence
classes being ¢(a)/2¥(*) where w(a) denotes the number of distinct odd prime
factors of a, plus 2 if 8 divides a, or plus 1 if 4 divides a but not 8. By the
estimate in the proof of Theorem 1A each of these arithmetic progressions contains
(D/a) [, (1 - 1/p?) + O(v/D) such integers d < D, and so we obtain the result.

7. HEURISTIC FOR A¢(D)

The argument proceeding Lemma 1 in the introduction tells us that if f(n) =
dm? with d < D then |n| < DY(dea(f)=2)+o(1) " a5suming the abc-conjecture. If
In| < DY48(f) then |f(n)| < |n|48/) < D, so that d < D. Therefore we need
to explore further for D/4e8(f) « |n| < D/ (dee(/)=2)+o(1)  For N = cD1/dee(f)27
with j = 0,1,2,...,.J we consider N < |n| < 2N, so that |f(n)| < N9(/), Then
m? = |f(n)|/d > N9&() /D, and obviously m? < N4&(f). Now there are < B‘;(m)
values of n (mod m?), for which f(n) =0 (mod m?) by Corollary 2.2. Therefore
the number of such N < |n| < 2N is < B;’(m)(QN/m2+1). For the heuristic assume

the term “1” is irrelevant at least on average, and recall that B;)(m) < No(),
Therefore #{n < N : m?f(n) for some m € M} < Y, N+ W /m? «
VD /Ndee()/2=1=0(1) "where M is the interval N9&()/2/D1/2 « m « Ndee(f)/2,
Summing over all such N we get < D'/deg(f)+o(1) for deg(f) > 3. Thus we expect
that A;(D) < D/dee(f)+o(1) and, combining this with Theorem 3b, shows why we
believe that A¢(D) = D1/deg(f)+o(1)
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