
UNIFORM DISTRIBUTION

Andrew Granville
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1. Uniform distribution mod one

At primary school the first author was taught to estimate the area of a (convex)
body by drawing it on a piece of graph paper, and then counting the number
of (unit) squares inside. There is obviously a little ambiguity in deciding how
to count the squares which straddle the boundary. Whatever the protocol, if the
boundary is more-or-less smooth then the number of squares in question is propor-
tional to the perimeter of the body, which will be small compared to the area (if the
body is big enough). At secondary school the first author learnt that there are other
methods to determine areas, sometimes more precise. As an undergraduate he
learned that counting lattice points is often a difficult question (and that counting
unit squares is “equivalent” to counting the lattice points in their bottom left-hand
corner). Then, as a graduate student, he learnt that the primary school method
could be turned around to provide a good tool for estimating the number of lattice
points inside a convex body! In the specific case of a right-angled triangle we fix
the slope −α of the hypotenuse and ask for the number of lattice points

Aα(N) := #{(x, y) ∈ Z2 : x, y ≥ 0 and y + αx ≤ N}.
For fixed α the primary school method yields

Aα(N) =
N2

2α
+ Oα(N). (1)

Can we improve on the error term Oα(N)? For integer m we have
(
A−1(m) − m2

2

)
−

A−1(m − 1
m

) − (m − 1
m )2

2



= A−1(m) − A−1(m − 1) + 1 − 1
2m2 =

(
m + 1

2

)
−

(
m
2

)
+ O(1) = m + O(1);
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thus we cannot replace the “O−1(N)” term in (1) by “o−1(N).” Moreover a similar
argument works whenever α ∈ Q. It is unclear whether (1) can be improved when
α < Q so we now examine this case in more detail:

For each integer x ≥ 0 the number of integers y ≥ 0 for which y + αx ≤ N is
simply max{0, 1 + [N − αx]}, where [t] denotes the largest integer ≤ t. Whenever
x ≤ N/α we can write 1 + [N − αx] = 1 + N − αx − {N − αx}, where {t} = t − [t].
Therefore

Aα(N) =

[N/α]∑

x=0

(1 + N − αx − {N − αx})

=
N2

2α
+

1
2

(
N +

N
α

)
+ O(1) −

[N/α]∑

x=0

({N − αx} − 1
2

). (2)

The first term is indeed the area of our triangle. The second two terms account for
half the length of the perimeter of our triangle. So, to able to prove that

Aα(N) = Area +
Perimeter

2
+ oα(N),

we need to establish that the mean value of {N − αx} is 1
2 when α is irrational, as

one might guess. Actually we will prove something much stronger. We will prove
that these values, in fact any set of values {αn + β : 1 ≤ n ≤ N} with α irrational,
are “uniformly distributed mod one,” so that their average is 1

2 :

DEFINITION. . A sequence of real numbers a1, a2, . . . is uniformly distributed
mod one if, for all 0 ≤ b < c ≤ 1 we have

#{n ≤ N : b < {an} ≤ c} ∼ (c − b)N as N → ∞.

Note that the values an = np/q + β, 1 ≤ n ≤ N (here α = p/q ∈ Q) are
evidently not uniformly distributed mod one.

Dirichlet proved that for any integer M ≥ 1 there exists integer m, 1 ≤ m ≤
M such that ‖mα‖ < 1/M (where ‖t‖ denotes the distance from t to the nearest
integer). To prove this note that there are M + 1 numbers {0 ·α}, {1 ·α}, . . . , {M ·α}
so, by the pigeonhole principle two, say {i · α} and { j · α} with 0 ≤ i < j ≤ M,
must belong to the same interval [k/M, (k + 1)/M) and so the result follows with
m = j − i.

For α < Qwe have δ := ‖mα‖ > 0. We will show that for each i, 1 ≤ i ≤ m the
set of values {αn + β : 1 ≤ n ≤ N, n ≡ i (mod m)} is well-distributed mod one,
and so the union of these sets is. This set of values is { j(mα)+(iα+β)} : 1 ≤ j ≤ Ji}
where Ji = N/m + O(1). We can rewrite this as {δ j + γ (mod 1) : 1 ≤ j ≤ J}
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where γ ≡ iα + β (mod 1) if δ = {mα}, and γ ≡ iα + β − δ(J + 1) (mod 1) if
1 − δ = {mα}, by replacing j with J + 1 − j. Now, for 0 ≤ γ < 1 and K = [δJ + γ]

#{ j ≤ J : {δ j + γ} ∈ [b, c)} =

K∑

k=0

#{ j ≤ J : δ j + γ ∈ [k + b, k + c)}

=
(
K + O(1)

) (c − b
δ

+ O(1)
)

= (c − b)J + O
(
c − b
δ

+ δJ + 1
)
.

So fix ε > 0 and let M > 1/ε so that δ < 1/M < ε. We have just shown that

#{n ≤ N : {αn + β ∈ [b, c)}} = (c − b)N + O
(m
δ

+ δN
)
.

Selecting N > m/δ2 this is
(
c − b + O(ε)

)
N. Letting ε → 0 we deduce that the

sequence {αn + β : n ≥ 1} is uniformly distributed mod one.
The above argument works for linear polynomials in α but it is hard to see how

it can be modified for more general sequences. However to determine whether a
sequence of real numbers is uniformly distributed we have the following extraor-
dinary, and widely applicable, criterion:

WEYL’S CRITERION. (Weyl, 1914) A sequence of real numbers a1, a2, . . . is
uniformly distributed mod one if and only if for every integer b , 0 we have

∣∣∣∣∣∣∣
∑

n≤N

e(ban)

∣∣∣∣∣∣∣ = ob(N) as N → ∞. (3)

In other words lim supN→∞
1
N |

∑
n≤N e(ban)| = 0.

(Here, and throughout, e(t) := e2iπt.) In particular if an = αn + β then
∑

n≤N

e(ban) = e(bβ)
∑

n≤N

e(bαn) = e
(
b(α + β)

) · e(bαN) − 1
e(bα) − 1

,

the sum of a geometric progression, provided bα is not an integer, so that
∣∣∣∣∣∣∣
∑

n≤N

e(ban)

∣∣∣∣∣∣∣ ≤
2

|e(bα) − 1| �
1
‖bα‖ �b 1 = ob(N), (4)

as |e(t) − 1| � ‖t‖. Since bα is never an integer when α < Q we deduce, from
Weyl’s criterion, that the sequence {αn +β : n ≥ 1} with α irrational, is uniformly
distributed mod one.
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REMARK. We immediately deduce from Weyl’s criterion that if a1, a2, . . . is
uniformly distributed mod one then so is ka1, ka2, . . . for any non-zero integer k.
Actually this can be deduced from the definition of uniform distribution mod one.

Proof. We recall that | sin t| ≤ ‖t‖ so that |e(t) − 1| ≤ π‖t‖.
We begin by assuming that a1, a2, . . . is uniformly distributed mod one. Fix

integer b and then fix integer M > b. Since the sequence is uniformly distributed
mod one we know that for each m, 0 ≤ m ≤ M − 1, there are N/M + o(N)
values of n ≤ N with m/M ≤ an < (m + 1)/M; moreover, for such n, we have
|e(ban) − e(bm/M)| ≤ π‖b/M‖. Therefore

∑

n≤N

e(ban) =

M−1∑

m=0

( N
M

+ o(N)
) (

e
(
bm
M

)
+ Ob

(
1
M

))
= Ob

( N
M

)
+ o(MN).

Now letting M get increasingly large we deduce that our sum is indeed ob(N).
On the other hand, assume that (1) holds and define the characteristic function

χ(b,c] by χ(b,c](t) = 1 if {t} ∈ (b, c], and = 0 otherwise. A well-known result
from Fourier analysis tells us that one can approximate any “reasonable” function
arbitrarily well using polynomials. That is, for any ε > 0 there exists integer d and
coefficients c j, −d ≤ j ≤ d, such that

∣∣∣χ(t) − f
(
e(t)

)∣∣∣ ≤ ε for all t ∈ [0, 1) where
f (x) =

∑
j:| j|≤d c jx j. Therefore

#{n ≤ N : b < {an} ≤ c} =
∑

n≤N

χ(b,c](an) =
∑

n≤N

(
f
(
e(an)

)
+ O(ε)

)

=
∑

j:| j|≤d

c j

∑

n≤N

e( jan) + O(Nε) = c0N + o(N) + O(Nε)

by (4). Now

c − b =

∫ 1

0
χ(b,c](t)dt =

∑

j:| j|≤d

c j

∫ 1

0
e( jt) dt + O(ε) = c0 + O(ε)

and so, by combining the last two equations and letting ε → 0, we have shown
that the sequence is uniformly distributed mod one.

One can deduce that a1, a2, . . . is uniformly distributed mod one if and only if,
for every continuous function f : [0, 1)→ R, we have

lim
N→∞

1
N

∑

n≤N

f ({an}) =

∫ 1

0
f (x) dx.

To prove this note that the functions e(bx), b ∈ Z≥0 form an appropriate (Fourier)
basis for the continuous functions on [0, 1).
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An explicit version of Weyl’s result, which is useful for many applications,
was given by Erdős and Turán (Erdős and Turán, 1948): For any sequence of real
numbers, and any 0 ≤ b < c ≤ 1 we have

∣∣∣∣∣
1
N

#{n ≤ N : b < {an} ≤ c} − (c − b)
∣∣∣∣∣ ≤

6
m + 1

+
4
π

m∑

b=1

1
b

∣∣∣∣∣∣∣
1
N

∑

n≤N

e(ban)

∣∣∣∣∣∣∣ .

There is a nice application of Weyl’s theorem in the theory of elliptic curves:
Let E be an elliptic curve defined over Q and suppose that E has infinitely many
rational points. Poincaré showed that the rational points form an additive group,
and Mordell proved Poincaré’s conjecture that this group has finite rank; in other
words E(Q) is an additive group of the form Zr

⊕
T where the torsion subgroup

T (that is, the subgroup of points of finite order) and r are finite. Let us suppose
that P1, . . . , Pr form a basis for the Zr part of E(Q): For any given arc A on
E(R) we can ask what proportion of the points {n1P1 + n2P2 + . . . + nrPr + t :
0 ≤ n1, . . . , nr ≤ N − 1, t ∈ T } lie on A, as N → ∞? The connection with our work
above lies in the Weierstrass parameterization of E: There exists an isomorphism
℘:C/(Z + Zi) → E; that is ℘(v + w) = ℘(v) + ℘(w) for all v,w ∈ C. So select
z1, . . . , zr ∈ C such that ℘(z j) = P j and τ such that ℘(τ) = t. The above question
then becomes to determine the proportion of the points

{n1z1 + n2z2 + · · ·+ nrzr + τ (mod Z+Zi) : 0 ≤ n1, . . . , nr ≤ N − 1, τ ∈ ℘−1(T )}
that lie on ℘−1(A), a two-dimensional uniform distribution question. Like this the
proportion can be shown to be

∫

(x,y)∈A

dx
y

/ ∫

(x,y)∈E(R)

dx
y
.

(For more background on elliptic curves see (Silverman and Tate, 1992)).
For given v = (a1, . . . , ak) ∈ Rk define v (mod 1) to be the vector

(a1 (mod 1), . . . , ak (mod 1)). We say that the sequence of vectors v1, v2, . . . ∈
Rk is uniformly distributed mod one if for any 0 ≤ b j < c j < 1 for j = 1, 2, . . . , k,
we have

#
{

n ≤ N : an (mod 1) ∈
k⊕

j=1

[b j, c j)
}
∼

k∏

j=1

(c j − b j) · N as N → ∞.

WEYL’S CRITERION IN K DIMENSIONS. A sequence of vectors v1, v2, . . . ∈
Rk is uniformly distributed mod one if and only if for every b ∈ Zk, b , 0 we have

∣∣∣∣∣∣∣
∑

n≤N

e(b.vn)

∣∣∣∣∣∣∣ = ob(N) as N → ∞. (5)
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We can deduce Kronecker’s famous result that if 1, α1, α2, . . . , αk are linearly
independent over Q then the vectors {(nα1, nα2, . . . , nαk) : n ≥ 1} are uniformly
distributed mod one.

A final remark on {αn + β}n≥1: Let an = αn + β (mod 1) for all n ≥ 1. The
transformation Tα : x → x + α gives T : an → an+1. We want to define a
measure µ on R/Z such that, for any “sensible” set A we have µ(A) = µ(T−1

α A).
In fact, when α < Q, the only invariant such measure, µ, is the Lebesgue measure,
and thus the values an are distributed according to this measure, that is they are
uniformly distributed mod one. See Section 2.4 of Lindenstrauss’s paper in this
volume (Lindenstrauss, 2006) for more details of this kind of ergodic theoretic
proof.

2. Fractional Parts of αn2

We have seen, in the last section, that any sequence {αn + β : n ≥ 1}, with α
irrational, is uniformly distributed mod one. One might ask about higher degree
polynomials in n. Our goal in this section is to prove the following celebrated
theorem of H. Weyl:

THEOREM 2.1. For any irrational real number α, the sequence {αn2 : n ≥ 1} is
uniformly distributed mod one.

For a streamlined proof, see the book (Kuipers and Niederreiter, 1974). Here
we will give an argument close to the original:

By Weyl’s criterion, we need to show that for fixed integer b , 0, the “Weyl
sum”

S β(N) =

N∑

n=1

e(βn2)

is oβ(N), where β = bα. Note that β is also irrational.
Weyl’s idea was to square the sum and notice that the resulting sum is essen-

tially that of a polynomial one degree lower, that is a linear polynomial. Indeed,

|S β(N)|2 =
∑

x,y≤N

e
(
β(x2 − y2)

)
= N + 2<

∑

y>x

e
(
β(y2 − x2)

)

Writing y = x+h, with h = 1, . . . ,N−1, x = 1, . . . ,N−h we have y2−x2 = 2hx+h2

which is linear in x. Thus we find

|S β(N)|2 = N + 2<
N−1∑

h=1

e(βh2)
N−h∑

x=1

e(2βh · x)
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≤ N + 2
N−1∑

h=1

∣∣∣∣∣∣∣
N−h∑

x=1

e(2βh · x)

∣∣∣∣∣∣∣

� N +

N−1∑

h=1

min
{

N,
1
‖2βh‖

}
, (6)

proceeding as in (4).
We again use Dirichlet’s observation that there exists q ≤ N with ‖q(2β)‖ <

1/N. Let a be the integer nearest q(2β); we may assume that (a, q) = 1. If h = H+ j,
1 ≤ j ≤ q then ‖2βh‖ = ‖2βH +a j/q‖+O(1/N); so as j runs from 1 to q the values
‖2βh‖ (where h = H + j) run through the values ‖γ + i/q‖ for 0 ≤ i ≤ q − 1, with
error no more than O(1/N), where |γ| ≤ 1/2q. Thus,

H+q∑

h=H+1

min
{

N,
1
‖2βh‖

}
� N +

q/2∑

i=1

q
i
� N + q log q.

Partitioning the integers up to N − 1 into at most N/q + 1 ≤ 2N/q intervals of
length q or less, we thus deduce, from (6), that

∣∣∣∣∣
1
N

S β(N)
∣∣∣∣∣
2
� 1

q
+

log q
N

. (7)

Now q = qN → ∞ as N → ∞ so (7) is o(1) and we are done. To see that qN → ∞
as N → ∞, suppose not so that ‖q(2β)‖ < 1

N for infinitely many integers N and
thus ‖q(2β)‖ = 0. But then β can be written as a rational number with denominator
2q, contradicting hypothesis.

This result is widely applicable and this proof is easily modified to fit a given
situation. For example see the proof of Lemma 3.2 in Heath-Brown’s paper
(Heath-Brown, 2006) in this volume.

A rather elegant ergodic theoretic proof of Theorem 2.1 is given in Section 3
of Lindenstrauss’s paper in this volume (Lindenstrauss, 2006).

Theorem 2.1 is a special case of

THEOREM 2.2. Let P(x) = ad xd+ad−1xd−1+· · ·+a1x+a0 be a polynomial with at
least one of the coefficients a1, . . . ad irrational. Then the sequence {P(n) : n ≥ 1}
is uniformly distributed modulo 1.

This can be proved along the same lines as Theorem 2.1 (the special case
of the polynomial P(x) = αx2) except that a single squaring operation will now
produce a polynomial of one degree less, not a linear one. One then iterates this
procedure to get back to the case of linear polynomials, see, e.g., (Davenport,
2005) for details.
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One can deduce from Weyl’s criterion in n-dimension and Theorem 2.2 that
the vectors {(nα, n2α, . . . , nkα): n ≥ 1} are uniformly distributed mod one if α is
not rational (see also Lindenstrauss’s article (Lindenstrauss, 2006) in this volume).

3. Uniform distribution mod N

For a given set A define A(x) = 1 if x ∈ A, and A(x) = 0 otherwise. Also define
the Fourier transform of A to be

Â(b) :=
∑

n

A(n)e(bn) =
∑

n∈A

e(bn).

Writing AN = {a j : 1 ≤ j ≤ N} the Weyl criterion becomes that a1, a2, . . . is
uniformly distributed mod one if and only if ÂN(b) = ob(N) for every non-zero
integer b.

When A is a subset of the residues mod N we define

Â(b) :=
∑

n

A(n)e
(
bn
N

)
=

∑

n∈A

e
(
bn
N

)
.

Let A be a set of integers, and let (t)N denote the least non-negative residue of t
(mod N) (so that (t)N = N{t/N}). The idea of uniform distribution mod N is surely
something like: For all 0 ≤ b < c ≤ 1 and all m . 0 (mod N) we have

#{a ∈ A : bN < (ma)N ≤ cN} ∼ (c − b)|A|. (8)

One can only make such a definition if |A| → ∞ (since this is an asymptotic
formula) but we are often interested in smaller sets A, indeed that are a subset of
{1, 2, . . . ,N}; so we will work with something motivated by, but different from,
(8). Let us see how far we can go to proving the analogy to Weyl’s criterion. Fix
ε > 0:

Define

Error(A; k) := max
0≤x≤N

m.0 (mod N)

∣∣∣∣∣#
{
a ∈ A : x < (ma)N ≤ x +

N
k

}
− |A|

k

∣∣∣∣∣ .

Suppose that Error(A; k) ≤ ε|A|/k for some k > 1/ε We proceed much as in the
proof of Weyl’s criterion above: Subdivide our interval (0,N] into subintervals
I j := ( jN/k, ( j + 1)N/k], so that if (ma)N ∈ I j then e(ma/N) = e( j/k) + O(1/k).
Therefore

Â(m) =

k−1∑

j=0

∑

a∈A
(ma)N∈I j

e(ma/N) =

k−1∑

j=0

e( j/k)
∑

a∈A
(ma)N∈I j

1 + O(|A|/k)

� k Error(A; k) +
|A|
k
� ε |A|.
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In the other direction our proof is somewhat different from that for Weyl’s
criterion: We begin by supposing that |Â(b)| ≤ ε2|A| for all b . 0 (mod N). For
J = [δN]

∑

a∈A
1≤(ma)N≤J

1 =

J∑

j=1

∑

a∈A

1
N

∑

r

e
(
r
(ma − j

N

))
=

J
N
|A| + 1

N

∑

r,0

Â(rm)
J∑

j=1

e
(−r j

N

)
.

If r runs through the non-zero integers in (−N/2,N/2] then |∑J
j=1 e(−r j/N)| �

N/|r|. Thus the second term here is, for R ≈ N/(ε2|A|)

�
∑

r,0

|Â(rm)|
r

≤
∑

0≤|r|≤R

|Â(rm)|
r

+
∑

R<|r|≤N/2

|Â(rm)|
r

≤ (log R) max
s,0
|Â(s)| +


∑

r

|Â(rm)|2


1/2 
∑

R<|r|
1/r2


1/2

≤ (log R)ε2|A| + (|A|N/R)1/2 � ε |A|
provided ε � 1/ log(N/|A|).

One can thus formulate an appropriate analogy to Weyl’s criterion along the
lines: The Fourier transforms of A are all small if and only if A and all its dilates
are “uniformly distributed.” (A dilate of A is the set {ma : a ∈ A} for some m . 0
(mod N).) This result is central to the spectacular recent progress in harmonic
analysis by Gowers et. al, (see (Granville et al., 2006)).

To give one example of how such a notion can be used, we ask whether a given
set A of residues mod N contains a non-trivial 3-term arithmetic progression? In
other words we wish to find solutions to a + b = 2c with a, b, c ∈ A where a , b.

PROPOSITION 3.1. If A is a subset of the residues (mod N) where N is odd,
for which |Â(m)| < |A|2/N − 1 whenever m . 0 (mod N) then A contains non-
trivial 3-term arithmetic progressions.

Proof. Since (1/N)
∑

r e(rt/N)=0 unless t is divisible by N, whence it equals 1,
we have that the number of 3-term arithmetic progressions in A is

∑

a,b,c∈A

1
N

∑

r

e
(
r(a + b − 2c)

N

)
=

1
N

∑

r

Â(r)2Â(−2r).

The r = 0 term gives |A|3/N. We regard the remaining terms as error terms,
and bound them by their absolute values, giving a contribution (taking m ≡ −2r
(mod N))

≤ 1
N

∑

r

|Â(r)|2 ·max
m,0
|Â(m)| = |A|max

m,0
|Â(m)|.
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There are |A| trivial 3-term arithmetic progressions (of the form a, a, a) so we have
established that A has non-trivial 3-term arithmetic progressions when

|A|3/N − |A|max
m,0
|Â(m)| > |A|,

yielding the result.

Let us apply Proposition 3.1 to the sets

Aδ :=
{

n (mod N) :

∥∥∥∥∥∥
n2

N

∥∥∥∥∥∥ <
δ

2

}

for N prime with 0 < δ < 1. For J = [δN/2] we have

Âδ(m) =
∑

n

e
(mn

N

) ∑

−J≤ j≤J

1
N

∑

r

e
(
r

( j − n2)
N

)

so that

|Âδ(m)| ≤ 1
N

∑

r

∣∣∣∣∣∣∣∣
∑

−J≤ j≤J

e
(r j

N

)∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∑

n

e
(
mn − rn2

N

)∣∣∣∣∣∣∣ .

Now
∑

n e(mn/N) = 0 if m , 0, and = N if m = 0. If r , 0 then
∑

n e
(
(mn−rn2)/N

)
is a Gauss sum and so has absolute value

√
N. Moreover |∑−J≤ j≤J e(r j/N)| �

N/r for 1 ≤ r ≤ N/2. Inputting all this above we obtain |Âδ(m)| � √
N log N

for each m . 0 (mod N) and #Aδ = |Âδ(0)| = δN + O(
√

N log N). Now, for
fixed δ > 0 we have proved that each |Âδ(m)| = o(δ2N), and so Proposition 3.1
implies that Aδ contains non-trivial 3-term arithmetic progressions. In fact the
proof of Proposition 3.1 yields that Aδ has ∼ δ3N2 3-term arithmetic progressions
a, a + d, a + 2d.

The previous result is in fact a special case of Roth’s (Roth, 1953) theorem,
which states that for any δ > 0 if N is sufficiently large then any subset A of
{1, . . . ,N} with more than δN elements contains a non-trivial 3-term arithmetic
progression. His proof is a little too complicated to discuss in detail here but
we will outline the main ideas. If δ > 2

3 then A must contain three consecutive
integers, so the result follows. Otherwise we proceed by a form of induction,
showing that if there exists A ⊂ {1, . . . ,N}, with #A ∼ δN, which contains no
non-trivial 3-term arithmetic progression then there exists A′ ⊂ {1, . . . ,N′}, with
#A′ ∼ δ′N′, which contains no non-trivial 3-term arithmetic progression, where
δ′ = (1 + cδ)δ and N′ = [N1/3]. The induction then yields Roth’s theorem for
any δ � 1/ log log N. To prove the induction step we begin by increasing N by a
negligible amount so that it is prime, and then considering A as a set of residues
mod N. By a slight modification of the proof of Proposition 3.1 one can show
that if A does not contain a non-trivial 3-term arithmetic progression then A is not
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uniformly distributed mod N. By the definition of uniformly distributed mod N,
this implies that there is some dilate of A, say mA (mod N) and some segment
[bN, cN] which contains rather more or rather less elements than expected; one
can show that, in fact, there must be some segments with rather more, and some
segments with rather less. Taking one of these segments with rather more elements
than expected, in fact containing 1+cδ times as many elements as expected, we can
identify a segment of an arithmetic progression (of length N′) within {1, . . . ,N}
which contains ∼ δ′N′ elements of A, and from this we construct A′ (integer j ∈ A′

if and only if the jth term of the arithmetic progression is in A).

4. Normal Numbers

Are there any patterns in the digits of π? Science fiction writers (Sagan, 1985)
would have us believe that secret messages are encoded far off in the tail of π
but computational evidence so far suggests the contrary, that there are no pat-
terns, indeed that every sequence of digits appears about as often as in a random
sequence. If the digits are written in base 10 then this question is equivalent to
asking whether the sequence {10nπ : n ≥ 1} is uniformly distributed mod one?
If so we say that π is normal in base 10. In general we say that real number α is
normal in base b if the sequence {bnα : n ≥ 1} is uniformly distributed mod one;
and that α is normal, if it is normal in base b for every integer b ≥ 2.

In general very little is known about normality. A few specific numbers of very
special form can be shown to be normal to certain bases. The one thing that we
can show is that almost all numbers are normal, with a proof that fails to identify
any such number!

THEOREM 4.1. Almost all x ∈ [0, 1) are normal.

(By “almost all” we mean that the set of such x has measure 1.) Theorem 4.1
follows from:

THEOREM 4.2. For any increasing sequence of integers a1, a2, . . ., the sequence
{anx : n ≥ 1} is uniformly distributed mod one for almost all x ∈ [0, 1).

Deduction of Theorem 4.1. Taking a j = b j for each j we see that almost all
x ∈ [0, 1) are normal in base b. Theorem 4.1 follows since the exceptional set has
measure 0 as it is a countable union of measure 0 sets.

Proof of Theorem 4.2. We begin by noting that

∫ 1

0

∣∣∣∣∣∣∣
1
N

∑

n≤N

e(banx)

∣∣∣∣∣∣∣

2

dx =
1

N2

∑

m,n≤N

∫ 1

0
e
(
bx(am − an)

)
dx =

1
N

;
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so that
∫ 1

0

∑

m≥1

∣∣∣∣∣∣∣∣
1

m2

∑

n≤m2

e(banx)

∣∣∣∣∣∣∣∣

2

dx =
∑

m≥1

1
m2 =

π2

6
.

Therefore (in a step that takes some thinking about)

∑

m≥1

∣∣∣∣∣∣∣∣
1

m2

∑

n≤m2

e(banx)

∣∣∣∣∣∣∣∣

2

< ∞

for almost all x, and so

lim
m→∞

∣∣∣∣∣∣∣∣
1

m2

∑

n≤m2

e(banx)

∣∣∣∣∣∣∣∣
= 0.

Now if m2 ≤ N < (m + 1)2 then
∑

n≤N e(banx) =
∑

n≤m2 e(banx) + O(m) and the
result follows.
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