AN OLD NEW PROOF OF ROTH'S THEOREM

Endre Szemerédi

In 1953 Roth [3] proved that for any fixed $\delta > 0$, if N is sufficiently large and A is any subset of $\{1, 2, ..., N\}$ of size $\geq \delta N$ then A contains a non-trivial 3-term arithmetic progression. In the 1980s I came up with an alternate proof that is in some aspects a little simpler but which I did not publish. This school gives me another opportunity to present this approach.

We suppose that $A \subset \{1, 2, ..., N\}$ with $|A| = \delta N$ (where $|A| \ge 1000\sqrt{N}$), and that A does not contain a non-trivial 3-term arithmetic progression, As usual we define $e(t) = e^{2i\pi t}$ and

$$\hat{A}(\alpha) = \sum_{a \in A} e(a\alpha).$$

The number of solutions to a + c = 2b with $a, b, c \in A$ is given by

(1)
$$|A| = \sum_{a,b,c \in A} \int_0^1 e(\alpha(a+c-2b))d\alpha = \int_0^1 \hat{A}(\alpha)^2 \hat{A}(-2\alpha)d\alpha$$

(the |A| comes from the solutions with a = b = c). We will partition \mathbb{R}/\mathbb{Z} into the arcs $I_j := [\frac{2j-1}{2MN}, \frac{2j+1}{2MN})$ for $j = 0, 1, \ldots, NM-1$ where M is the smallest integer $\geq 2\pi/\delta\eta$, with $\eta = 10^{-6}$. For real number t denote by ||t|| the distance from t to the nearest integer. Note that $|e(t) - 1| = 2|\sin(\pi t)| = 2|\sin(\pi \|t\|)| \leq 2\pi \|t\|$. Hence if $\alpha \in I_j$, that is $\alpha = \frac{j}{MN} + \beta$ where $|\beta| \leq 1/2MN$, then

(2)
$$|\hat{A}(j/MN) - \hat{A}(\alpha)| \le \sum_{a \in A} |e(a\beta) - 1| \le \sum_{a \in A} 2\pi ||a\beta|| \le |A| 2\pi N/2MN \le \eta \delta^2 N/2.$$

Let J be the set of integers in [0, MN) for which $|\hat{A}(j/MN)| \ge \eta \delta^2 N$; and then define the major arc, \mathcal{M} to be the union of the I_j with $j \in J$. From (2) we deduce that

$$|\hat{A}(\alpha)| \ge \eta \delta^2 N/2$$
 if $\alpha \in \mathcal{M}$; and $|\hat{A}(\alpha)| \le 3\eta \delta^2 N/2$ if $\alpha \notin \mathcal{M}$.

From the second of these inequalities we deduce that

$$\begin{aligned} \left| \int_{\substack{\alpha \notin \mathcal{M} \\ \alpha \notin \mathcal{M}}}^{1} \hat{A}(\alpha)^{2} \hat{A}(-2\alpha) d\alpha \right| &\leq \max_{\alpha \notin \mathcal{M}} |\hat{A}(\alpha)| \cdot \int_{0}^{1} |\hat{A}(\alpha)| \cdot |\hat{A}(-2\alpha)| d\alpha \\ &\leq \frac{3}{2} \eta \delta^{2} N \left(\int_{0}^{1} |\hat{A}(\alpha)|^{2} d\alpha \int_{0}^{1} |\hat{A}(-2\alpha)|^{2} d\alpha \right)^{1/2} &= \frac{3}{2} \eta \delta^{3} N^{2} \end{aligned}$$

Typeset by \mathcal{AMS} -TEX

by Parseval's identity that $\int_0^1 |\hat{A}(\alpha)|^2 d\alpha = |A|$. From the first of the inequalities we have that

$$\delta N = |A| = \int_0^1 |\hat{A}(\alpha)|^2 d\alpha \ge \int_{\alpha \in \mathcal{M}} |\hat{A}(\alpha)|^2 d\alpha \ge |\mathcal{M}| (\eta \delta^2 N/2)^2,$$

so that $|\mathcal{M}| \leq 4/(\eta^2 \delta^3 N)$; and thus $k := |J| \leq 4M/\eta^2 \delta^3 \lesssim 8\pi/\delta^4 \eta^3$. (Here we use the notation " \leq " (and later " \sim ") instead of " \leq " (and later "=", respectively), when there may be other terms that are negligible compared to the main term.)

We now claim that there exists a positive integer $q \leq Q$ for which

(4)
$$\left\|\frac{qj}{MN}\right\| \le Q^{-1/k} \text{ for each } j \in J.$$

To see this consider the vectors w_i in $(\mathbb{R}/\mathbb{Z})^k$ with coordinates indexed by $j \in J$, where the *j*th coordinate is $ij/mn \pmod{1}$. If we cut the space up into the *Q k*-dimensional minicubes given by cutting up each dimension into sides of length $Q^{-1/k}$, then at least two of the vectors from w_0, w_1, \ldots, w_Q belong to the same minicube, by the pigeonhole principle. If these vectors are w_h and w_i with $0 \leq h < i \leq Q$ then let q = i - h so that (4) holds as claimed.

Take $L = [N^{1/3k}/8M]$ and $Q = (8LM)^k$, so that $Q \leq N^{1/3}$. If $\alpha \in I_j$ with $j \in J$ then $||q\alpha|| \leq ||qj/MN|| + ||q/2MN|| \leq Q^{-1/k} + Q/2MN$, and thus if ℓ is an integer for which $|\ell| \leq 4L$ then $||\alpha q\ell|| \leq 4L(Q^{-1/k} + Q/2MN) \leq 1/M$, since $4LQ \leq Q^{1+1/k} \leq N^{2/3}$ as well. Therefore

$$\begin{split} \left| \int_{0}^{1} \hat{A}(\alpha)^{2} \hat{A}(-2\alpha) e(\alpha q \ell) d\alpha - \int_{0}^{1} \hat{A}(\alpha)^{2} \hat{A}(-2\alpha) d\alpha \right| \\ & \leq 2\pi \int_{\alpha \in \mathcal{M}} |\hat{A}(\alpha)|^{2} \cdot |\hat{A}(-2\alpha)| \cdot \|\alpha q \ell\| d\alpha + 2 \int_{\alpha \notin \mathcal{M}} |\hat{A}(\alpha)|^{2} \cdot |\hat{A}(-2\alpha)| d\alpha \\ & \leq 2\pi \delta^{2} N^{2} \max_{\alpha \in \mathcal{M}} \|\alpha q \ell\| + 3\eta \delta^{3} N^{2} \leq 4\eta \delta^{3} N^{2} \end{split}$$

by (3). We deduce that for any $|r|, |s|, |t| \leq L$ (taking $\ell = r + t - 2s$ above) we have

(5)
$$\#\{a, b, c \in A: (a + rq) + (c + tq) = 2(b + sq)\} \le 5\eta\delta^3 N^2,$$

using (1), since $\delta N \ge \sqrt{N/\eta}$ by assumption.

This suggests that for most 3-term arithmetic progressions of integers u + w = 2vthere cannot be many a = u - rq, b = v - sq, $c = w - tq \in A$, which seems implausible if A is reasonably distributed in segments of residue classes mod q. To show this define

$$\kappa(n) = \#\{r: |r| \le L, n - rq \in A\}.$$

One expects that $\kappa(n)$ is roughly $\delta(2L+1)$ for most integers n. We will now prove that most integers belong to

$$B = \left\{ n: \ 1 \le n \le N, \kappa(n) > \frac{\delta}{8}(2L+1) \right\}$$

unless $\kappa(n)$ is surprisingly large for some n. Let A(m) = 1 if $m \in A$, and = 0 otherwise. Note that

$$\sum_{n=1}^{N} \kappa(n) = \sum_{n=1}^{N} \sum_{r=-L}^{L} A(n-rq) = \sum_{a \in A} \#\{r : |r| \le L, \ 1 \le a + rq \le N\}$$
$$\ge (2L+1)\#\{a \in A : Lq < a < N - Lq\} \ge (2L+1)(\delta N - 2Lq).$$

Now assume that each $\kappa(n) \leq \frac{9\delta}{8}(2L+1)$ so that

$$\sum_{n=1}^{N} \kappa(n) \le |B| \frac{9\delta}{8} (2L+1) + (N-|B|) \frac{\delta}{8} (2L+1).$$

We can combine the last two inequalities to obtain $|B| \ge 7N/8 + O(N^{2/3})$. On the other hand, by (5) we have, writing a = u - rq, b = v - sq, c = w - tq,

$$\begin{split} 5\eta \delta^3 N^2 (2L+1)^3 &\geq \sum_{|r|,|s|,|t| \leq L} \#\{a,b,c \in A: \ (a+rq) + (c+tq) = 2(b+sq)\} \\ &= \sum_{u+w=2v} \kappa(u)\kappa(v)\kappa(w) \geq \sum_{\substack{u+w=2v\\u,v,w \in B}} \kappa(u)\kappa(v)\kappa(w) \\ &\geq \left(\frac{\delta}{8}(2L+1)\right)^3 \ \#\{u,v,w \in B: \ u+w = 2v\}; \end{split}$$

that is

(6)
$$\#\{u, v, w \in B: \ u + w = 2v\} \le 5 \cdot 8^3 \eta N^2 < N^2/300.$$

We can bound $\#\{u, v, w \in B : u + w = 2v\}$ from below by taking all $\sim N^2/4$ solutions to u + w = 2v with $1 \leq u, v, w \leq N$, and then subtracting, for each $u \notin B$ the number of v for which $1 \leq 2v - u \leq N$ (that is $(N - |B|) \times N/2$) and similarly for w, and then subtracting, for each $v \notin B$ the number of $u, w \in B$ for which $u + w \in B$ (which is no more than $(N - |B|) \times |B|$). Thus

$$\#\{u, v, w \in B: \ u + w = 2v\} \gtrsim N^2/4 - (N^2 - |B|^2) \gtrsim N^2/64$$

as $|B| \gtrsim 7N/8$, which contradicts (6). Therefore the assumption is false, so that there exists n with $\kappa(n) > \frac{9\delta}{8}(2L+1)$.

We deduce that the set

$$A_0 := \{r + L + 1 : n - rq \in A\} \subset \{1, \dots, 2L + 1\}$$

has $\geq \frac{9}{8}\delta(2L+1)$ elements, but no 3-term arithmetic progression. Let $N_1 := [N^{\delta^4/10^{20}}]$, which is smaller than 2L+1. Select the subinterval [s+1, s+N] of [1, 2L+1] containing the most elements of A_0 , so that

$$A_1 := \{j : 1 \le j \le N \text{ and } s + j \in A_0\}$$

does not contain any non-trivial 3-term arithmetic progressions, and has $\gtrsim \frac{9}{8}\delta N_1$ elements. We have therefore proved the following:

If A is a subset of $\{1, 2, ..., N\}$, with δN elements, which does not contain a nontrivial 3-term arithmetic progression, then there exists a subset A_1 of $\{1, 2, ..., N_1\}$, with $\geq \frac{9}{8}\delta N_1$ elements, which does not contain a non-trivial 3-term arithmetic progression.

Suppose that $\delta \geq \delta_g = (8/9)^g$. If we iterate the above result j times then we have a subset $A_j \subset \{1, 2, ..., N_j\}$ containing $\delta_{g-j}N_j$ elements, no three of which form an arithmetic progression, where $N_j \sim N^{\eta_j}$ with $\eta_j := (8/9)^{2((2g+1)j-j^2)}/10^{20j}$. Therefore A_g contains all the integers up to N_g and so must contain many three term arithmetic progressions, a contradiction, provided N_g is sufficiently large. This will be the case if $\eta_g \gg 1/\log N$ which follows provided $g < (\log \log N/(2\log(9/8)))^{1/2} + O(1)$. Hence we may take any

$$\delta \gg 1/\exp(c\sqrt{\log\log N})$$

where $c = \sqrt{\frac{1}{2} \log \frac{9}{8}}$. One can optimize our argument to slightly increase the value of c. We have therefore proved the following result:

Theorem. There exists a constant c > 0 such that if A is a subset of $\{1, 2, ..., N\}$ with N sufficiently large, where A contains at least

$$N/\exp(c\sqrt{\log\log N})$$

elements, then A contains a non-trivial three-term arithmetic progression.

Stronger results are proved in [1], [2] and [4].

Acknowledgements: This article was written by Antal Balog and Andrew Granville, based on the lecture given by the author at the school.

References

- 1. J. Bourgain, On triples in arithmetic progressions, GAFA 9 (1999), 107–156.
- 2. D.R. Heath-Brown, Integer sets containing no arithmetic progressions, JLMS 35 (1987), 385–394.
- 3. K.F. Roth, On certain sets of integers, JLMS 28 (1953), 104–109.
- E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math Hungar 56 (1990), 155– 158.