
AN OLD NEW PROOF OF ROTH’S THEOREM

Endre Szemerédi

In 1953 Roth [3] proved that for any fixed δ > 0, if N is sufficiently large and A is
any subset of {1, 2, . . . , N} of size ≥ δN then A contains a non-trivial 3-term arithmetic
progression. In the 1980s I came up with an alternate proof that is in some aspects a little
simpler but which I did not publish. This school gives me another opportunity to present
this approach.

We suppose that A ⊂ {1, 2, . . . , N} with |A| = δN (where |A| ≥ 1000
√

N), and
that A does not contain a non-trivial 3-term arithmetic progression, As usual we define
e(t) = e2iπt and

Â(α) =
∑

a∈A

e(aα).

The number of solutions to a + c = 2b with a, b, c ∈ A is given by

(1) |A| =
∑

a,b,c∈A

∫ 1

0

e(α(a + c − 2b))dα =

∫ 1

0

Â(α)2Â(−2α)dα

(the |A| comes from the solutions with a = b = c). We will partition R/Z into the arcs

Ij := [ 2j−1
2MN , 2j+1

2MN ) for j = 0, 1, . . . , NM −1 where M is the smallest integer ≥ 2π/δη, with

η = 10−6. For real number t denote by ‖t‖ the distance from t to the nearest integer. Note

that |e(t) − 1| = 2| sin(πt)| = 2| sin(π‖t‖)| ≤ 2π‖t‖. Hence if α ∈ Ij , that is α = j
MN + β

where |β| ≤ 1/2MN , then

(2) |Â(j/MN) − Â(α)| ≤
∑

a∈A

|e(aβ) − 1| ≤
∑

a∈A

2π‖aβ‖ ≤ |A|2πN/2MN ≤ ηδ2N/2.

Let J be the set of integers in [0, MN) for which |Â(j/MN)| ≥ ηδ2N ; and then define
the major arc, M to be the union of the Ij with j ∈ J . From (2) we deduce that

|Â(α)| ≥ ηδ2N/2 if α ∈ M; and |Â(α)| ≤ 3ηδ2N/2 if α 6∈ M.

From the second of these inequalities we deduce that

∣

∣

∣

∣

∫ 1

0
α6∈M

Â(α)2Â(−2α)dα

∣

∣

∣

∣

≤ max
α6∈M

|Â(α)| ·
∫ 1

0

|Â(α)| · |Â(−2α)|dα

≤ 3

2
ηδ2N

(
∫ 1

0

|Â(α)|2dα

∫ 1

0

|Â(−2α)|2dα

)1/2

=
3

2
ηδ3N2(3)
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by Parseval’s identity that
∫ 1

0
|Â(α)|2dα = |A|. From the first of the inequalities we have

that

δN = |A| =

∫ 1

0

|Â(α)|2dα ≥
∫

α∈M

|Â(α)|2dα ≥ |M|(ηδ2N/2)2,

so that |M| ≤ 4/(η2δ3N); and thus k := |J | ≤ 4M/η2δ3 . 8π/δ4η3. (Here we use the
notation “.” (and later “∼”) instead of “≤” (and later “=”, respectively), when there
may be other terms that are negligible compared to the main term.)

We now claim that there exists a positive integer q ≤ Q for which

(4)

∥

∥

∥

∥

qj

MN

∥

∥

∥

∥

≤ Q−1/k for each j ∈ J.

To see this consider the vectors wi in (R/Z)k with coordinates indexed by j ∈ J , where
the jth coordinate is ij/mn (mod 1). If we cut the space up into the Q k-dimensional
minicubes given by cutting up each dimension into sides of length Q−1/k, then at least
two of the vectors from w0, w1, . . . , wQ belong to the same minicube, by the pigeonhole
principle. If these vectors are wh and wi with 0 ≤ h < i ≤ Q then let q = i− h so that (4)
holds as claimed.

Take L = [N1/3k/8M ] and Q = (8LM)k, so that Q ≤ N1/3. If α ∈ Ij with j ∈ J

then ‖qα‖ ≤ ‖qj/MN‖ + ‖q/2MN‖ ≤ Q−1/k + Q/2MN , and thus if ` is an integer for
which |`| ≤ 4L then ‖αq`‖ ≤ 4L(Q−1/k + Q/2MN) ≤ 1/M , since 4LQ ≤ Q1+1/k ≤ N2/3

as well. Therefore
∣

∣

∣

∣

∫ 1

0

Â(α)2Â(−2α)e(αq`)dα −
∫ 1

0

Â(α)2Â(−2α)dα

∣

∣

∣

∣

≤ 2π

∫

α∈M

|Â(α)|2 · |Â(−2α)| · ‖αq`‖dα + 2

∫

α6∈M

|Â(α)|2 · |Â(−2α)|dα

≤ 2πδ2N2 max
α∈M

‖αq`‖ + 3ηδ3N2 ≤ 4ηδ3N2

by (3). We deduce that for any |r|, |s|, |t| ≤ L (taking ` = r + t − 2s above) we have

(5) #{a, b, c ∈ A : (a + rq) + (c + tq) = 2(b + sq)} ≤ 5ηδ3N2,

using (1), since δN ≥
√

N/η by assumption.
This suggests that for most 3–term arithmetic progressions of integers u + w = 2v

there cannot be many a = u − rq, b = v − sq, c = w − tq ∈ A, which seems implausible if
A is reasonably distributed in segments of residue classes mod q. To show this define

κ(n) = #{r : |r| ≤ L, n − rq ∈ A}.

One expects that κ(n) is roughly δ(2L + 1) for most integers n. We will now prove that
most integers belong to

B =

{

n : 1 ≤ n ≤ N, κ(n) >
δ

8
(2L + 1)

}
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unless κ(n) is surprisingly large for some n. Let A(m) = 1 if m ∈ A, and = 0 otherwise.
Note that

N
∑

n=1

κ(n) =

N
∑

n=1

L
∑

r=−L

A(n − rq) =
∑

a∈A

#{r : |r| ≤ L, 1 ≤ a + rq ≤ N}

≥ (2L + 1)#{a ∈ A : Lq < a < N − Lq} ≥ (2L + 1)(δN − 2Lq).

Now assume that each κ(n) ≤ 9δ
8

(2L + 1) so that

N
∑

n=1

κ(n) ≤ |B|9δ

8
(2L + 1) + (N − |B|) δ

8
(2L + 1).

We can combine the last two inequalities to obtain |B| ≥ 7N/8 + O(N 2/3). On the other
hand, by (5) we have, writing a = u − rq, b = v − sq, c = w − tq,

5ηδ3N2(2L + 1)3 ≥
∑

|r|,|s|,|t|≤L

#{a, b, c ∈ A : (a + rq) + (c + tq) = 2(b + sq)}

=
∑

u+w=2v

κ(u)κ(v)κ(w) ≥
∑

u+w=2v
u,v,w∈B

κ(u)κ(v)κ(w)

≥
(

δ

8
(2L + 1)

)3

#{u, v, w ∈ B : u + w = 2v};

that is

(6) #{u, v, w ∈ B : u + w = 2v} ≤ 5 · 83ηN2 < N2/300.

We can bound #{u, v, w ∈ B : u + w = 2v} from below by taking all ∼ N 2/4 solutions
to u + w = 2v with 1 ≤ u, v, w ≤ N , and then subtracting, for each u 6∈ B the number
of v for which 1 ≤ 2v − u ≤ N (that is (N − |B|) × N/2) and similarly for w, and then
subtracting, for each v 6∈ B the number of u, w ∈ B for which u+w ∈ B (which is no more
than (N − |B|) × |B|). Thus

#{u, v, w ∈ B : u + w = 2v} & N 2/4 − (N2 − |B|2) & N2/64

as |B| & 7N/8, which contradicts (6). Therefore the assumption is false, so that there
exists n with κ(n) > 9δ

8 (2L + 1).
We deduce that the set

A0 := {r + L + 1 : n − rq ∈ A} ⊂ {1, . . . , 2L + 1}

has ≥ 9
8
δ(2L + 1) elements, but no 3-term arithmetic progression. Let N1 := [N δ4/1020

],
which is smaller than 2L + 1. Select the subinterval [s + 1, s + N ] of [1, 2L + 1] containing
the most elements of A0, so that

A1 := {j : 1 ≤ j ≤ N and s + j ∈ A0}
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does not contain any non-trivial 3-term arithmetic progressions, and has & 9
8δN1 elements.

We have therefore proved the following:

If A is a subset of {1, 2, . . . , N}, with δN elements, which does not contain a non-
trivial 3-term arithmetic progression, then there exists a subset A1 of {1, 2, . . . , N1}, with
& 9

8δN1 elements, which does not contain a non-trivial 3-term arithmetic progression.

Suppose that δ ≥ δg = (8/9)g. If we iterate the above result j times then we have
a subset Aj ⊂ {1, 2, . . . , Nj} containing δg−jNj elements, no three of which form an

arithmetic progression, where Nj ∼ Nηj with ηj := (8/9)2((2g+1)j−j2)/1020j. Therefore
Ag contains all the integers up to Ng and so must contain many three term arithmetic
progressions, a contradiction, provided Ng is sufficiently large. This will be the case if

ηg � 1/ log N which follows provided g < (log log N/(2 log(9/8)))1/2 + O(1). Hence we
may take any

δ � 1/ exp(c
√

log log N)

where c =
√

1
2 log 9

8 . One can optimize our argument to slightly increase the value of c.

We have therefore proved the following result:

Theorem. There exists a constant c > 0 such that if A is a subset of {1, 2, . . . , N} with

N sufficiently large, where A contains at least

N/ exp(c
√

log log N)

elements, then A contains a non-trivial three-term arithmetic progression.

Stronger results are proved in [1], [2] and [4].

Acknowledgements: This article was written by Antal Balog and Andrew Granville, based
on the lecture given by the author at the school.
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