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Abstract This is a survey on sum-product formulae and methods. We state old and
new results. Our main objective is to introduce the basic techniques used to bound
the size of the product and sumsets of finite subsets of a field.
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1 Introduction

1.1 A Few Definitions

For an additive or multiplicative group G and subsets A; B � G we define

A C B D fg 2 G W There exist a 2 A; b 2 B such that g D a C bgI and

A � B D fg 2 G W There exist a 2 A; b 2 B such that g D a � bg:

We let rACB.n/ WD #fa 2 A; b 2 B W n D a C bg; rAB.n/ WD #fa 2 A; b 2 B W
n D abg, and note that 0 � rACB.n/ � minfjAj; jBjg since rACB.n/ D jA \ .n � B/j
� jAj and rACB.n/ D jB \ .n � A/j � jBj. We write OA.t/ D P

a2A e.at/ where
e.u/ D e2i�u.
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1.2 Multiplication Tables

We learnt to multiply by memorizing the multiplication tables; that is, we wrote
down a table with the rows and columns indexed by the integers between 1 and
N and the entries in the table were the row entry times the column entry.1 Paul
Erdős presumably learnt his multiplication tables rather more rapidly than the
other students, and was left wondering: How many distinct integers are there in
the N-by-N multiplication table? Note that if we take A D f1; 2; : : : ; Ng, then
we are asking how big is A � A? Or, more specifically, since the numbers in the
N-by-N multiplication table are all � N2, what proportion of the integers up to N2

actually appear in the table? That is,

Does jA � Aj=N2 tend to a limit as N ! 1?

Erdős showed that the answer is, yes, and that the limit is 0. His proof comes
straight from “The Book”.2 Erdős’s proof is based on the celebrated result of Hardy
and Ramanujan that “almost all” positive integers n � N have � log log N (not
necessarily distinct) prime factors (here “almost all” means for all but o.N/ values
of n � N): Hardy and Ramanujan’s result implies that “almost all” products ab with
a; b � N have � 2 log log N prime factors, whereas “almost all” integers � N2 have
� log log.N2/ � log log N prime factors! The result follows from comparing these
two statements.

1.3 The Motivating Conjectures

In fact one can show that jA � Aj is large whenever A is an arithmetic progression
or, more generally, when A is a generalized arithmetic progression of not-too-large
dimension. 3

This led Erdős and Szemerédi to the conjecture that for any � > 0, there exists
c� > 0 such that for any finite set of integers A;

jA C Aj C jA � Aj � c�jAj2��: (1)

1A.G.: In my primary school we took N D 12 which was the basic multiple needed for
understanding U.K. currency at that time.
2Erdős claimed that the Supreme Being kept a book of all the best proofs, and only occasionally
would allow any mortal to glimpse at “The Book.”
3A generalized arithmetic progression is the image of a lattice, that is:

C WD fa0 C a1n1 C a2n2 C � � � C aknk W 0 � nj � Nj � 1 for 1 � j � kg;

where N1; N2; : : : ; Nk are integers � 2. This generalized arithmetic progression is said to have
dimension k and volume N1N2 : : : Nk; and is proper if its elements are distinct.
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Even more, one can conjecture that if jAj D jBj D jCj then

jA C Bj C jA � Cj � c�jAj2��: (2)

The above conjectures might hold for complex numbers even. Perhaps the most
general version is

Either jA C Bj � .jAjjBj/1�� or jA � Cj � .jAjjCj/1��

with no restrictions on the sizes of A; B, and C. The thinking in these conjectures
is that if A C B is small then A must be “structured,” more precisely that it must
look like a largish subset of a generalized arithmetic progression, and similarly if
AC is small then log A must look like a largish subset of a generalized arithmetic
progression, and that these two structures are incompatible.

2 Sum-Product for Real Numbers

2.1 Results Via Discrete Geometry

The second author proved (2) for � D 8=11 [29] (see Theorem 1 below). We now
prove (2) for � D 3=4. We begin by stating the

Szemerédi–Trotter Theorem. We are given a set C of m curves in R
2 such that

• Each pair of curves meet in � �1 points;
• Any pair of points lie on � �2 curves.

For any given set P of n points, there are � m C 4�2n C 4�1�
1=3
2 .mn/2=3 pairs

.�; �/ with point � 2 P lying on curve � 2 C .

Székely provided a gorgeous proof of this result, straight from The Book, via
geometric and random graph theory [27]. From this Elekes elegantly deduced the
following in [7]:

Theorem 1. If A; B; C � R, then

jA C Bj C jA � Cj � 1

2
.jAj � 1/3=4.jBjjCj/1=4: (3)

Proof. If jA C BjjA � Cj � . 1
24 jBjjCj/2, then at least one of jA C Bj and jA � Cj is

� 1
24 jBjjCj, and they are both � jAj, so that their product is � 1

24 jAj3jBjjCj. Hence

jA C Bj C jA � Cj � 1

2
jAj3=4.jBjjCj/1=4;

which implies the result. Hence we may assume that jA C BjjA � Cj < 1
28 .jBjjCj/2.
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Let P be the set of points .A C B/ 	 .A � C/; and C the set of lines y D c.x � b/

where b 2 B and c 2 C. In the Szemerédi–Trotter Theorem we have �1 D �2 D 1

with

m D jBjjCj and n � N WD jA C Bj jA � Cj;

since the set of points is [a2A.a C B; aC/. For fixed b 2 B and c 2 C, all of the
points f.a C b; ac/ W a 2 Ag in P lie on the line y D c.x � b/, so that

#f.�; �/ W � 2 P on � 2 C g � jAjm:

Substituting this into the Szemerédi–Trotter Theorem we obtain

.jAj � 1/m � 4n C 4.mn/2=3 � 4N C 4.mN/2=3:

We assumed that N < m2=28, so that N < .mN/2=3=28=3 < .22=3 � 1/.mN/2=3, and
hence .jAj � 1/m1=3 � 4.2N/2=3. This implies that N > .jAj � 1/3=2.jBjjCj/1=2=16.

ut
Corollary 2.1. If A � R, then

jA C Aj C jA � Aj � 1

2
jAj5=4:

Next we give an argument that improves this. It is still not the best result currently
known in the direction of (1) but it only uses the Szemerédi–Trotter Theorem which
has several advantages. The most important advantage is that incidence bounds
between points and lines on a plane over any field K provide sum-product bounds
in K: Even better, the point set where the incidence bounds are needed have a special
Cartesian product structure. For example, on the complex plane, C2; it is quite easy
to give a Szemerédi-Trotter type bound (with the same exponents) for lines and
points of a Cartesian product like .A C B/ 	 .A � C/ above. The incidence bound for
this special case appeared in [28]. Another example is Vinh’s work [32] who used
a Szemerédi-Trotter type bound to obtain a different proof of Garaev’s sum-product
estimate in finite fields (see Theorem 4 below).

Theorem 2. [29] If A; B; C; D � R with 0 62 C, then

jA=CjjA C BjjC C Dj � .jAjjCj/3=2.jBjjDj/1=2 min

�

1;
jA=Cj
jBjjDj

� 1=4

:

Part of this follows from
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Theorem 3. If A; B; C; D � R with 0 62 C and jA=Cj � jBjjDj, then

jA=Cj3 .jA C BjjC C Dj/4 >
1

2 � 1010
.jAjjCj/6.jBjjDj/; (4)

and

jACj3.jA C BjjC C Dj/4 � 1

109

.jAjjCj/6.jBjjDj/
log3.4 minfjAj; jCjg/ :

We note some consequences:

Corollary 2.2. If A; C � R with 0 62 C, then

jA=Cj3 jA C Cj8 >
1

2 � 1010
.jAjjCj/7 (5)

and

jACj3 jA C Cj8 � 1

109

.jAjjCj/7

log3.4 minfjAj; jCjg/ :

Hence

jAAj3 jA C Aj8 � jAj14

log3.4jAj/ I

in particular if jA C Aj � �jAj, then jAAj � ��8=3jAj2= log.4jAj/.
Remark. If A D f1; : : : ; Ng, then jAAj 
 N2=.log N/ı.log log N/3=2 for some
ı D 1 � 1Clog log 2

log 2
D 0:08607 : : :. Hence some power of log in the denominator

in this last result is unavoidable.

Proof of Theorem 3. Let V.k/ denote the set of m 2 C=A for which 2k � rC=A.m/ <

2kC1, for k D 0; 1; 2; : : : Consider C D Ck the set of lines y D mxCe with m 2 V.k/

which contain at least one point .x; y/ 2 B 	 D. Each .x; y/ 2 B 	 D lies on exactly
jV.k/j lines of Ck (as may be seen by taking e D b � dm for each m 2 V.k/), so that

jV.k/jjBjjDj � jCkj C 4jBjjDj C 4.jCkjjBjjDj/2=3

by the Szemerédi–Trotter Theorem. Hence either jV.k/j � 14 or 11
15

jV.k/jjBjjDj �
jCkj C 4.jCkjjBjjDj/2=3 which implies that

jCkj � minf1

4
jV.k/jjBjjDj; 1

27
jV.k/j3=2.jBjjDj/1=2g:

Now jV.k/j � jC=Aj � jBjjDj so that jCkj � 1
27

jV.k/j3=2.jBjjDj/1=2.
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Now consider the set of points .A C B/ 	 .C C D/. If y D mx C e is a line
in Ck containing the point .b; d/, then it also contains the points .a C b; c C d/

whenever c=a D m with a 2 A; c 2 C. Hence each such line contains at least 2k

points from .A C B/ 	 .C C D/ and the Szemerédi–Trotter Theorem then yields
2kjCkj � jCkj C 4jA C BjjC C Dj C 4.jCkjjA C BjjC C Dj/2=3. Hence

.2k � 1/jCkj � maxf80jA C BjjC C Dj; 4:2 .jCkjjA C BjjC C Dj/2=3g

which implies that

jCkj � 80 max

� jA C BjjC C Dj
.2k � 1/

;
.jA C BjjC C Dj/2

.2k � 1/3

�

D 80
.jA C BjjC C Dj/2

.2k � 1/3
;

where this last inequality follows since rC=A.m/ � minfjAj; jCjg which implies that

.2k � 1/2 < rC=A.m/2 � jAjjCj � jA C BjjC C Dj:

Combining the deductions at the end of the last two paragraphs gives

jV.k/j � 62102=3 .jA C BjjC C Dj/4=3

.2k � 1/2.jBjjDj/1=3
: (6)

Therefore

X

rC=A.m/�2K

rC=A.m/ �
X

k�K

X

m2V.k/

2kC1 � 335
X

k�K

2k

.2k � 1/2
� .jA C BjjC C Dj/4=3

.jBjjDj/1=3

� 670
2K

.2K � 1/2
� .jA C BjjC C Dj/4=3

.jBjjDj/1=3
;

and this is � 1
2
jAjjCj provided 2K � 671.jA C BjjC C Dj/4=3=.jAjjCj/.jBjjDj/1=3.

So select the smallest K for which this holds, so that

1

2
jAjjCj �

X

rC=A.m/<2K

rC=A.m/ < 2K jC=Aj < 1342jC=Aj .jA C BjjC C Dj/4=3

.jAjjCj/.jBjjDj/1=3
;

and the first result follows.
Let us also note that, by the Cauchy–Schwarz inequality

.jAjjCj/2 D
ˇ
ˇ
ˇ
ˇ
ˇ

X

n

rAC.n/

ˇ
ˇ
ˇ
ˇ
ˇ

2

� jACjX
n

rAC.n/2 D jACjX
m

rC=A.m/2 � 4jACjX
k

V.k/22k:

By (6), and the fact that 2k � rC=A.m/ � minfjAj; jCjg we deduce the second result.
ut
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Proof of Theorem 2 when jC=Aj > jBjjDj. We may assume that

jA C BjjC C Dj � .jAjjCj/3=2=.118.jBjjDj/1=2/;

else we obtain the result by multiplying through by jA=Cj3=4 > .jBjjDj/3=4.
In the proof of Theorem 3 we note that if V.k/ > jBjjDj then

V.k/ � 4jCkj
jBjjDj � 320

.jA C BjjC C Dj/2

.2k � 1/3jBjjDj ;

so we obtain
P

rC=A.m/�2K rC=A.m/ � 1
2
jAjjCj provided

2K � max

�
.jA C BjjC C Dj/4=3

.jAjjCj/.jBjjDj/1=3
;

jA C BjjC C Dj
.jAjjBjjCjjDj/1=2

�


 jA C BjjC C Dj
.jAjjBjjCjjDj/1=2

;

the last equality following from our assumption, and the result follows as in the
proof of Theorem 3. ut

2.2 Some Easier Ideas

The multiplicative energy of two finite sets A; B is defined as

E�.A; B/ D #fa1; a2 2 A; b1; b2 2 B W a1b1 D a2b2g D
X

a;b2B

jaA \ bAj:

By the Cauchy–Schwarz inequality we have E�.A; B/2 � E�.A; A/E�.B; B/. We
also can write

E�.A; B/ D
X

m

rAB.m/2 D
X

n

rA=B.n/2 D
X

n

rA=A.n/rB=B.n/;

and hence, by the Cauchy–Schwarz inequality

.jAjjBj/2 D
 
X

m

rAB.m/

!2

� jABj
X

m

rAB.m/2 D jABjE�.A; B/: (7)

Similarly .jAjjBj/2 � jA=BjE�.A; B/. Finally, if A1 \ A2 D ;, then r.A1[A2/B.n/ D
rA1B.n/ C rA2B.n/ and so, by the Cauchy–Schwarz inequality,

E�.A1 [ A2; B/ D
X

m

r.A1[A2/B.m/2

� 2
X

m

.rA1B.n/2 C rA2B.n/2/ D 2.E�.A1; B/ C E�.A2; B//: (8)
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Proposition 2.3. (Solymosi, [30]) If A and B are finite sets of real numbers, not
containing f0g, then

E�.A; B/ � 12jA C AjjB C Bj log.3 minfjAj; jBjg/; (9)

and hence, by (7),

jA C AjjB C Bj minfjA=Bj; jABjg � .jAjjBj/2=.12 log.3 minfjAj; jBjg/:

Remarks. Note that there are examples with 0 2 A [ B where this bound cannot
hold. For example, if 0 2 B, then E�.A; B/ � #fa; a0 2 A W a0 D 0 D a00g D
jAj2 whereas the bound in Proposition 2.3 is smaller than jAj2 if A and B are both
arithmetic progressions with jBj � jAj= log jAj.

Note also that this bound is, more-or-less, best possible in any example with
jA C Aj � jAj and jB C Bj � jBj since, trivially, E�.A; B/ � jAjjBj.
Proof. We begin by proving this result when A and B are both finite sets of positive
real numbers. Let m WD minfjAj; jBjg. If m D 1, then E�.A; B/ D maxfjAj; jBjg and
the result is easy, so we may assume m � 2.

Let RB=A.`/ D f.a; b/ 2 A 	 B W b D `ag which has size rB=A.`/, and note that
rB=A.`/ � m. Let Lk WD f` W 2k � rB=A.`/ < 2kC1g and K D Œlog m= log 2�C1. Then

K�1X

kD0

X

`2Lk

rB=A.`/2 D
X

`

rB=A.`/2 D E�.A; B/;

and

K�1X

kD0jLkjD1

X

`2Lk

rB=A.`/2 �
K�1X

kD0

22kC2 <
22KC2

3
� 16m2

3
:

Hence there exists k with jLkj � 2 for which

X

`2Lk

rB=A.`/2 � 1

K

�

E�.A; B/ � 16m2

3

�

:

Let Lk D f`1 < `2 < : : : < `rg with r � 2; we claim that the elements of

r�1[

iD1

.RB=A.`i/ C RB=A.`iC1// � A 	 B C A 	 B

are distinct. For if i < j with ai C aiC1 D aj C ajC1, then

`iai C `iC1aiC1 < `iC1.ai C aiC1/ � `j.aj C ajC1/ < `jaj C `jC1ajC1I
and if .a C a0; `ia C `iC1a0/ D .x; y/, then a and a0 are determined, and so unique.
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Now, as A 	 B C A 	 B D .A C A/ 	 .B C B/, we deduce that

jA C AjjB C Bj D jA 	 B C A 	 Bj �
r�1X

iD1

rB=A.`i/rB=A.`iC1/

� .r � 1/22k � r

2
� 22k � 1

8

rX

iD1

rB=A.`i/
2

� 1

8K

�

E�.A; B/ � 16m2

3

�

:

From this we deduce that

E�.A; B/ � 8 log 2m

log 2
jA C AjjB C Bj C 16

3
minfjAj; jBjg2;

and then (9) follows for m � 2 after a little calculation, using the fact that jC CCj �
2jCj � 1.

Now if A only has positive real numbers and 0 62 B, then write B D BC [ B�
where B˙ D fb 2 B W ˙b > 0g. Now E�.A; B�/ D E�.A; �B�/ by definition so,
by (8) and then the case in which we have already proved (9), we have

E�.A; B/ � 2E�.A; BC/ C 2E�.A; �B�/

� 12jA C Aj.jBC C BCj C jB� C B�j/ log.3 minfjAj; jBjg/

which implies (9), since BC C BC and B� C B� are evidently disjoint subsets of
B C B (as their elements are of different signs) (Fig. 1).

b+d

b

d

c a a+c

li+1

li

A x B

Fig. 1 The sum of .a; b/ 2 `i and .c; d/ 2 `iC1 is a unique point of the Cartesian product
.A C A/ � .B C B/.
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Finally, if 0 62 A[B, then (9) follows similarly from this last result by partitioning
A as AC [ A�. ut
Remark. We can deduce bounds on E�.A; B/, when 0 2 A [ B, from Proposi-
tion 2.3, using the following

If 0 62 A but 0 2 B D B0 [ f0g then, by definition, E�.A; B/ D E�.A; B0/ C jAj2
and B C B D .B0 C B0/ [ B.

If 0 2 A D A0 [ f0g and 0 2 B D B0 [ f0g, then E�.A; B/ D E�.A0; B0/ C
.jAj C jBj � 1/2 with A C A D .A0 C A0/ [ A and B C B D .B0 C B0/ [ B.

Corollary 2.4. If A is any finite set of real numbers, then

E�.A; B/ � 12jA C Aj2 log.3jAj/; (10)

and hence, by (7),

jA C Aj2 minfjA=Aj; jAAjg � jAj4=.12 log.3jAj/:

Proof. If 0 62 A, then our bound follows from setting B D A in (9). If 0 2 A, then
we use the information in the previous remark, together with (9), to obtain

E�.A; A/ D E�.A0; A0/ C .2jAj � 1/2 � 12jA0 C A0j2 log.3jAj/ C .2jAj � 1/2

D 12.jA C Aj � jAj/2 log.3jAj/ C .2jAj � 1/2

D 12jACAj2 log.3jAj/C12 log.3jAj/.jAj2�2jAjjACAj/C.2jAj�1/2

� 12jA C Aj2 log.3jAj/ C 12 log.3jAj/.2jAj � 3jAj2/ C .2jAj � 1/2

as jA C Aj � 2jAj � 1, which yields (10). ut
A similar bound for complex numbers was obtained by Konyagin and Rudnev

in [22]. Very recently Konyagin and Shkredov announced an improvement on the
sum-product bound. They proved in [23] that

jA C Aj C jA � Aj � jAj4=3Cc

where 1
20598

> c > 0 is an absolute constant.

2.3 Small Product Sets

From Corollary 2.2 it follows that if the sumset is very small then the product set
is almost quadratic. The opposite statement is surprisingly hard to prove. It was
Chang’s observation [6] that one can use a powerful tool, the Subspace Theorem,
to obtain such bound. For the history and more details about the Subspace Theorem
we refer to the excellent survey paper of Yuri Bilu [3].
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An important variant of the Subspace Theorem was proved by Evertse, Schlick-
ewei, and Schmidt [9]. We present the version with the best known bound due to
Amoroso and Viada [1].

Theorem 2.5. Let K be a field of characteristic 0, � a subgroup of K� of rank r,
and a1; a2; : : : ; an 2 K�. Then the number of solutions of the equation

a1z1 C a2z2 C � � � C anzn D 1 (11)

with zi 2 � and no subsum on the left-hand side vanishing is at most

A.n; r/ � .8n/4n4.nCnrC1/:

We are going to use the following result of Freiman (Lemma 1.14 in [11]).

Proposition 1. Let A � C. If jAAj � CjAj, then A is a subset of a multiplicative
subgroup of C� of rank at most r, where r is a constant depending on C.

Theorem 2.6. Let A � C with jAj D n. Suppose jAAj � Cn: Then there is a
constant C0 depending only on C such that

jA C Aj � n2

2
C C0n:

Proof. We consider solutions of x1 C x2 D x3 C x4 with xi 2 A. A solution of this
equation corresponds to two pairs of elements from A that give the same element in
A C A. Let us suppose that x1 C x2 ¤ 0 (there are at most jAj D n solutions of the
equation x1 C x2 D 0 with x1; x2 2 A).

First we consider the solutions with x4 D 0. Then by rearranging we get

x1

x3

C x2

x3

D 1: (12)

By Proposition 1 and Theorem 2.5 there are at most s1.C/ solutions of y1 C y2 D 1

with no subsum vanishing. Each of these gives at most n solutions of (12) since there
are n choices for x3. There are only two solutions of y1 C y2 D 1 with a vanishing
subsum, namely y1 D 0 or y2 D 0, and each of these gives n solutions of (12). So
we have a total of .s1.C/ C 2/n solutions of (12).

For x4 ¤ 0 we get

x1

x4

C x2

x4

� x3

x4

D 1: (13)

Again by Proposition 1 and Theorem 2.5, the number of solutions of this with no
vanishing subsum is at most s2.C/n. If we have a vanishing subsum, then x1 D �x2

which is a case we excluded earlier or x1 D x3 and then x2 D x4; or x2 D x3 and then
x1 D x4: So we get at most 2n2 solutions of (13) with a vanishing subsum (these are
the x1 C x2 D x2 C x1 identities).
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So, in total, we have at most 2n2 C s.C/n solutions of x1 C x2 D x3 C x4 with
xi 2 A. Suppose jA C Aj D k and A C A D f˛1; : : : ; ˛kg. We may assume that
˛1 D 0. Recall that we ignore sums ai C aj D 0. Let

Pi D f.a; b/ 2 A 	 A W a C b D ˛ig; 2 � i � k:

Then

kX

iD2

jPij � n2 � n D n.n � 1/:

Also, a solution of x1 C x2 D x3 C x4 corresponds to picking two values from Pi

where x1 C x2 D ˛i. Thus

2n2 C s.C/n �
kX

iD2

jPij2 � 1

k � 1

 
kX

iD2

jPij
!2

� n2.n � 1/2

k � 1

by the Cauchy-Schwarz inequality. The bound for k D jA C Aj follows.

2.4 Upper Bounds in the Sum-Product Inequality

One obvious way to obtain upper bounds is to select A to be a largish subset of
f1; : : : ; xg with lots of multiplicative structure. For example, we could let A be the
set of integers � x all of whose prime factors are � y, so that jAj D �.x; y/; jAAj �
�.x2; y/, and jACAj � 2x. Roughly �.x; y/ D x..eCo.1//=u log u/u when x D yu;
so that jAAj=jAj2 D .1=2 C o.1//2u and jA C Aj=jAj2 D .u log u=.e C o.1///2u=x.

We select u so that these are roughly equal, that is, u D log x
2 log log x

�
1 C 1Co.1/

log log x

�
, and

thus y 
 .log x/2. Therefore jAj D x1=22.1Co.1//u. Hence we have an infinite family
of examples in which, if jAj D N then

maxfjA C Aj; jAAjg � N2� log 4Co.1/
log log N :

We can obtain this result without using any “machinery”: Let A be the set of
N WD �

�.y/Cu
u

	
integers composed of no more than u not necessarily distinct prime

factors � y. Then A � Œ1; yu� so that jA C Aj � 2yu, whereas jAAj D �
�.y/C2u

2u

	
.

We select u D Œey1=2=2 log y� so that, by Stirling’s formula and the prime number
theorem,

N D
�

e.y= log y/

u

�u

eO.u= log y/ D �
2y1=2

	u
eO.u= log y/ D .u.log u/O.1//u;
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and therefore u � log N= log log N. Now, by similar calculations we find that

jAAj and jA C Aj D jAj2=2.2Co.1//ueO.u= log y/ D N2� log 4Co.1/
log log N :

3 Sum-Product Inequalities over Finite Fields

The Szemerédi–Trotter Theorem does not hold over Fq which renders all of the
above results moot in this setting. However such results in finite fields are the most
applicable, so we will now pursue this. The first thing to note is that we must
modify (1) when the set A is large, hence Garaev conjectured that if A � Fp then

jA C Aj C jA � Aj � minfjAj2=
p

p;
p

pjAjgıjAjo.1/: (14)

3.1 Upper Bounds in Fp

We begin by showing that the lower bound in Garaev’s conjecture cannot, in general,
be increased:

Proposition 3.1. For any given integers I; J; N with 1 � N � I; J � p, and N �
dIJ=pe, there exist A � B; C � Fp, with jAj D N; jBj D J; jCj D I such that

jA C Bj < 2jBj and jA � Cj < 2jCj:

In particular, for any given N; 1 � N � p, there exists A � Fp with jAj D N such
that

maxfjA C Aj; jA � Ajg � minfjAj2; 2
p

pjAj C 1g:

Remark. If we have maxfjA C Aj; jA � Ajg � jAj2�o.1/ for all sets A � Fp of size
N, then the second part of Proposition 3.1 implies that N � p1=3�o.1/.

Proof. Let C WD fg1; : : : ; gIg where g is a primitive root mod p, and Ax WD C \ Bx

for each x 2 Fp where Bx WD x C f1; : : : ; Jg. Now

X

x

jAxj D
IX

iD1

JX

jD1

#fx 2 Fp W x D gi � jg D IJ;

so that there exists x with jAxj � IJ=p. Let A be any subset of Ax of size N, and
B D Bx. Therefore A C A � A C B � B C B D f2x C 2; : : : ; 2x C 2Jg, A � A �
C � C � fg2; : : : ; g2Ig so that jA C Aj � jA C Bj � jB C Bj < 2J and jA � Aj �
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jA � Cj � jC � Cj < 2I, which completes the proof of the first part. Now, taking
I D J D dp

pNe we find that jA C Aj; jA � Aj � 2dp
pNe � 1, which implies the

second part. ut

3.2 A Little Cauchying

Let us make note of a couple of inequalities, for characteristic functions of sets: By
Cauchy we obtain

0

@
X

j

ˇ
ˇ
ˇ
ˇA

�
j

p

�ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
OB
��j

p

�ˇ
ˇ
ˇ
ˇ

1

A

2

�
X

j

ˇ
ˇ
ˇ
ˇA

�
j

p

�ˇ
ˇ
ˇ
ˇ

2X

j

ˇ
ˇ
ˇ
ˇB

��j

p

�ˇ
ˇ
ˇ
ˇ

2

D pjAj � pjBj:

(15)
By Cauchy we obtain

ˇ
ˇ
ˇ
ˇ
ˇ

X

a2A

X

b2B

e

�
kab

p

�ˇˇ
ˇ
ˇ
ˇ

2

�
X

a2A

1 �
X

a2A

ˇ
ˇ
ˇ
ˇ
ˇ

X

b2B

e

�
kab

p

�ˇˇ
ˇ
ˇ
ˇ

2

� jAj �
X

a2Fp

ˇ
ˇ
ˇ
ˇ
ˇ

X

b2B

e

�
kab

p

�ˇˇ
ˇ
ˇ
ˇ

2

D jAj � pjBj; (16)

by Parseval.

3.3 Lower Bounds in Fp

Theorem 4. (Garaev) If A; B; C � Fp with 0 62 C, then

jA C Bj � jA � Cj � jAj
4

� min

� jAjjBjjCj
p

; 2p

�

:

Remark. Taking I D J D Œ
p

pN� in Proposition 3.1, we obtain examples with
jA C Bj jA � Cj � 4pjAj. Therefore Theorem 4 is best possible, up to a factor of 8,
when jAjjBjjCj � 2p2. In particular for jAj D jBj D jCj � 2p2=3.

Theorem 4 and its proof remain valid, with suitable modifications, in Fp 	 Fp

(changing both occurrences of p to q D p2 in the lower bound). If we select a set
D � Fp such that jD C Dj; jDDj 
 minfjDj2; pg, then taking A D B D C D D 	 Fp

we have jA C Bj; jACj 
 p minfjDj2; pg D minfjAj2=p; p2g so that jA C AjjAAj 

minfjAj4=q; q2g. Therefore Theorem 4 is best possible up to a constant factor when
q1=2 � jAj � q3=4, in this setting.
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First by letting C ! 1=C above, and then by taking A D B D C we deduce:

Corollary 3.2. If A; B; C � Fp with 0 62 C, then

jA C Bj � jA=Cj � jAj
4

� min

� jAjjBjjCj
p

; 2p

�

:

If A � Fp with 0 62 A, then

jA C Aj � jAAj; jA C Aj � jA=Aj � jAj
4

� min

� jAj3
p

; 2p

�

:

If A is a multiplicative subgroup of F�
p , then

jA C Aj � min

� jAj3
4p

; p=2

�

:

Proof of Theorem 4. For any a 2 A; b 2 B; c 2 C we have a distinct solution to

u=c C b D v (17)

with u 2 AC; c 2 C; b 2 B; v 2 V D A C B, where u D ac and v D a C b. Hence
jAjjBjjCj is no more than the total number of solutions of (3.4), which equals

X

u2AC

X

c2C

X

b2B

X

v2ACB

1

p

p�1X

jD0

e

�
j.u=c C b � v/

p

�

D 1

p

p�1X

jD0

OB
�

j

p

�
OV
��j

p

� X

u2AC

X

c2C

e

�
ju=c

p

�

� jBjjCjjA C BjjACj
p

C 1

p
max
k¤0

ˇ
ˇ
ˇ
ˇ
ˇ

X

u2AC

X

c2C

e

�
ku=c

p

�ˇˇ
ˇ
ˇ
ˇ

X

j¤0

ˇ
ˇ
ˇ
ˇ
OB
�

j

p

�ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
OV
��j

p

�ˇ
ˇ
ˇ
ˇ

� jBjjCjjA C BjjACj
p

C
p

pjBjjCjjA C BjjACj

by (15) with A replaced by V , and by (16) with A replaced by AC and B replaced by
1=C, and the result follows. ut
Theorem 5. Suppose that A; B; C; D � Fp, and C does not contain 0.

If jA C BjjC C DjjA=Cj2jBjjDj � p4, then

jA C BjjC C Dj � .jAjjCj/2jBjjDj
4p2

:
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If jA C BjjC C DjjA=Cj2jBjjDj > p4, then

jA C BjjC C DjjA=Cj � p

2
jAjjCj:

Corollary 3.3. If 0 62 A � Fp and jA C AjjA=AjjAj � p2, then jA C Aj � jAj3=2p.
If jA C Aj � �jAj and jAj � p2=3, then jAAj; jA=Aj � p=2� (by Corollary 3.2).
If jA C Aj � �jAj and .2�p/1=2 < jAj � p2=3, then jA=Aj > p=2�2 .

Remark. The first part is stronger than Garaev’s jAAjjA C Aj � jAj4=2p in this
range.

Proof of Theorem 5. Let us look at solutions to u � b D m.v � d/ with b 2 B; d 2
D; u 2 U D A C B; v 2 V D C C D; m 2 M D A=C. For each .a; b; c; d/ 2
A	B	C	D we have the (distinct) solution .b; d; u; v; m/ D .b; d; aCb; cCd; a=c/,
so there are at least jAjjBjjCjjDj solutions. On the other hand we can give an exact
count via the exponential sum

X

b;d;u;v;m

1

p

p�1X

jD0

e

�
j.u � b � m.v � d//

p

�

D jBjjDjjUjjVjjMj C Error

p
;

where

jErrorj � max
i¤0

ˇ
ˇ
ˇ
ˇ
ˇ

X

m2M

OD
�

im

p

�
OV
��im

p

�ˇˇ
ˇ
ˇ
ˇ
�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

p�1X

jD1

OU
�

j

p

�
OB
��j

p

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

By Cauchy–Schwarz this gives

jErrorj2 �
X

m2M

ˇ
ˇ
ˇ
ˇ
OD
�

im

p

�ˇ
ˇ
ˇ
ˇ

2

�
X

m2M

ˇ
ˇ
ˇ
ˇ
OV
��im

p

�ˇ
ˇ
ˇ
ˇ

2

�
p�1X

jD1

ˇ
ˇ
ˇ
ˇ
OU
�

j

p

�ˇ
ˇ
ˇ
ˇ

2

�
p�1X

jD1

ˇ
ˇ
ˇ
ˇ
OB
��j

p

�ˇ
ˇ
ˇ
ˇ

2

which is � pjDjpjVjpjUjpjBj by (15). Hence we have proved

jAjjBjjCjjDj � jBjjDjjUjjVjjMj
p

C p
p

jBjjDjjUjjVj;

and the result follows. ut
Theorem 6 ([17]). Suppose that A; B; C; D � Fp, and A; C do not contain 0.

If jA C BjjC C DjjBjjDj � p3, then

jACj2jA C BjjC C Dj � .jAjjCj/2jBjjDj=p:

If jA C BjjC C DjjBjjDj � p3, then

jACjjA C BjjC C Dj � pjAjjCj:
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Remark. We claim that these bounds can be obtained trivially if jAjjCj.jBjjDj/2 �
p3: The second case cannot hold since

jAjjCj.jBjjDj/2 D jAjjBjjCjjDjjBjjDj � jA C BjjC C DjjBjjDj � p3;

but then jACj2jA C BjjC C Dj � jAjjCj jAj2=3jBj1=3 jCj2=3jDj1=3 D
.jAjjCj/2jBjjDj=p � .p3=.jAjjCj.jBjjDj/2/1=3 � .jAjjCj/2jBjjDj=p.

Proof. There exists m 2 AC such that rAC.m/ � jAjjCj=jACj. Now in the set

f.u; v/ 2 .A C B/ 	 .C C D/; .b; d/ 2 B 	 D W .u � b/.v � d/ D mg

we evidently have the distinct points ..a C b; c C d/; .b; d// for every b 2 B; d 2 D,
and a 2 A; c 2 C with ac D m; a total of jBjjDjrAC.m/ � jAjjBjjCjjDj=jACj points.
To get an exact count, write U D A C B; V D C C D, to obtain

X

b;d;u;v

X

r;s
rsDm

1

p

X

i

e

�
i.u � b � r/

p

�

� 1

p

X

j

e

�
j.v � d � s/

p

�

D 1

p2

X

i;j

OU
�

i

p

�
OB
��i

p

�
OV
�

j

p

�
OD
��j

p

�X

r;s
rsDm

e

��.ir C js/

p

�

:

The i D j D 0 term yields p�1

p2 jUjjBjjVjjDj, since there are exactly p � 1 solutions
to rs D m. If j D 0 but i ¤ 0, then our final sum equals �1, so that the sum over
i ¤ 0 is 1

p2 jVjjDj.jUjjBj � pjU \ Bj/. Similarly with i D 0. Finally if i ¤ 0 and
j ¤ 0, then the final term is � 2

p
p in absolute value by a well-known result on

Kloosterman sums, and the total contribution is therefore

� 2

p3=2

X

i¤0

ˇ
ˇ
ˇ
ˇ
OU
�

i

p

�
OB
��i

p

�ˇ
ˇ
ˇ
ˇ

X

j¤0

ˇ
ˇ
ˇ
ˇ
OV
�

j

p

�
OD
��j

p

�ˇ
ˇ
ˇ
ˇ ;

and by Cauchying the square of this is

� 4

p3

X

i

ˇ
ˇ
ˇ
ˇ
OU
�

i

p

�ˇ
ˇ
ˇ
ˇ

2X

i

ˇ
ˇ
ˇ
ˇ
OB
��i

p

�ˇ
ˇ
ˇ
ˇ

2 X

j

ˇ
ˇ
ˇ
ˇ
OV
�

j

p

�ˇ
ˇ
ˇ
ˇ

2 X

j

ˇ
ˇ
ˇ
ˇ
OD
��j

p

�ˇ
ˇ
ˇ
ˇ

2

D4pjUjjBjjDjjVj:

Putting this altogether we obtain

jAjjBjjCjjDj
jACj � p C 1

p2
jUjjBjjVjjDj C 2

p
pjUjjBjjDjjVj;

which implies the result. ut
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Corollary 3.4. Suppose that 0 62 A � Fp. If jA C AjjAj � p3=2, then

jAAjjA C Aj � jAj3=
p

p:

If jA C AjjAj � p3=2, then

jAAjjA C Aj2 � pjAj2:

This is only non-trivial if jAj � p1=2.

4 Ruzsa–Plunnecke Type Inequalities

We begin with a key result of Ruzsa:

Proposition 4.1. If X; A1; : : : ; Ak � Fp, then there exists a non-empty Y � X such
that

jY C A1 C : : : C Akj
jYj �

kY

iD1

jX C Aij
jXj :

Corollary 4.2. If A; B; C � Fp, then

jA ˙ Bj � jA C CjjB C Cj
jCj :

Proof. We can define an injective map 	 W .A � B/ 	 C ! .A C C/ 	 .B C C/ as
follows, so that the inequality jA � Bj � jA C CjjB C Cj=jCj holds: If 
 2 A � B, fix
a
 2 A; b
 2 B such that 
 D a
 � b
 and then define 	.
; c/ D .a
 C c; b
 C c/.
The map is injective since if u D a
 C c and v D b
 C c then 
 D u � v and then
c D u � a
.

For the other case take k D 2; A1 D A; A2 D B; X D C in Proposition 4.1 to
obtain that there exists non-empty Y � C such that

jA C Bj � jY C A C Bj � jA C Cj
jCj � jB C Cj

jCj � jYj � jA C Cj
jCj � jB C Cj

jCj � jCj:

ut
Corollary 4.3. If X; A1; : : : ; Ak � Fp, then there exists Z � X such that jZj � 1

2
jXj

and

jZ C A1 C : : : C Akj
jZj � 2k

kY

iD1

jX C Aij
jXj :
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Proof. By Proposition 4.1 we know that there exists a set Z � X for which the
inequality holds, so let Z0 be the largest subset of X for which this inequality is
satisfied and suppose that jZ0j � 1

2
jXj. Apply Corollary 4.2 with X0 D XnZ0 in place

of X. Noting that jX0j > jXj=2, and each jX0 C Aij � jX C Aij we deduce that there
exists a non-empty Y � X0 such that jY CA1C: : :CAkj < 2kjYjQk

iD1.jXCAij=jXj/:
Now let Z D Z0 [ Y so that jZ C A1 C : : : C Akj � jZ0 C A1 C : : : C Akj C jY C A1 C
: : : C Akj, which is � 2k

Qk
iD1.jX C Aij=jXj/ times jYj C jZ0j D jZj, and thus our

inequality is satisfied by Z which is larger than Z0, contradicting the hypothesis. ut
Corollary 4.4. For any a; b 2 F

�
p and A; B � Fp we have

jaA ˙ bBj � jA C AjjB C Bj
jaA \ bBj ;

and

jaA ˙ bBj � jA C AjjB C Bj
maxn2Fp raACbB.n/

:

Proof. In Corollary 4.2 replace A by aA, B by bB, and take C D .x C aA/ \ bB for
some x 2 Fp. We note that aA C C � x C aA C aA which has the same size as A C A
and, similarly, bB C C � bB C bB which has the same size as B C B. The first result
follows taking x D 0. Now jCj D rbB�aA.x/, so writing x D �n and changing b to
�b, we get our second result. ut
Corollary 4.5. For any a; b 2 F

�
p and A; B � Fp we have

jaA ˙ bBj � jA C Bj2
jbA \ aBj ;

and

jaA ˙ bBj � jA C Bj2
maxn2Fp raBCbA.n/

:

Proof. In Corollary 4.2 now replace A by aA, B by bB, and take C D .x C bA/ \ aB
for some x 2 Fp. We note that aA C C � aA C aB which has the same size as A C B
and, similarly, bB C C � x C bB C bA which also has the same size as A C B. The
first result follows taking x D 0. Now jCj D raB�bA.x/, so changing b to �b, we get
our second result ut

5 Lower Bounds on the Size of A C tB

Lemma 5.1. If A; B � Fp with jAjjBj > p, then A�A
B�B D Fp [ f1g.
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Proof. As jAjjBj > p and each of jAj; jBj � p hence jAj; jBj > 1, that is, jAj,
jBj � 2. Hence 0 D .a � a/=.b1 � b2/ and 1 D .a1 � a2/=.b � b/. If t ¤ 0, then
there are jAjjBj > p numbers a C tb so that two must be congruent mod p. Taking
their difference implies the result. ut
Remark. One might expect that if A; B � Fp with jAjjBj > p then AB C AB D Fp.
However if A D B D fm .mod p/ W .m=p/ D 1g where p is a prime � 3 .mod 4/,
then evidently 0 62 AB C AB (and here jAj; jBj D .p � 1/=2). Hence the best we can
hope for is that if jAjjBj > p then ABCABCAB D Fp, and perhaps ABCAB D F

�
p .

Glibichuk [14] proved that if jAjjBj � 2p then 8AB D Fp (so that if jAjjBj � p
then 8AB D Fp, since then jACAjjBj � 2p so that 16AB  8.ACA/B D Fp, unless
A is an arithmetic progression, which can be handled).

Let T D A�A
B�B n f0; 1g. We are interested in the size of A C tB when jAj; jBj > 1.

Evidently jA C tBj � jAj jBj with equality if and only if t 62 T [ f0g.
Let R.t/ D RA;B.t/ denote the number of solutions a; c 2 A; b; d 2 B to a C tb D

c C td. We always have the the “diagonal solutions” where a D c and b D d to
a C tb D c C td, so that R.t/ � jAjjBj. Equality holds, that is, R.t/ D jAjjBj, if and
only if t 62 T [ f0g. Hence

jA C tBj D jAj jBj ” t 62 T [ f0g ” R.t/ D jAjjBj: (18)

There is a link between jA C tBj that holds no matter what, which is given by the
Cauchy–Schwarz inequality: Let rt.n/ D #fa 2 A; b 2 B W n D a C tbg so that

.jAj jBj/2 D
 
X

n2ACtB

rt.n/

!2

� jA C tBj RA;B.t/; (19)

since RA;B.t/ D P
n rt.n/2.

Proposition 5.2. For any finite sets A; B; S with 0 62 S, there exists t 2 S for which

jA C tBj >
1

2
minfjSj; jAj jBjg:

If A; B 2 Fp, then we also have

jA C tBj >
1

2
min

�

p;
jAj jBj jSj

p

�

:

Proof. Note that jA C 0Bj D jAj and R.0/ D jAj jBj2. Since R.t/ � jAjjBj for all t
hence

X

t2S

.R.t/ � jAjjBj/ �
X

t 6D0

.R.t/ � jAjjBj/ D #fa; c 2 A; b; d 2 B W b ¤ d and a ¤ cg

D .jAj2 � jAj/.jBj2 � jBj/: (20)
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Therefore there exists t 2 S with

R.t/ � .jAj2 � jAj/.jBj2 � jBj/
jSj C jAj jBj < 2jAjjBj max

� jAjjBj
jSj ; 1

�

;

whence, by (19),

jAj jBj � 2jA C tBj max

� jAjjBj
jSj ; 1

�

and so the first result follows.
When we are working mod p, we have

R.t/ D
X

n

rt.n/2 D 1

p

p�1X

jD0

j OA.j=p/j2j OB.jt=p/j2 � .jAj jBj/2

p
;

taking the j D 0 term, since every term is non-negative. If jAjjBj > p, then R.t/ >

jAj jBj and so T D Fp n f0g by (18) giving another proof of the lemma above.
Now, rearranging (20) we obtain

X

t2S

�

R.t/ � .jAj jBj/2

p

�

�
X

t 6D0

�

R.t/ � .jAj jBj/2

p

�

D pjAjjBj
�

1 � jAj
p

��

1 � jBj
p

�

;

so there exists t 2 S with

jAj jBj � 2jA C tBj max

�
p

jSj ;
jAj jBj

p

�

by (19), and the result follows. ut
Corollary 5.3. Suppose that jAj; jBj � 2. If A�A

B�B D Fp, then there exist a1; a2 2
A; b1; b2 2 B such that

j.a1 � a2/B C .b1 � b2/Aj >
1

2
min fp; jAj jBjg :

If A�A
B�B ¤ Fp, then there exist a1; a2 2 A; b1; b2 2 B such that

j.a1 � a2 C b1 � b2/B C .b1 � b2/Aj D jAj jBj:

In other words, the elements .a1 � a2 C b1 � b2/b C .b1 � b2/a with a 2 A; b 2 B,
are distinct.
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Proof. For any t 2 T , there exist a1; a2 2 A, b1; b2 2 B, for which .a2 � a1/

C .b1 � b2/t D 0. The first case follows immediately from Proposition 5.2 by
multiplying through by b1 � b2.

Suppose that T ¤ F
�
p . Now T contains a non-zero element, say t, since A has

at least two elements. Moreover we may assume 1 � t < p=2 since T D �T (as
may be seen by swapping a1 and a2). Hence there exists t 2 T such that t C 1 62 T .
Therefore jA C .t C 1/Bj D jAjjBj by (18) and the result follows by multiplying
through by b1 � b2. ut
Lemma 5.4. Let I.A; B/ WD .B � B/A C .A � A/B.

(i) If t 2 A�A
B�B , then jI.A; B/j � jA C tBj.

(ii) AB � AB � I.A; B/, so that jI.A; B/j � minfp; 2jABj � 1g.

Proof. There exist a1; a2 2 A; b1; b2 2 B for which .a2 � a1/ C .b1 � b2/t D 0.
Each element of S D .b1 � b2/.A C tB/ can be written as .b1 � b2/a C .b1 � b2/tb D
.b1 � b2/a C .a1 � a2/b 2 I.A; B/ and (i) follows. Also if a1; a2 2 A; b1; b2 2 B,
then a1b1 � a2b2 D .b1 � b2/a1 C .a1 � a2/b2 2 I.A; B/, that is, AB � AB � I.A; B/,
and (ii) follows from the Cauchy–Davenport theorem. ut
Corollary 5.5. If jAjjBj > p, then there exists t 2 T for which jA C tBj > p=2.
Hence jI.A; B/j > p=2. We can rephrase this as: There exist b1; b2 2 B; a1; a2 2 A
such that j.b1 � b2/A C .a1 � a2/Bj > p=2.

Proof. By Lemma 5.1 we know that A�A
B�B D Fp. Taking S D T in Proposition 5.2

we deduce that there exists t 2 T with jA C tBj > p=2. The result then follows from
Lemma 5.4. ut
Proposition 5.6. Let Rk.B/ be the set of n 2 Fp for which rB=B.n/ � k for 1 �
k � jBj; note that 1 2 Rk.B/. Let Gk.B/ be the multiplicative group generated by
Rk.B/, and then Hk.B/ D Gk.B/ A�A

B�B . There exists t 2 T for which jA C tBj �
minfkjAj; jHkjg.

Proof. If Hk.B/ D A�A
B�B , then the result follows from Proposition 5.2 (since jBj � k).

Otherwise A�A
B�B ¨ Hk.B/ so there exist g 2 Gk.B/ and t0 2 T such that gt0 62 T .

Now any g 2 Gk.B/ can be written as g D n1n2 : : : n` where each nj 2 Rk.B/. Define
tj D njtj�1 for each j, so that t0 2 T and t` D gt0 62 T: hence there exist t D tj�1 2 T
and n D nj 2 Rk.B/ such that nt D tj 62 T . But then jA C ntBj D jAjjBj by (18);
that is, the elements of A C ntB are all distinct. Now rB=B.n/ � k by the definition
of Rk.B/, and so there are at least k values of b 2 B for which nb is also in B, and
hence A C tB contains at least jAjk distinct elements. ut
Lemma 5.7. Let B D B1 [ B2 be a partition of B where b1=b2 62 Gk for any
b1 2 B1; b2 2 B2. Then jB1jjB2j � .k � 1/jB1B2j.
Proof. If s 62 B1=B2, then rB1=B2 .s/ D 0. If s 2 B1=B2, then s 62 Gk by hypothesis,
so that s 62 Rk and hence rB1=B2 .s/ � rB=B.s/ < k. Therefore



Sum-product formulae 441

.jB1jjB2j/2 D
 
X

s

rB1B2 .s/

!2

� jB1B2j
X

s

rB1B2 .s/
2 D jB1B2j

X

s

rB1=B2 .s/
2

� jB1B2j.k � 1/
X

s

rB1=B2 .s/ D jB1B2j.k � 1/jB1jjB2j:

ut
Lemma 5.8. Let k D jBj2=100jBBj. There exists h ¤ 0 for which jB \ hGk.B/j �
49
50

jBj.
Proof. Let H be the set of cosets of Gk in F

�
p . For any partition H D H1 [ H2 let

Bj WD [h2Hj.B \ hGk/j for j D 1; 2 so that B1 [ B2 is a partition of B; note that
b1=b2 2 .h1=h2/Gk for some h1 2 H1; h2 2 H2 so that h1 ¤ h2 and thus b1=b2 62 Gk.
Now jB1j.jBj � jB1j/ D jB1jjB2j < kjB1B2j < kjBBj D jBj2

100
by Lemma 5.7, and so

either jB1j or jB2j is > 49
50

jBj.
Now let H1 be a maximal subset of H such that jB1j < jBj=50. Therefore for any

h 2 H2 we must have jB1 [ .B \ hGk/j � jBj=50 and hence > 49
50

jBj by the previous
paragraph, so that jB \ hGkj � 24

25
jBj. We deduce H2 has no more than one element,

and thus exactly one element (since jB2j > 0). The result follows. ut
Lemma 5.9. Let C � G, a subgroup of F�

p , with 1 < jCj <
p

p. Then we have

jG.C � C/j � jCj3=2 and jGj � jC � Cj � jCj5=2.

Proof. First note that jG.C � C/j � jGj and jC � Cj � jCj so the results follow
unless jCj � 2 and jGj � jCj3=2, which we now assume.

Now, GS is a union of cosets of G for any set S 2 F
�
p , so we can write

G.C � C/ D f0g [ [m
iD1tiG;

where we order these cosets of G so that rG�G.t1/ � rG�G.t2/ � : : : � rG�G.tm/

(note that rG�G.ti/ takes the same value for any choice of ti inside a fixed coset of G).
Since jG.C�C/j D jGjmC1, the first result follows unless m � M WD ŒjCj3=2=jGj�.

If J � M, then JjGj4 � MjGj4 � jGj3jCj3=2 � jCj9=2jCj3=2 D jCj6 � p3.
Therefore

JrG�G.tJ/ �
JX

iD1

rG�G.ti/ � 4.JjGj/2=3 (21)

by Lemma 5 of [18] (with the constant ‘4’ made explicit) and so

jG.C � C/j > mjGj � 1

8

 
mX

iD1

rG�G.ti/

!3=2

: (22)
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For any fixed c0 2 C the solutions to h1 � h2 D ti with h1; h2 2 G are in 1–1
correspondence with the solutions h3 � c0 D tih4 with h3; h4 2 G, as may be seen
by taking h3 D h1c0=h2 and h4 D c0=h2. Hence

rG�G.ti/ D
X

t2tiG

rG�c0 .t/ �
X

t2tiG

rC�c0 .t/: (23)

We then deduce

mX

iD1

rG�G.ti/ �
X

t2.C�C/Gnf0g
rC�c0 .t/ D jCj � 1;

and the first result follows from (22).
We now prove the second result, no longer assuming that m � M: Since

rC�C.t/ � rG�G.t/ D rG�G.ti/ for all t 2 tiG, we have

X

t2tiG

rC�C.t/2 � rG�G.ti/
X

t2tiG

rC�C.t/ � rG�G.ti/
X

c02C

X

t2tiG

rC�c0 .t/ � jCjrG�G.ti/
2

by (23). Therefore, using (21) for the bound rG�G.tJ/ � 4jGj2=3= minfJ; Mg1=3, we
obtain

X

t¤0

rC�C.t/2 D
MX

iD1

X

t2tiG

rC�C.t/2 C
mX

iDMC1

X

t2tiG

rC�C.t/2

�
MX

iD1

jCjrG�G.ti/
2 C

mX

iDMC1

rG�G.ti/
X

t2tiG

rC�C.t/

� jCj
MX

iD1

16jGj4=3i�2=3 C 4jGj2=3M�1=3

mX

iDMC1

X

t2tiG

rC�C.t/

� 48jCjjGj4=3M1=3 C 4jCj2jGj2=3M�1=3 
 52jCj3=2jGj:

Hence

.jCj2 � jCj/2 D
0

@
X

t¤0

rC�C.t/

1

A

2

� jC � Cj
X

t¤0

rC�C.t/2 � jC � CjjCj3=2jGj;

and the result follows. ut
Theorem 7. If jAj <

p
p, then jI.A; A/j � jAj3=2.
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Proof. We have jI.A; A/j � 2jAAj � 1 by Lemma 5.4(ii), and the result follows
unless jAAj � jAj3=2, which we now assume.

Let k D jAj2=100jAAj (� jAj1=2), and define Rk.A/; Gk.A/; Hk.A/ as above. By
Lemma 5.8 there exists h ¤ 0 such that if C D fg 2 Gk.A/ W gh 2 Ag D Gk \h�1A,
then

jCj D jA \ hGk.A/j � 49

50
jAj:

Therefore, using the fact that H D G.A � A/=.A � A/ we have

jHj C 1 � jG.A � A/j � jG.hC � hC/j D jG.C � C/j � jCj3=2 � jAj3=2

by Lemma 5.9. The result follows by Lemma 5.4 and Proposition 5.6 since now
jI.A; A/j � minfkjAj; jHkjg � jAj3=2: ut
Theorem 8. We have

E�.A; A/ � 4jA C Aj2 max

� jAj2
p

;
p

jAj
�

log jAj;

and

E�.A; A/4 < 32jA C Aj8jAj2 max

� jAj3
p

; 2jA C Aj
�

.log jAj/4:

If jAj � p
p, then jAj3=p � jAj � jA C Aj, so the above becomes E�.A; A/4 <

64jA C Aj9jAj2.log jAj/4. This yields a sum-product bound which is non-trivial for
all jAj � p

p:

Corollary 5.10. We have

E�.A; B/ � 4jA C AjjB C Bj log.jAjjBj/
�

max

� jAj2
p

;
p

jAj
�

max

� jBj2
p

;
p

jBj
��1=2

;

and

E�.A; B/8 < 210.jA C AjjB C Bj log jAjjBj/8.jAjjBj/2 max

� jAj3
p

; 2jA C Aj
�

	 max

� jBj3
p

; 2jB C Bj
�

;

which implies that if jAj; jBj � p1=2 then

jABj8.jA C AjjB C Bj/9 >
.jAjjBj/14

212.log jAjjBj/8
;
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Proof. By the Cauchy–Schwarz inequality we have

E�.A; B/2 D
 
X

n

rA=A.n/rB=B.n/

!2

�
X

m

rA=A.m/2
X

n

rB=B.n/2 D E�.A; A/E�.B; B/

and then the first two results follow from Theorem 8. Now, if jAj; jBj � p1=2, then
jAj3=p � jAj < jA C Aj. Therefore, by the second inequality and (7), we obtain our
third and final inequality ut

If jAj; jBj � p2=3, then by the first inequality in Corollary 5.10, and (7), we obtain

jA C AjjB C BjjABj � pjAjjBj
4 log.jAjjBj :

which is weaker than Theorem 4.

Corollary 5.11. If 4p4=jAj6 � jA C Aj > jAj3=2p and jAj � 2p5=9, then

jAAj4jA C Aj9 � jAj14

26.log jAj/4

If jA C Aj � jAj3=2p and p1=2 � jAj � p5=9, then

jAAjjA C Aj2 � jAj11=4p1=4

25=4 log jAj
Proof. This follows by Theorem 8 and (7) with B D A, which gives

jAj4 � jAAjE�.A; A/:

ut
Proof of Theorem 8. We begin by noting that

E�.A; A/ D
X

b2A

Œlog jAj�X

kD0

X

a2A
2k�jaA\bAj<2kC1

jaA \ bAj

where the logarithm here is in base 2. Hence there exists 2k � jAj for which there is
A1 � A and b0 2 A such that

2k � jaA \ b0Aj < 2kC1

for every a 2 A1, where jA1j2kC1 � E�.A; A/=.jAj log jAj/.
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By Proposition 5.2 with S D A1 there exists a 2 A1 such that

jaA � b0Aj � 1

2
minfp; jAj2jA1j=pgI

and jaA � b0Aj � jA C Aj2=jaA \ b0Aj by Corollary 4.4. Hence

jA C Aj2 � E�.A; A/

4 log jAj min

�
p

jA1jjAj ;
jAj
p

�

;

and the first result follows.
If A1�A1

A1�A1
D Fp, then by Corollary 5.3 there exist a1; a2; a3; a4 2 A1 such that

j.a1 � a2/A1 C .a3 � a4/A1j >
1

2
min

˚
p; jA1j2
 I

By Proposition 4.1 we have Y � b0A such that

j.a1 � a2/A C .a3 � a4/Aj � jY C a1A � a2A C a3A � a4Aj � jYj
4Y

iD1

jaiA ˙ b0Aj
jb0Aj

� jb0Aj
4Y

iD1

jA C Aj2
jb0Aj jaiA \ b0Aj � jA C Aj8

jAj3 24k

using Corollary 4.4. Hence

jA C Aj8 >
.jA1j2kC1/4

32
min fp=jAj; jAjg ;

and so E�.A; A/4 � 32jA C Aj8jAj3.log jAj/4 max
˚
1; jAj2=p



.

If A1�A1

A1�A1
¤ Fp, then by Corollary 5.3 there exist a1; a2; a3; a4 2 A1 such that if

A2 � A1 then

j.a1 � a2/A2 C .a1 � a2 C a3 � a4/A1j D jA1j jA2j:

By Corollary 4.3 there exists .a1 � a2/A2 � .a1 � a2/A1 with jA2j � 1
2
jA1j such that

j.a1 � a2/A2 C .a1 � a2/A1 C .a3 � a4/A1j

� 4jA2j jA1 C A1j
j.a1 � a2/A1j � j.a1 � a2/A1 C .a3 � a4/A1j

j.a1 � a2/A1j :

Bounding the last term as above we obtain jA C Aj9 > .jA1j2kC1/4jAj2=64, so that
E�.A; A/4 � 64jA C Aj9jAj2.log jAj/4. ut
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Remark (A few ideas). In the case that A�A
A�A D Fp, we get in the above proof that

there exist a1; a2; a3; a4 2 A such that

1

2
min

˚
p; jAj2
 � j.a1 � a2/A C .a3 � a4/Aj � jbAj

4Y

iD1

jA C Aj2
jbAj jaiA \ bAj :

Now note that
P

a;b2A jaA \ bAj D E�.A; A/ � jAj4=jAAj so jaA \ bAj is jAj2=jAAj
on average. If we somehow get that, even with the loss of a constant (or even jAj�)
for our jaiA\bAj then our bound here would be jACAj8jAAj4 � jAj11 min

˚
p; jAj2


which is what we get in Corollary 5.11, but in a less complicated way. If we could
take b D a1 so we can replace one term in our product by jA C Aj=jAj. Then we
would get the bound jACAj7jAAj3 � jAj9 min

˚
p; jAj2
; this improves the exponent

from 13
12

when jAj � p
p to 11

10
.

If A�A
A�A ¤ Fp, then we can change min

˚
p; jAj2
 to min

˚ˇ
ˇA�A

A�A

ˇ
ˇ ; jAj2
 using the

same argument.

Combining all the results to this point, here are the results we obtained on sum-
product in finite fields:

Corollary 5.12. If A � Fp, then

maxfjAAj; jA C Ajg � .log jAj/O.1/ �

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

p
pjAj if jAj � p2=3

jAj2=
p

p if p2=3 > jAj � p7=13

jAj11=12p1=12 if p7=13 > jAj � p13=25

jAj14=13 if p13=25 > jAj:

As one can conjecture there is room for improvements. Indeed Rudnev recently
published [26] a new bound

maxfjAAj; jA C Ajg � .log jAj/O.1/ � jAj12=11 if p1=2 > jAj:

More strikingly after completing this survey we have learned that Roche-Newton,
Rudnev, and Shkredov announced [24] a fantastic bound

maxfjAAj; jA C Ajg � jAj6=5 if p5=8 > jAj:

In their proof they use incidence bounds in “Elekes style.” Misha Rudnev [25]
used a result of Guth and Katz on point-line incidences in space (see in [15] and
in [21]) to obtain an unexpectedly strong point-plain incidence bound in K3 for
arbitrary field K: This beautiful result led to new sum-product bounds in Fp even for
composite p:
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5.1 Getting the Full Field

We now give a result of Glibichuk discussed at the start of this section:

Theorem 9. If jAjjBj � 3p=2 C p
p, then 8AB D Fp.

Proof. Suppose jBj � jAj, let BC D fb 2 B W �b 2 Bg and B� D fb 2 B W �b 62
Bg[fb 2 BC W 1 � b � p�1

2
g. By definition BC is symmetric (b 2 BC , �b 2 BC)

and B� is anti-symmetric (b 2 B� H) �b 62 B�). Let B� be the larger of the
two. By a simple counting argument we know that jB�j D maxfjBCj; jB�jg �
maxf 2jBj�1

3
; 2jBj � pg. Note that jAjjB�j � jAj � 2jBj�1

3
� p C 2.

Noting that a C tb D c C td iff a � td D c � tb we have R.t/ D R.�t/
in Proposition 5.2 so there exists t ¤ 0 such that R.t/ D R.�t/ � jAjjB�j C
jAj2jB�j2=.p � 1/ so that

jA C tB�j; jA � tB�j � jAj2jB�j2
R.t/

� jAj2jB�j2
jAjjB�j C jAj2jB�j2=.p � 1/

> p=2

as jAjjB�j � p C 2. If B� D BC, then I.A; B/ D A.B C B/ C B.A C A/ � 4AB
and so, by Lemma 5.4(i), we have j4ABCj � jI.A; BC/j � jA C tBCj > p=2, and
thus 8ABC D Fp by the pigeonhole principle. If B� D B�, then, by the pigeonhole
principle, there exist a1; a2 2 A; b1; b2 2 B� such that a1 � tb1 D �.a2 � tb2/ so
that t D .a1 C a2/=.b1 C b2/ (and b1 C b2 ¤ 0 as B� is anti-symmetric). But then
j4AB�j � j.b1 C b2/A C .a1 C a2/B�j D jA C tBj > p=2, and thus 8AB� D Fp by
the pigeonhole principle.

The result follows. ut
Corollary 5.13. If jAjjBj � 3p=4 C p

p, then 16AB D Fp.

Proof. Suppose jBj � jAj so that jAjjBCBj � jAj.2jBj�1/ � 2jAjjBj�pjAjjBj �
3p=2Cp

p, and the result follows by applying Theorem 9 with B replaced by BCB,
so that 16AB � 8A.B C B/ D Fp. ut

We now give a result of Hart and Iosevitch [16]:

Theorem 10. If
Qm

jD1 jAjjjBjj=p > .p � 1/, then
Pm

iD1 AiBi  F
�
p . In particular,

if jAjjBj > p.p � 1/1=m, then mAB  F
�
p . If

Qm
jD1 jAjjjBjj=p > .p � 1/2, then

Pm
iD1 AiBi  Fp.

Proof. Let r.t/ be the number of representations of t as
Pm

iD1 aibi, so that

r.t/ D
X

ai2Ai
bj2Bj

1

p

X

k

e

�
k.
P

i aibi � t/

p

�

D
Q

i jAijjBij
p

C Error

p
;

where, by the Cauchy–Schwarz inequality, and writing u � k=l .mod p/
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jErrorj2 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

ai2Ai

X

k¤0

e

��kt

p

�Y

j

X

bj2Bj

e

�
kajbj

p

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

�
X

ai2Ai

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

k¤0

e

��kt

p

�Y

j

X

bj2Bj

e

�
kajbj

p

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

�
Y

i

jAij �
X

ai

X

k;l¤0

e

�
.l � k/t

p

�Y

j

X

bj;b0
j 2Bj

e

 
aj.kbj � lb0

j/

p

!

�
Y

i

jAij �
X

u;l¤0

e

�
.1 � u/lt

p

�Y

j

p
X

bj;ubj2Bj

1:

Assume, for now, that t ¤ 0. If u ¤ 1, then the sum over l equals �1, otherwise
it equals p � 1. Hence the above is � .p � 1/

Q
i jAij � Qj p

P
bj2Bj

1 D .p � 1/pm

Q
i jAijjBij. We deduce that pr.t/ � Q

i jAijjBij � ..p � 1/pm
Q

i jAijjBij/1=2 and the
result follows.

If t D 0, the sum over l is p � 1 and it is feasible that ubj 2 Bj for all u; j, so
the above is � .p � 1/2pm

Q
i jAijjBij and the result follows (one can also prove this

bound more directly using (16)). ut

6 Helfgott’s More General Bounds

Theorem 11 (Helfgott’s Theorem). Let G be a group and � be an abelian group
of automorphisms. Let S � � with the property

If g� D g for some g 2 G; � 2 S�1S; then g D 1 or � D 1: (24)

Then for any A � G we have one of the following:

(i) There exists g 2 A such that jAgSj D jAj jSj
Or there exist c 2 A�1A and 
 ¤ � 2 S such that

(ii) There exists b 2 A [ A�1 such that f.ab� /� c� .ab� /�
 W a 2 A; � 2 Sg contains
jAj jSj distinct elements.

Or (iii) There exists  2 S [ S�1 such that fa� .c/� a�
 W a 2 A; � 2 Sg contains
jAj jSj distinct elements;
or (iv) fa� c� a�
 W a 2 A; � 2 Sg contains � 1

2
minfjAjjSj; jOjg distinct elements,

where O is the union of the orbits of elements of A under the two maps a ! ba for
any b 2 A [ A�1, and a ! a for any  2 S [ S�1.
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Proof. Define U WD fg 2 G W There exists 
 ¤ � 2 S such that g��
 2 A�1Ag. For
any g 2 G define 	g W A 	 S ! G by 	g.a; �/ D ag� . Note that 	g is injective if and
only if g 62 U, and in this case jAgSj D jAj jSj.

Next define ı
;� .g/ D g��
 for g 2 G, for each 
 ¤ � 2 S. This is always
injective, for if ı
;� .g1/ D ı
;� .g2/, then .g�1

1 g2/
��1 D g�1
1 g2, and so g1 D g2

by (24). Hence if g 62 U, then jı
;� .AgS/j D jAj jSj. We observe that

ı
;� .ag� / D .ag� /��
 D a� g�.��
/a�
; (25)

using the fact that � is abelian.
Suppose that O 6� U. By following how the orbits are created from A by applying

the two maps, we consider the first element of O that is not in U. Then one of the
following must be true:

(i) There exists g 2 A such that g 62 U;
(ii) There exists u 2 O \ U such that g D bu 62 U with b 2 A [ A�1;

(iii) There exists u 2 O \ U such that g D u 62 U with  2 S [ S�1, where

In case (i) we have that 	g is injective so that jAgSj D jAj jSj.
In cases (ii) and (iii) we have u 2 O \ U and so there exist 
 ¤ � 2 S and

c 2 A�1A such that u��
 D c.
In case (ii) we then have g��
 D .bu/��
 D b� u��
b�
 D b� cb�
, and so

ı
;� .ag� / D .ab� /� c� .ab� /�
 by (25) and the commutativity of � . Hence

f.ab� /� c� .ab� /�
 W a 2 A; � 2 Sg D ı
;� .AgS/

which has size jı
;� .AgS/j D jAj jSj.
In case (iii) we then have g��
 D u.��
/ D c and so, proceeding as above,

fa� .c/� a�
 W a 2 A; � 2 Sg D ı
;� .AgS/

which has size jı
;� .AgS/j D jAj jSj.
Now suppose that O � U and define Rg WD fa; b 2 A; 
 ¤ � 2 S W ag
 D bg� g.

Note these are disjoint for if .a; b; 
�/ 2 Rg \ Rh, then g��
 D b�1a D h��
 which
is impossible as ı
;� is injective. Therefore,

min
g2U

jRgj � 1

jUj#fa; b 2 A; 
 ¤ � 2 Sg <
.jAjjSj/2

jOj
and, since

X

n

rAgS .n/2 D #fa; b 2 A; 
; � 2 S W ag
 D bg� g D jRgj C jAjjSj;
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we deduce that for some g 2 U,

jAj2jSj2 D
 
X

n

rAgS .n/

!2

� jAgSj
X

n

rAgS .n/2 � jAgSj
�

.jAjjSj/2

jOj C jAjjSj
�

by the Cauchy–Schwarz inequality. As g 2 U, there exist 
 ¤ � 2 S and c 2 A�1A
such that g��
 D c, and so, by (25),

fa� c� a�
 W a 2 A; � 2 Sg D ı
;� .AgS/

which has size

jı
;� .AgS/j D jAgSj � jAjjSjjOj
jAjjSj C jOj � 1

2
minfjAjjSj; jOjg:

ut
For further readings on the subject see [2, 4, 5, 8, 10, 12, 13, 19, 20, 31].
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