SQUARES IN ARITHMETIC PROGRESSIONS

Enrico Bombieri, Andrew Granville and Janos Pintz

I. Let Q(N; ¢, a) denote the number of squares in the arithmetic progression gn+a, n =
1,2,---,N; and let Q(NN) be the maximum of Q(N;q,a) over all non-trivial arithmetic
progressions gn + a.

It seems to be remarkably difficult to obtain non-trivial upper bounds for Q(N).
There are currently two proofs known of the weak bound Q(N) = o(N) (which is an old
conjecture of Erdds) and both are far from trivial. The first proof, found by Szemerédi [S]
in 1974, has for its main tool Szemerédi’s celebrated theorem that, for fixed ¢ and positive
k, a subset of 1,---, N with cardinality at least d N must contain a k-term arithmetic
progression, as soon as N is sufficiently large (the value of k used here is k = 4). The
second proof, which appears to be new, uses instead Faltings’s celebrated theorem that the
number of rational points on a curve of genus g = 2 is finite (the value of g is now g = 5).
We shall describe both these proofs later in this section.

In this paper we improve the above upper bound, though we are still far from proving
Rudin’s conjecture that Q(N) < v/N (see Erdos and Graham [EG], p. 17, for a history of

this and related problems). In fact the most optimistic conjecture is Q(N) = 1/ SN +0(1),
and even Q(N) = Q(N;24,—-23) for all large N, possibly N = 8.

THEOREM. There are at most ¢y N2/ 3(log N)®2 squares in any arithmetic progression
a+q,a+2q,---,a+ Nq with ¢ # 0. The constants ci, co are absolute and effectively
computable.

A possible value for ¢y is (73° — 1)/6, although this is clearly unimportant.

Let Qr(N) be the maximum number of k-th powers which can appear in an arithmetic
progression of length N. Much of the same arguments which go into proving our Theorem
can be adapted to deal with Q(NN), and we expect that they should lead to Q3(N) <«
N3/5%¢ and Qi(N) < N/2*¢ for k> 4. However there are further complications in the
study of the Mordell-Weil group of the Jacobians of the associated curves, and we shall
limit ourselves to some comments at the end of this paper about this point.

We now present an outline of our proof and describe its origins: In a letter written to
Frenicle in 1640, Fermat proposed the problem of proving that there are no four squares
in arithmetic progression. Fermat may well have been able to prove this, but the first
published proof appeared in 1780, due to Euler.

Now let Z={n : 1=n=<N, qgn+ ais a square}. Szemerédi [S] noted that Z must
then contain o(N) elements, for if |Z| > 0 N then Z would contain a four term arithmetic
progression (by Szemerédi’s theorem), and thus there would be four squares in arithmetic
progression, contradicting Euler’s Theorem.

We could use this proof to improve the bound Q(N) = o(NN), by employing quantita-
tive versions of Szemerédi’s theorem. However, an old result of Behrend states that there
are subsets of 1,---, N of size N/exp(cy/log N), which are free of three term arithmetic
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progressions, and so Szemerédi’s argument cannot be used directly to save even a small
power of N in the upper bound for Q(N).

To get such an improved upper bound for Q(N), we might first try to generalize
Euler’s Theorem, by showing that for certain triples 1 <k; < ko < k3 of integers, there
are few pairs (b, d) of coprime integers for which b, b+ k1d, b+ kod, b+ ksd are all squares.
We shall see in section III that such pairs (b,d) give rise to rational points (of infinite
order) of a certain elliptic curve, and thus if the rank of this elliptic curve is 0 we deduce
that there are no quadruples of integers ng, n1,n9,n3 in Z for which nqy — ng : no — nq :
ng —ng = ki : ko : k3. If we could collect enough restrictions of this kind then we might
be able to prove a better upper bound for Q(N); however we have been unable to prove
that very many of these elliptic curves have rank 0. Moreover, it appears to be a difficult
combinatorial problem to show that a set avoiding certain gaps is thin, and variations on
this argument, allowing for example elliptic curves of rank 1, do not seem to avoid the
combinatorial difficulties mentioned before.

The new idea in this paper is that one might employ five squares in the argument
above, instead of four. As we shall see in the next section, we now generate a non—singular
curve of genus 5 (instead of an elliptic curve), and may use Faltings’s theorem: Thus, for
any quadruple 1 S ky < ko < k3 < k4 of integers, we know that there are only finitely many
quintuples of squares b, b+k1d, b+ kod, b+ ksd, b+ ksd. From here it is easy to again prove
that Q(N) = o(N): Pick an integer M arbitrarily large, and consider each of the intervals
[0, M), [M,2M),---,[rM,(r+ 1)M), where r = [N/M]. If any such interval contains five
elements of Z, then this represents a quintuple of squares b, b+ k1d, b+ kod, b+ ksd, b+ k4d
with 1 < ky < ko < k3 < kg < M. By Faltings’s Theorem there are only finitely many such
quintuples, and so the total number of elements of Z is <4r + Op;(1); the result follows
from letting M — oo. Even easier arguments along the same lines prove the corresponding
theorem for k-th powers.

In order to prove our Theorem we shall appeal to an explicit version of Faltings’s
Theorem, contained in Lemma 5. Together with lemmas 2 and 3, it will allow us to show
that, for any fixed € > 0, and any given 1<k < ko < k3 < k4 < N, there are <. N¢
quintuples of squares b, b + k1d, b + kod, b + ksd, b + ksd, with d greater than a constant
depending only on N and e. Thus, using the argument in the paragraph above with
M = N'/5-¢ we obtain the bound Q(N;q,a) < N*/5%¢ provided ¢ is sufficiently large.
In section V we use more sophisticated combinatorics to replace the exponent ‘4/5" with
‘2/3’, and we replace the N¢ with a power of log NV by taking more care with our explicit
upper bound from Faltings’s theorem. We see no compelling reason why the exponent
‘2/3” in the Theorem could not be improved by a better combinatorial argument.

In the paragraph above we noted that our method only takes effect when ¢ is suffi-
ciently large. The value of this ‘sufficiently large’ is given explicitly in the text, and for
smaller values of ¢ the following argument, using the large sieve, gives a much better bound
than the Theorem: If p is a prime that does not divide ¢, and b is not a quadratic residue
modulo p then n ¢ Z whenever n = (b — a)/q (mod p); thus there are (p — 1)/2 residue
classes (mod p) that cannot contain elements of Z. The large sieve (see for example the
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top equation on p.18 of [B]) then tells us that, for any integer Z,

EAMELSE IV S =1

2
p<Z, (p,q)=1 P

We take Z = [3v/N] and deduce the bound Q(N; ¢, a) < VN log N, unless ¢ were divisible

by at least half of the primes < Z, in which case we would certainly have ¢ = eVN for large
N. This estimate will be used later in the proof.

To lend more credence to the conjecture Q(N) ~ ,/%N , one may also try to count
directly the number of solutions of the congruence m? = a(mod ¢) for m in an appro-

priate interval. It is then easy to see that Q(N;q,a) §,/§N + o(v/N) provided ¢ <

exp(clog N loglog N) for any fixed ¢ < m, the maximum being attained only for the
progression 24n — 23, provided N is sufficiently large.

We finally make the straightforward observation that we may assume ¢ and a to be
coprime. For, if we first divide out any square that may divide ged(q,a), we can then
replace the interval 1,---, N by a suitable arithmetic progression modulo ged(g,a) and

then we can divide out the factor ged(q, a)?.

ACKNOWLEDGEMENT. We wish to thank Pierre Deligne, Noam Elkies, Paul Erdos,
Gerd Faltings, Hendrik W. Lenstra and Carl Pomerance for some useful discussions and
suggestions. In particular, we owe to Faltings the remark that in our case one can avoid the
use of his deep theorem, replacing it by a gap theorem of Mumford which has a relatively
easy proof; this may be of importance in other situations. However we have decided to
base our proof on Faltings’s Theorem, because it is more elegant and easier to state, if not
to prove.



II. Let qng +a = m3 and qn; +a = m? be two distinct solutions. Then we may
view the pair (mg, m1) as a rational point on the projective line P! with homogeneous co-
ordinates (zg,x1). Conversely, suppose that ged(q,a) =1 and ¢ > 2N and that gn; +a =
m2, qn, +a = m;2, i = 1,2 are two pairs of distinct solutions with (my, my) proportional
to (mfy, m}). Then n| = n; and n), = ngy. In fact, we obtain

qni +a  qny+a
gni +a gns + a

and clearing denominators we get g(niny —nins) +a(ni; +n5H—nj —n2) = 0. Now ¢ and a
are coprime, therefore ¢ |n; +n5 —n) —no and since ¢ > 2N we get ny +nh —nj —ng = 0.
This in turn implies that nin), —niny = 0, and our assertion follows.

Next, let gn; + a = m2, i = 0,1,2 be three distinct terms in our progression. By
eliminating ¢, a we get

(n1 —n2)md + (ng —ng)mi + (ng —n1)m3 =0,
which we interpret as giving a rational point (mg, m1, m2) on the conic Cy defined by
(n1 — no)xd + (ng — ng)zt + (ng — ny)x3 = 0

in the projective plane P? with homogeneous co-ordinates (zg, z1,z2). More generally, let
us consider vectors of [ + 2 points n = (ng,-+,n;41) such that qn; + a = m? is a square
for each 7 and let us denote by k the vector of gaps k;; = n; — n;. Then n determines a
rational point (mg,---,m;y1) on the algebraic projective curve Cj(k) defined by

(ni —nip1)a;_y + (nig1 —nim1)af + (nioy —ni)ai,, =0

for i =1,---,1. It is easily verified that the curve C; is non-singular of degree 2! in P!*1,
by applying the Jacobian criterion and Bézout’s Theorem.

The genus of the curve Cj is (I —2)211 + 1; this follows from the well-known fact (see
e.g. [H], Appendix One, p. 159, (1)) that the total Chern class of a non-singular complete
intersection X of r hypersurfaces of degrees di,---,d, in P"*" is

c(X)=Q+n)"" 1 +dh)t A +dn)E

where h is the class of a hyperplane section of X. Alternatively, one can proceed by

induction on ! by considering the double cover Cj;1; — C) induced by the projection

(xo, -+, x1,2141) — (xo,---,x;), checking that it is ramified at exactly 2deg(C)) points

and applying Hurwitz’s genus formula. In particular, every curve C5 is an elliptic curve.
In the special case in which [ = 3 the genus is 5 and we have five projections

T - Cg(k) — Cg(k(z))

for i = 0,---,4 from Cs(k) to the curve Cy(k(?) of genus 1 associated to the vector n(?)
obtained from n by omitting the component n;. We denote by J(C3(k)) the Jacobian
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variety of Cs3(k), and similarly J(Cy(k(”)) will be the Jacobian of the curve Co(k(®).
The curve Cy(k(?) has a rational point, for example (1,1,1,1), and therefore it may be
identified with its own Jacobian.

The following lemma reduces the study of the Jacobian of Cs(k) to the study of the
elliptic curves Co(k(), and this allows us to do the Fermat descent on .J(Cs(k)) in a simple
and elementary fashion. A thorough discussion of curves of genus 5 which are intersection
of three non-singular quadrics can be found in [ACGH], Ch. VI, Ex. F-G, pp. 271-276.

LEmMA 1. The product map

f:Cs(k) — [ ] Cakx™)

i=0
with f = (mg, - -, m4) induces an isogeny
4 .
fo: J(Cs(k) — [ [ 7(C2))
i=0

with kernel a subgroup of the group of 2-division points of J(C3(k)).

ProoOF. We denote by cl the homomorphism from divisors of degree 0 on a curve
C' to its Jacobian J(C). Hence let Y a, P, be a divisor of degree 0 on C3(k) and let
c(> a,P,) = 6. Clearly it suffices to prove that cl(m;(> a,P,)) = 0 for i = 0,---,4
implies 26 = 0 on J(C3(k)).

We verify this fact as follows. Let G be the group of automorphisms of C3(k) of type

’Y(:’UO? X1, T2, 334) — (60:1307 €121, €2T2, €313, 64334)

with €; = £1, and let ; be the element with ¢, = —1 and €¢; = 1 for j # ¢. Then 7r2._1 o
i (P) = P+7,;(P), thus the pull-back by m; of cl(7m; (> a, P,)) = 0 yields ¢l (> a,vi(P,))) =
—¢ for every i. This gives yo71727374(0) = —d. On the other hand, ~vyy1727374 is the
identity in G and we conclude that 6 = —¢, as we wanted.

COROLLARY. Let r(k) be the rank the Mordell-Weil group of rational points of the
Jacobian of Cs(k), and similarly let r(k®)) denote the rank of the Mordell-Weil group of
rational points of the elliptic curve Cy (k). Then

r(k) = Zr(k@).

4
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ITI. We need estimates for the rank of the elliptic curves Cy(k®). This can be done
by performing a 2-descent, which is done most easily as follows.
Let us consider for example the curve Co (k(4)), which is the complete intersection of
the two quadrics
(n1 — n2)xd + (ng — ng)x? + (no — ny)zs =0

(ng —n3)xt + (ng —ny)as + (ny —ne)zz = 0.
This is equivalent to saying that there exist ¢ and a such that qyo +a = 23, qy1 +a =

fb’%a qyﬁ—azx%, qy3+a:w§ and y1 —yo = N1 —No, Y2 —Y1 = N2 — N1, Y3 —Y2 = N3 —Na.

In particular, we see that ¢ = (2% — 23)/(n1 — ng). If we write z = yo + a/q and multiply

together the first four equations we get

2(z + (n1 — no)) (2 + (n2 — no))(z + (n3 — no)) = (zox12273/4°)° .

We set in succession z = 1/u, zox17273/¢* = v/u?, (n1 — no)(n2 — ng)(nz — no)u = w,
(n1 — ng)(n2 —np)(n3 —ng)v =t and w = s — (ny — ng)(n2 — ng) and find

t? = s(s + (n1 — no)(nz — n2))(s + (n2 — ng)(nz — ny))

with ) ) )
s = (ng — ng)((n2 — no)z] — (N2 — n1)7H) /24

)
t = (n1 —ng)(na —ng)(nz — no)z1T273 /7] -
This is the equation of a cubic elliptic curve E (k(4)) with rational 2-division points, namely

the points (0,0), (—(n1 —no)(ng —n2),0), (—(n2 —ng)(ns —n1),0) and the point at co of
the elliptic curve. The discriminant of the curve is

A(4) =16 H (nj - TLZ')2 .

0<i<j<3

The map Cy(k™®) — E(k*) we have constructed is an isogeny of degree 4, therefore these
two curves have the same rank. The same considerations of course apply to every Cy (k™).

LEMMA 2. Let E be the cubic elliptic curve
t2=(s—e1)(s—ez)(s —e3)

with rational integers e; and let A = 16(e; — e3)?(e2 — e3)?(e3 — e1)? be its discriminant.
Let E(Q) be the Mordell-Weil group of rational points of E. Then

B(Q)/2B(Q) £2°F 2uies ¥l
where w(n) denotes the number of distinct prime factors of n. In particular, we have
rank(E(Q)) Sw(es —er) +w(es —ez) +w(es —eq) .
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Proor. The following elegant and explicit treatment of the Fermat descent, apart
from some minor changes, can be found in Lang [L], Ch. V, Theorem 1.1; see also the
survey article of Cassels [C], p. 268. We include it here for completeness.

Let (s,t) ba a rational point other than a 2-division point (e1,0), (e2,0), (es,0), oo,
and let us write s —e; = a;u? with u; € Q* and a; a non-zero square-free integer. Note that
a; is coprime to the denominator of s, which is a perfect square. Since (s—ej)(s—e2)(s—e3)
is a square, ajasag is a square too and since the a;’s are square-free we have a1 = babs, as =
bsby, az = bibs for a suitable triple (b, ba, b3) of coprime square-free integers; the triple
(b1, ba, b3) is uniquely determined up to sign. Taking differences we deduce that

bi|€j_ek

for every permutation (i, j, k) of (1,2, 3).
We define a map «; : E(Q) — Q*/(Q*)? by

) = (e — ei)(ex — e;) mod (Q")*
)=s—e; mod (Q*)® otherwise

and define o : B(Q) — (Q*/(Q*)?)3 by a = (a1, as, a3).
We claim that each «; is a group homomorphism. This is the same as saying that if
P, = (s;,t;), i =1, 2, 3 are three collinear points on F then

Oéi(Pl)Oéi(Pg)ai(Pg,) =1.

Suppose first that no P; is a 2-division point nor co. Let t = As+ u be the line through
Py, P, and Ps; then s, so, s3 are the roots of the monic cubic polynomial (s — ep)(s —
e2)(s — e3) — (As + p)?. If we make a translation by e; and look at the constant term of
the polynomial we obtain, by symmetric functions:

(s1 —ei)(s2 —ei)(s3 =€) = (Nei + p)”

which is a square, whence «;(P;)a;(Ps)a;(Ps) = 1, as claimed. The case in which one of
the points P; is a 2-division point or co can be handled in a similar fashion, by looking at
the coefficient of the linear term in the cubic polynomial, rather than the constant term;
this is the only modification of any substance needed in the proof.

Next, we claim that ker(a) = 2E(Q). Let P, = (s1,t1) be a rational point on E, let
t = As+ p be the tangent line at P; and let (s9,t2) = —2P; be the third intersection point.
Then sy, s1, s2 are the roots of (s —e1)(s —e2)(s —e3) — (As + u)? and the same argument
as before shows that

)\ei—i-u)g

Sz_ei:(sl_@i

is a square, for i = 1, 2, 3. This shows that 2E(Q) C ker(«). Conversely, suppose that
a((s,t)) = 1 and P = (s,t) is not a 2-division point. Then s — e; = u? is a square for
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1 =1, 2, 3, with u; determined only up to sign. Hence let us solve, for any choice of the
signs +, the system of equations
Ae; +p

S1 — €;

= j:ui

fori =1, 2, 3, in the unknowns A, u, s;. This is a linear system with non-zero determinant.
To see this last point, we substitute e; = s — u? and obtain a Vandermonde determinant

which is easily seen to vanish only if uf = u? for some i # j; this cannot occur because

u? = s —e; and e; # e;. Solving the system by Cramer’s rule shows that A, u, s; are

(2
rational numbers and s; and t; = As; + p give the 8 points P, = (s1,t1) for which
2P; = +P = (s, £t). A rather similar analysis holds if (s,t) is a 2-division point, proving
that ker(a) = 2E(Q).
The proof of Lemma 2 is completed by noting that the image of a admits for rep-
resentatives a subset of the triples (bobs, bsby, b1be), with square-free, coprime b;’s with
b; | e; — ex, and counting the number of triples (b1, bz, b3) up to a multiplier +1. Since

E(Q) has rational 2-torsion we also have
|E(Q)/2E(Q)| = 4 - 2rnk(F(Q)

and the last clause of Lemma 2 follows from the fact that E(Q) is finitely generated.
An immediate consequence of Lemma 1 and Lemma 2 is

LEMMA 3. We have

r(k)<3 Z w(n; —n;).

0<i<j<4



IV. We have already remarked that in estimating Q(N) we may suppose that ¢ > eVN
and that ¢, a are coprime. The following simple lemma shows that in this case the rational
points we obtain on the curves Cs(k) are quite large and well localized.

LEMMA 4. Suppose that ged(q,a) =1 and g > eVN. Let qni +a=m?,i=0,---,4
be five distinct squares with 1<n; < N. Then m = (my,---,my4) is a rational point on
the curve Cs(k) with height

= s logg=h(m) = logg +log N.

o=

1
2

PROOF. In fact, ged(m;, m;)? divides m? —m? = q(nj —n;), while on the other hand
ged(m;, q) = 1 because otherwise ¢ and a would have a common factor. This proves that
ged(mj, m;)? divides n; — n; and a fortiori we get

ged(mg, -+ +,mg)? < min |nj —ny.
i#£]
We write m; = m;/ged(mg, - -+, m4) and conclude that |m;-‘2 —m??|2q for j # i and in

particular max m;fQ 2> q. This proves the left hand side inequality of Lemma 4 because
h(m) = max log |m}|. For the right-hand side inequality we simply note that ¢(n; —n;) =

7 —mi Z|my| + |mal.

LEMMA 5. With the same hypotheses as in Lemma 4, the curve C5(k) has at most

m

28 - 77k

rational points x of height h(x) > c;log N. Here c¢; is an absolute constant.

REMARK. As observed by Faltings, Lemma 4 restricts the height of the rational points
of C5(k) which are of interest to us to an interval of type [H, cH] for some constant H,
and then one could use the easier Mumford’s Theorem in place of Faltings’s Theorem.

PROOF. Lemma 5 is a consequence of the simplified proof of Faltings’s Theorem in
[B2]. However we cannot apply directly Theorem 2 of [B2] because we need to know how
the various constants appearing there depend on the height of a defining set of equations
for the curve C. A future paper [B3] will contain a more precise version of Theorem 2 of
[B2] explicit in all constants, which includes Lemma 5 as a special case.

Thus in what follows we briefly indicate how to proceed to a reading of [B2] so to
control constants in terms of the height of a set of defining equations of a non-singular
projective model of C, leaving however much of the details to the forthcoming paper [B3].
In our discussion we will be consistent with the notation of [B2|, except for the fact that
the quantity N introduced in section 3 of [B2] will be called here N in order to avoid a
conflict with the meaning of N elsewhere in this paper.

We want to apply Theorem 2 of [B2]| to the curve C = Cs(k), with K = k = Q.
This result states that there is a constant v(C') such that the points z of C'(K) either have
length |z| with respect to the Néron-Tate form on the Jacobian bounded by v(C) or they
belong to a finite set of cardinality at most

[tors(A(K))|7°(1 + log~(C)/ log 2),
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where A is the Jacobian of C' and p is the rank of the Mordell-Weil group A(K).

Actually, what is proved there is a more precise result. First of all, the term |torsA(K)|
can be omitted altogether, since the application of Mumford’s Theorem requires only that
(z,w) be distinct points of C' rather than having distinct images in A(K) ® R. Taking this
remark into account, what is proved there is that solutions either have length |z| at most
~v1(C), or they belong to an explicitly constructed finite set Z, or they belong to a finite
set of cardinality

77(1 + log12(C)/log 2),

where 71 (C) and v2(C') are two constants with the following property:
For every pair of points z,w € C(k), z,w ¢ Z, satisfying

11(C) =zl 72(C)|2] = |w]
we have

3
<z,w> §Z|z||w|

Here <, > is the Néron-Tate form on the Jacobian of C.

We also want ~1(C) 2 ¢o0/€ and, in order to apply Mumford’s Theorem, we need
v1(C) 2 By for a constant [y.

In [B2] we take v1(C) = 72(C), but this restriction is unnecessary. A more important
point however arises as follows. In [B2] we choose an auxiliary divisor P of degree 1 and
use the map j(Q) = cl(Q — P) to embed the curve C' in its Jacobian. This requires the
knowledge of the divisor P, whose existence requires the vanishing of the Manin obstruc-
tion in the Brauer group of C, and an effective control of the height of P appears to be
problematic. A discussion of the problem of the existence of O-cycles of degree 1 on vari-
eties can be found in [L3]|, Ch. X, pp.250-258. Thus we must modify the construction of
[B2] by allowing P to be a Q-divisor with rational coefficients, choosing a divisor P,,, of
known degree my > 0 and of known height h(P,,,) and setting P = %Opmo- The curve C
is in fact given as a projective curve defined over a number field k, hence if my = deg(C)
we may take P, to be a linear section of C, for example with a co-ordinate hyperplane.

This time we map the curve C' into its Jacobian A = Picy(C') by associating to a point
@ the divisor class jn,,(Q) = cl(moQ — Pp,,), and denote by jp,, : C' — A this map, which
is again an embedding of C' into its Jacobian. Since the Jacobian is a divisible group, there
is a divisor P; of degree 1 defined over a finite extension ki of k such that we have the
linear equivalence of divisors P,,, ~ moP;. If j : C'— A is the embedding determined by
J(Q) =cl(Q — Py) and [mg] : A — A is multiplication by mg, we have j,,, = [mg]oj. This
corresponds to taking the Albanese map (defined over k;) with respect to the base divisor
Py, followed by multiplication by mg. The overall change, with respect to the calculations
in [B2], is to produce a rescaling of the formulas as follows.

Let © be the theta divisor associated to the embedding j, namely

O={zcA|le=a21++z4, 2, €j(C)}, 0=cl(O),
and let

Om, ={z€A|z=a14+-+24, 2 € Jim(C)}, by =cl(On,)-
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We perform the construction of section 3 of [B2] in a modified way. We define

Al =mgA — P, x C—C X Py,
By = sPy, X C+ sC x P, —mpA,
Ving = d1 Py X C + doC X Py, + dA!

mo?

51 = (dy + sd) /N, 6= (ds + sd)/N

so that o o
Ving = 01 NPy, y X C 4+ 62C X NP,,, —dBp,,,

and denote by d,, the divisor class on A x A given by
5m0 = (ST + SS - S>1k2)9m0'

With this understanding, the only change in section 3 of [B2] consists in putting a suffix
myg to the corresponding quantities.
The main change occurs in section 5 of [B2]. The linear equivalences of Lemma 1
become o1
J:)’LO (07_)’LQ) - mog QCZ(PmO)’
(Jmo X Jmo) Omy = mgg_lcl(A,mo)-
If we define

~

< T Y Zme= il@mo (z+y)— hemo (z) — Bl‘)mo (y), ‘:L‘|?n0 =<Z,% >my,
we obtain

_9g,d1 . do . )
thO (z,w) :m(l) QQ(%MWLO (Z) gno + %Umo (w)ﬁno —d< Jmag (Z)vjmo(w) >m0)+

O(d1]mo (2)lmo + daljmo (w)|mo) + O(d1) + O(d2) + O(1),

which replaces Lemma 2 in [B2]. It follows that the formulas of [B2] hold replacing P by
P, 0 with 0,,,, and | |?, <, > with m(1)729| |3no, m(1)729 <, >me, and identifying z, w
With Jim, (2), Jme(w), which we may because j,,, is an embedding.

With these identifications and modifications in mind, we verify that the calculations

in [B2] suffice to prove that

71(C) < VR(C) +1, (C) = 1600(n + 1)2N4@

where h(C') denotes the lowest upper bound for the height of a set of generators of the
homogeneous ideal of C' in the projective embedding; the constant involved in the symbol
< depends on the genus g, degree Nmy and embedding dimension n = Nmg — g of C by
means of the linear system |NP,,,|. Since the height in projective space of a point z is
proportional to |z|?, we have:

ol-

11



Let C be a non-singular projective curve of genus at least 2 defined over a number
field k and let h(C') be the lowest upper bound for the height of a set of generators for the
homogeneous ideal of C' relative to the projective embedding. Let K be a finite extension
of k. Then the number of rational points z € C(K) with height h(z) 2 A1 (h(C) + 1) is at
most

12(log(deg(C)) + 1)7°

where \1 depends only on the degree and embedding dimension of C' and where A(K) is
the Mordell-Weil group of the Jacobian of C' and p is its rank.

In order to compute ~;(C) we retrace the various steps in [B2]. All constants ¢; in
what follows refer to the constants in [B2].

The proof of [B2], Theorem 1 shows that we can choose v2(C) = 1/e where € is so
small and 7, (C) is so large that

[IA

T — 1 1 c
M ey FsNe e )+

3
2| Yolz? T 4

whenever |z| < €|w| and |z| 2v1(C). Here 7 is a parameter at our disposal. For example,

we can choose 1

€ — —
200c4N\/g + 1

and o = 1072, and we verify that this choice works as soon as

c
|21 2 =2 + 1+ 10%(2e10 + v/ers) + o
This yields admissible values

72(C) = 200Ncs/g+ 1, 71(C) = 200N coocar/g + 1 + 1+ 10%(2¢19 + /c18) + fo -

We need a bound for the constant ¢4 which appears in [B2], Lemma 6, p.628. Actually,
it is slightly better to amend the statement of Lemma 6 by replacing the term —c4(i}|2]? +
islw|? 4+ i3 +4%) with —cq(i%]2)? + i5|w|?) — B1(i +i5) and a new constant 3;; this does
not affect our preceding calculation for v (C) and v2(C) as long as we keep in mind that
the constant c;7 appearing in the proof of Theorem 1 contains the contribution of ;. We
need to majorize

esiih(@1/20) + coif + 201 Y h((gus)e(wy/2j,21/20))

vj
and this is at most

(c5 +2(n+ 1)2d0)iihﬁpm0 (2) + coi} 4+ 2(n + 1)*(max h(g,;) + 3log(dy))i;
where dy < ON” is an upper bound for the degree of each polynomial g, ;. We have
N e
Mk (2) = 5o |21+ O(12]) + O(1).

12



so that there is a bound

Iy (2) = |21 S Balal + Bu S L 1ol + 28 + By
for constants (32, 33 depending only on C. This shows that we can take
cr = (cs +4(n + 12N )N/qg.
The constant c¢; comes from the inequality
2i] Z Z log™ |coefficient of p,;|, + 5i} log(2do) < csith(z1/70) + coif -
vi
The polynomial p,; is simply ¢,;(§,( + x1/20), so that crude estimates for c¢5 and cg are

s <d(n+ 12N

c6 <5log(4N") + (n + 1)2(max h(g,;) + 3N°) .

This yields at last ¢4 < 8(n + 1)2N3 /g and the explicit bound

aJar1 .
7o (C) £1600(n + 1PN Y2« 14008°.
g

For the application we have in mind in this paper we have n = 4, my = 1, N = 8 and
g = 5, therefore 72(C) < 227 and 1 + logy2(C)/log 2 < 28.
It remains to estimate 41 (C) and our goal is to prove

’)/1(0) < 4/ h(C) +1.

We give only a bare indication of the steps in the proof.

It is fairly easy to show that if C' has a presentation as a projective curve of logarithmic
height h(C') then we can ensure that the auxiliary construction of the Q-divisor P of degree
1 and the basic embeddings %Pmo :C'— P™ and PBpy C x C — P™ all have heights

bounded by < h(C) + 1, and that ¢wp, is also sufficiently generic as needed in [B2].
mo

Then it is also easy to prove that the exceptional set Z consists only of points with height
at most < h(C) + 1 (note that the definition of Z in [B2] should be modified to include
all zeros of the discriminants D, ;). By retracing the steps in the proof, keeping in mind
our preceding remarks about the statement of [B2], Lemma 6, one sees that the required
bound for 1 (C) is a consequence of:

le—Qg . .
0 (fg, ©.ma) (2)] < H(C) +1,

S S 2 . .
|ﬁhﬁpm0 (Z) + ﬁhﬁpmo (w) - tho (z,w) o (h5 © (]mo X jmo))(sz” < h(C) + 17

hrp,, () —

S
N hNPmO

|ho—o-(2)] < (VR(C) +1)]z].

(2) + %hﬁpmo (w) = ha,, (z,w) > —h(C) — 1,

13



The third estimate is needed to compute the constant 3y and the others are needed to
compute ¢1, ¢o in [B2], Lemma 2.

The first three estimates are a consequence of a quantitative form of Weil’s Theorem
on heights on projective varieties, and the last one can be deduced from the others as in
[L2], Ch. 5, Proposition 5.4. In order to obtain the quantitative form of Weil’s Theorem
we need, one could proceed as in [L2], Ch. 4 keeping track of constants, but since we are
dealing with projective varieties it is more convenient to replace [L2], Ch. 4, Lemma 2.2
with a systematic use of Segre embeddings, so that one always deals with complete linear
systems. It is essential for our purposes to have a reasonably explicit description of the
Jacobian as a projective variety, and this can be achieved in various ways, for example
using Chow’s construction [Ch], or using a |30,,,| embedding. The important thing to
keep in mind in these considerations is that as long as we stay with constructive algebraic
geometry all estimates for heights will remain linear in h(C).

14



V. We are now in position to use a simple combinatorial argument in estimating Q(N).

Let us fix ¢ > eVN and a coprime with ¢ and let Z be a set of Z integers n in the interval
[1, N] such that gn + a is a square. Let d be an integer with D < d and let us define

Z(d,)={ne€ Z : n=1(mod d)};

Z(d,1) is the number of elements of Z(d, ).

Let n = (ng, - --,n4) be a quintuple of distinct points of Z(d, ). Then n determines a
point m on the curve Cs(k) and by Lemma 4 the point m has large height, h(m) > %\/N .
If n, € Z(d,l) for i =0, --,4 then each k;; = n; —n, is divisible by d, therefore we may
replace k with the new vector with integral co-ordinates k* = k/d, and now kj; = N/D for
every 4, j. Conversely, let k be a vector of integers k;; with k;; +kj; = 0, kij +kji+ki; =0
and k;; # 0 if ¢ # j and let m be a rational point on the curve Cs(k) with m; # £m, for
i # j. Then the remark at the beginning of section II shows that if ¢ > 2N there is at most
one point n such that, for some rational number ¢ and each i, we have gn; + a = (cm;)?.

LEMMA 6. Let N (k) be the number of rational points of the curve Cs(k) with height
at least %\/N . Then

Sy () v vm

d>D 1=1 k:ky 0<N/D

PROOF. On the left side of the equation above we are counting the number of tuples
(ng,m1, -+, n4,d) such that each n; € Z, ng < ny < -+ < ng, d > D and d divides
each n; —n;. Writing n; —n; = dk;; and gn; +a = m? we see, as above, that we have

i
(projectively speaking) a point m on C3(k). By Lemma 4 and our hypothesis g > eVN we
see that h(m) > %\/N . So we may count the number of tuples by counting for each such

curve C3(k), and for each (projective) point m on C3(k) with h(m) > 2v/N, the number
of d > D for which d = (nj —n;)/k;; for each i # j and qn; +a = (cm;)* for some rational
c and each 7. Now, by the comment immediately preceding Lemma 6, there can be no
more than one value of d > D, and Lemma 6 follows.

Lemma 5 and Lemma 3 show that

N(k) < H 73w (kij)

0<i<j<4
hence Lemma 6 yields
d
Z(d7 l) / 3(.0(]%7)
S (YY)« I e
d>D l=1 0<i<y<4

where Z/ runs over the possible sets of gaps k;;. Since ko1, k12, k23, k34 determine the k;;’s
and k;; < N/D, from the inequality between arithmetic and geometric means we deduce

Z Z (Z(C;, l)) < (%)3 Z 730w(k)

d>D [=1 k<N/D

15



and finally

d
S5 (5") < @ ttogmy:

d>D I=1
with ¢ = 730 — 1, by a standard estimate of the average of powers of the divisor function.
Let Ag(d) be the set of I’s for which Z(d,l) <5 and let Ai(d) be the set where
Z(d,l) 2 6. Clearly on Ai(d) we have (Z(g’l)) = Z(d, 1), hence the last displayed inequality
yields

YNz« (%)4(logN)c.

d>D A1 (d)
On the other hand, we have
> Z(d,1)<5d
Ao(d)
and
d

therefore we get

DZ= Y Z= > > zdh+ > > Z(d1I

D<d<2D D<d<2D Ay(d) D<d<2D A4(d)
N
< Y 5d+0((3) g N)°).
D<d<2D

The proof of our main result is completed choosing for example D = Z/20.
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VI. Rather similar considerations apply to the study of Qx(N), where we work now
with Fermat type curves

(n1 = na)mg + (na —no)mk + (ng —n1)mh = 0.

The main difference lies in the study of the Mordell-Weil group of these curves. We cannot
do the descent on the Jacobian by working over QQ, and one possibility consists in working
instead in the cyclotomic field Q(+/1), which fortunately does not depend on the n;’s.
Every point (u,v,w) with u, v, w a k-th root of unity lies on the Fermat curve and the
differences between these points generate a subgroup of the Mordell-Weil group of the
Jacobian.

Let T be the subgroup of k-division points of the Jacobian obtained in this way;
for example, if £ = 3, it may be verified directly that |73| =23 and that in most cases
T5 =2 Z/(3), while the Jacobian is an elliptic curve. We expect, but we have not verified,
that T, may be sufficiently large so to be able to perform a k-descent using an isogeny
with kernel a subgroup of T}, and this should provide us with a good bound for the rank
of the Mordell-Weil group. This in turn will give the bounds for Q(N) stated in the
introduction of this paper.
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