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On pairs of coprime integers with no large prime factors

Andrew Granville

Abstract. We give an estimate for Gunderson’s function, which counts pairs of coprime
integers with no large prime factors, and then use this function, in place of the Dickman-
De Bruijn function, to get improved results in a number of classical number theory questions
(e.g. upper bounds for kth power non-residues, lower bounds on S-unit equations, primality
testing, etc.).

1. Introduction

Let P be a given set of prime numbers, and for each x > 2 define S (x; P) to be the
set of positive integers < x, all of whose prime factors come from the set P. We
denote the size of this set by y(x; P); when P = P(z) is the set of all prime numbers
< z, then we write S(x;z) for S(x; P) and y(x;z) for p(x; P) — w(x;z) is called the
Dickman-De Bruijn function. The function y(x;z) has been extensively studied and
is widely used when dealing with a variety of number theoretic questions (see [20]
for a review).

For x,y > 2, define S(x,y;P) to be the set of pairs of integers (a,b) where
a € S(x;P), b € S(y;P) and ged (a,b) = 1; we denote the size of this set by
w(x,y;P). Again if P = P(z) we write S(x,y;z) and y(x, y;z). The function y(x, y; z)
was first defined by Norman Gunderson [12] in his PhD. thesis, but has recieved
little attention since. In this paper we will see how it can be used in place of the
Dickman-De Bruijn function in a variety of applications to get slightly superior
results.

2. Least kth power non residues (mod n)

Suppose that n and k are positive integers where k divides ¢(n) and ¢ is Euler’s
totient function. An old problem in analytic number theory is to bound the least
positive integer g, prime to n, that is not congruent to the kth power of an integer
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(mod n). We describe an elementary approach to this question in this section. First
we give some facts about kth power residues:

Lemma 1.  Suppose that n and k are positive integers where k divides ¢(n). Then
(i) The product of a finite set of kth power residues (modn), is itself a kth power
residue (modn); (ii) If a and b are both kth power residues (modn) and (b,n) = 1
then a/b is also a kth power residue (modn); (iii) The number of distinct kth power
residues (mod n), that are coprime with n, is precisely ¢(n)/k.

The proof of lemma 1 is straightforward.

Lemma 2.  Suppose that n and k are positive integers, where k divides ¢(n), and
that P is a set of primes, each of which are kth power residues (modn) and do not
divide n. Then

0 wemp) < 2

and if xy = n with x,y > 1 then

) plxy;P)< 2]({"—)

Proofs: (i) If a € S(x; P) then a is a kth power residue (modn), by Lemma 1(i),
as all of the prime factors of a lie in the set P. Therefore w(n;P) < ¢(n)/k, by
Lemma 1(iii).

(i) If (a,b) € S(x,y;P) then a and b are both kth power residues (modn), by
Lemma 1(i), and thus so is a/b, by Lemma 1(ii). We claim that if (a,b) and (c,d)
are distinct elements of S(x,y; P) then a/b # ¢/d (modn). (Otherwise, if a/b = c/d
(mod n) then n divides ad — bc and jad — bc| < n— 1 so that ad = bc. But then,
as (a,b) = (c,d) = 1 we have a = ¢ and b = d). Therefore p(x,y;P) < ¢(n)/k, by
Lemma 1(iii).

Remark: Gunderson [12] actually proved a slightly stronger result than
Lemma 2(i)): If xy = n/2 and x,y > 1 then w(x,y;P) < ¢(n)/2k. The only
difference in the proof is to show that a/b # +c/d (modn).

Lemma 2 is a simple but effective tool for putting upper bounds on the least kth
power non-residues (mod p), by the following argument:

If the least kth power non-residue is > m then p(n;m) < ¢(n)/k, by Lemma 2(i).
Therefore we can ensure that there is a kth power non-residue < m, by choosing m
so that p(n;m) > n/k.

In 1930 Dickman [4], showed that for any fixed u > 1,

W x) ~ xo)  as x— oo )
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where o(u), the Dickman function, is defined as the continuous solution of the
differential difference equation

ug'(u) +ou—1)=0 (u>1) (2a)
with the initial condition

ow)y =1 O<ux<l (2b)

It is not hard to use (2) to show that
o(u) =1—logu 1<ux?),

and to prove that ¢ is a decreasing function for u > 1, that tends to 0 as u
tends to co. Define u, to be the solution of g(u) = 1/k, so that, for any u < u,
we have y(n;n'/%) > n/k for all sufficiently large n. (N.B. By [3], u, = ¢!/ and
u, ~logk/(loglogk — 1)).

Therefore we have proved

Lemma 3. Suppose that k is a fixed positive integer, and choose u to be a positive
real number < u,, (the solution of ¢(u,) = 1/k). Then, for all sufficiently large integers
n, with k dividing ¢(n), the smallest positive integer q, that is prime to n, and is not
a kth power residue (modn), is less than n'/*. In particular, for any ¢ > 0, if p is a
sufficiently large prime then the least positive integer, that is not a quadratic residue

(mod p) is less than ne+e V2

Better estimates than Lemma 3 have been obtained by modifications of this
argument; currently the best results are due to Burgess [2] and Norton [20] who
showed that one can take 4u, in place of 4, in Lemma 3.

In the above we have taken k to be fixed and have let n get larger. In this paper we
will be interested in what happens if k gets larger along with n; specifically when
k = p* and n = p’ are prime powers for some fixed r > s > 1. As we shall see, such
questions have applications to many different probiems.

3. Lower bounds for Gunderson’s function and the Dickman-De Bruijn
function

Before we start investigating applications we should have some elementary lower
bounds for our functions.
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Theorem 1.  Suppose that P = {p,,...,p,} is a given set of primes, each less than
z. For any given positive integers u,v and w,

p(z*;P) > (n + u) (@)
u
and
p(z',z"; P) > ("+v) ("+W _U). (i)
v w

Proofs: (i) if @, + - + a, < u where each g, > 0 then p{'p52...p% < z¥ so that
1 n i 172 n

o _[(n+u
w(z";P) = Z 1—(u>.

ay+-+ap<u

(ii) Suppose that a = p{'py*...po with each a; > 0. If b is prime to a and contains
only prime factors from P, then all of its prime factors actually come from the set
n

P\ {p; : a; = 1} (= P, say), which has cardinality at least n — z a;. Therefore

i=1

w(E,2"P) = Y pE";P,)

ay+-4an<v

S ("”L::_”) (by ()

ay++an<v
_(n+v\( nt+w—v
- v w ’

Remark: Theorem 1(i) has previously been proved by Lehmer [16], then by
De Bruijn [3], and most recently by Lenstra [17]!

Corollary 1.  For any a > 1/e and for any fixed 6,0 < § < 1, both y(x; (alog x)'/(1-9))
and (x, x; (alog x)'/1=01/2 are greater than x°, for all sufficiently large values of x.

Proof: As =n(z) > z/logz for z > 17 ([22]), we can use Stirling’s formula
(logn! = n(logn — 1) + O(logn)) together with Theorem 1 to get the lower bound

dlogx + iZZ:{I +loga + O(1)} for both logy(x;z) and log(y(x,x;z))/2, where

z = (alog x)!/(1-9); the result follows immediately.

In Section 10 we will use Stirling’s formula more precisely to prove:
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Theorem 2.  For each x > 9 - 10'3
p(x;log?x) > x'/2, (i)
and for each x > 10,

w(x, x;log2 x) > x. (i)

Theorem 2(i) was proved by Lenstra [17]. We will give a number of other estimates
for Gunderson’s function in Section 9.

4. The least pS-th power non-residue (mod p*)

In this section we will determine an upper bound on the least p’th power non-residue
(mod p") for fixed r > s > 1: If z equals (arlog p)"/s or ((ar/2)log p)’/s then p(p";z)
or w(p'/2,p’/?;z) is greater than p'~S, respectively, by Corollary 1; therefore there
is a p°th power non-residue (mod p") which is less than z, by Lemma 2. We get a
similar, but more accurate, result by using Theorem 2, rather than Corollary 1, in
the case r = 2, s = 1 and a = 1. Note that in each of the cases above, the result
by using Gunderson’s function is better than that by using the Dickman-De Bruijn
function by a factor of 2'/5. Thus we may state

Theorem 3.  Suppose that ¢ > 0 and t is a fixed rational number, with t =r/s > 1
and (r,s) = 1. For all sufficiently large prime powers q, of the form p® with a divisible
by r, the least q'/'th power non-residue, modq , is less than (1 + ¢)(log q/2e)".

In particular, for any prime p > 5, the least pth power non-residue (mod p?) is less
than log? p.

The first part of this result is new. A weaker version of the last part was proved by
both Fouché [8] and Lenstra [17] — they obtained the bound 4log? p by using the
Dickman-De Bruijn function.

Presumably Theorem 3 is far from the best possible result: it is probable true that
for each prime p > 5, either 2 or 3 is not a pth power non-residue (mod p?), but this
seems to be very difficult to prove!!

5. The First Case of Fermat’s Last Theorem

The First Case of Fermat’s Last Theorem is said to hold for prime p, if there do
not exist integers x, y and z for which

xP+yP+2zP =0 and p does not divide x,y or z. (3)
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In 1909, Wieferich [24] gave a criterion that is independent of the values of x, y and
z: If (3) has solutions then 2 is a pth power residue (mod p?) — For a lovely proof
see Agoh [1]. The following year Mirimanoff [19] showed that if (3) has solutions
then 3 is a pth power residue (mod p?). A succession of authors have extended this
and most recently Granville and Monagan [9] have shown that if (3) has solutions
then each prime < 89 is a pth power residue (mod p?). In [10] it was shown that if
either one of two conjectures about matrices is true and if (3) has solutions then g
is a pth power residue (mod p?) for all primes g < max{97,3 + 1.643 log!/* p}. We
conjecture that it is possible to improve the last part of Theorem 3 as follows:

Conjecture.  For all odd primes p, the least pth power non-residue (mod p?) is less
than max{97,3 + 1.643log"/* p}.

If this conjecture holds as well as either Conjecture 11 or 12 in [10], then this would
give a proof of the First Case of Fermat’s Last Theorem for all prime exponents.

Gunderson himself gave an excellent lower bound for y(x, y; z), particularly in the
range where z2 < max(logx,logy), (see (18) in Section 9). This bound, together
with Lemma 2(ii), enabled Granville and Monagan to use the residue criteria up
to 89, to show that the First Case of Fermat’s Last Theorem holds for all prime
exponents up to 714,591,416,091,389. From a method suggested in Gunderson’s
thesis, Tanner and Wagstaff [23] have used a computer to push this lower bound
up to 156,442,236,847,241,651; and very recently Coppersmith [25] has introduced
some new ideas to obtain 7.568 x 10!7.

Many researchers have investigated the equation

x14+y14+2z9=0, q=p' and prime p does not divide x,y or z. 4)

Hellegouarch [13] has shown that if (4) does have solutions then p* divides both
2P — 2 and 37 — 3. We now prove

Lemma 4. For any odd prime p and integer t > p'/?/logp, 2 and 3 cannot both be
p?~th power residues mod p* (i.e. p* cannot divide both 2° — 2 and 37 — 3).

Proof: Gunderson [12] gave the (easily proven) lower bound

3log? x —log 12log x
log2log3

plx,x;3) > 1+

for each x > 1. Therefore, for t > p'/?/log p, we have

3p — p/?log 12
(log2 log 3)

p(p,p3) =1+

and so the result follows from Lemma 2(ii).
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Thus, if there are solutions to (4), then p* divides both 27 — 2 and 3? — 3 by
Hellegouarch’s criteria, and so t > p'/2/log p by Lemma 4. Therefore we have

Theorem 4.  For any odd prime p and integer t > p'/?/logp, there do not exist
integer solutions x,y,z to equation (4).

6. Polynomial time test of whether a given integer is squarefree

In a number of the algorithms used to test the primality, or to find the factors, of a
given integer, it is necessary to determine whether or not the integer is a product of
distinct primes. Lenstra [17], whilst investigating Miller’s primality test [18], gave a
polynomial time algorithm to test whether a given integer is squarefree (m? in the
number of digits m). We can use our Theorem 4 to get a test 4 times as fast as
Lenstra’s.

Theorem 5.  Let n be a positive integer, n > 32, and assume that a"~! = 1 (mod n)
for every prime number a < %log2 n. Then n is a squarefree integer.

Proof:  Suppose that p? divides n, for some prime p; then, as 3 < %log2 n we know
that 2"~1 = 3"~ = 1 (mod n) by the hypothesis, and so p is neither 2 nor 3.

For any prime number a < log? p( < ‘,l'log2 n) we have a*! = 1 (mod p?), by the
hypothesis. Therefore the multiplicative order, d, of a (mod p?) is a divisor of n — 1
and of ¢(p?) = p(p — 1). But p divides n, so that (p,n — 1) = 1, implying that d
divides (n — 1,p(p — 1)) = (n — 1,p — 1), which divides p — 1. Therefore a*~! = 1
(mod p?) for all primes a < log? p, contradicting Theorem 3.

Remark: Theorem 5 is only of interest in the context of a primality test, as there
are obviously many composite integers n with a"~! % 1 (mod n) for all a < log? n.

7. Bounds on the number of small pth power residues

In Section 10 we shall prove

Theorem 6.  If u is any positive integer and p is any odd prime, p > u*, then the

number of primes a < p'/*, such that a is a pth power residue (mod p?) is less than
1/2u

up' /<.

The case u = 1 gives, for any odd prime p,
#{primes a:1 < a < p and p divides a” — a} < p'/?,

which corresponds in an interesting way to a result of Kruswijk [15] who showed
that there exists a constant k > 0 such that

#{integers a:1 < a < p and p divides a” — a} < p'/>*/ 127,
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8.  S-unit equations with lots of solutions

Let S be a set of s primes. A classical question of transcendental number theory is
to ask how many solutions there are to the equations

a+b=c (5a)
ged(a,b,c) =1 (5b)
where all prime factors of a, b and c lie in the set S. (6)

In 1984, Evertse [7] showed that the system of equations (5) and (6) can have no
more than 3.7%%3 solutions; in the other direction, Erdds, Stewart and Tijdeman [6]
exhibited sets S of s primes where (5) and (6) have at least as many as

exp((4 + o(1))(s/ log s)'/?) ™

solutions. Their argument went as follows:

Pick z so that s = n(z) + 44/z + O(1) and x so that z = log® x/4. For each positive
integer b < x, let 4,(x;z) be the number of pairs of integers a,c € S(x;z) for which
(5a) holds. Then

max A,(x;z) > é,,zz‘;A”(x;Z) _1 (w(z;z))

1<b<sx X

s \!2
> exp ((4 + O(l))(@> )

Now if b is a value for which A,(x;z) is maximal then, for each pair (a,c) € 4,(x;z)
let g = ged(a,¢) and so a' = a/g, b' = b/g, ¢ = ¢/g is a solution of (5) and (6).
Thus by taking S to be the set of primes < z together with those dividing b (of
which there are less than (1 + 0(1)) log x, by the prime number theorem), we see that
the number of solutions of (5) and (6) is least the value in (7).

The last part of the argument, where one divides a,b and ¢ by g, is unpleasant
and, as in the paper of Erdos, Stewart and Tijdeman, we shall now pick b so as to
maximize A,(x;z) (the number of pairs in 4,(x;z) also satisfying (5b), which is the
same as the number of pairs (a,c) € S(x, x;z) with ¢ = a—b). Note that in this case
all the solutions of (5) and (6) will have the same value of b. So we have

_ 1= 1
max 4,(x;z) = ’;A,,(x,z) = 52 (W(xx;2) = 1). ®)

Erdds, Stewart and Tijdeman did not do their computations in this way and got the
lower bound exp((2 + o(1))(s/ logs)!/?) for A4,(x;z); whereas, by using (8) with z, x
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and S as before, we can get the value in (7) as a lower bound for 4,(x;z) (N.B. We
estimate (x, x; z) by using Theorem 1(ii) together with Stirling’s formula). Thus we
may state

Theorem 7. Let 2 = p,,p,,... be the sequence of prime numbers and fix ¢ > 0. For
any sufficiently large integer s there exists a positive integer b for which there are at
least exp((4 — ¢€)(s/logs)!/?) solutions to the equation a4+ b = c, where a and c are
pairwise coprime integers, all of whose prime factors are < p, (where t equals s minus
the number of distinct prime factors of b).

9. Further estimates for Gunderson’s function

In 1951, De Bruijn [3] estimated the order of magnitude of y(x;z) in all ranges of
x and z:

log x z z log x
log p(x;2) ~ é]og (1+logx> + logx 8 (1+%> )

as x — co. By using the trivial upper bound from

v(x;2) +w(y;z) — 1 <w(xy;2) < px;2)py;2) (10)
together with (9) and Theorem 1(ii) we can see that

log p(x,y;z) ~ logy(x;z) +logy(y;2) (11)
in the range

x>y>2, z=2 @—»oo as x — 0. (12)

On the other hand

p(x,y;z) = z #{pairs (a,b):ab=n, (a,b)=1, a<x, b< v}
neS(xy;z)

< p(xy;z)2"@,

Therefore, by using this together with the trivial lower bound in (10), we can use
(9) to get the estimate

logw(x,y;z) ~logy(x;z) (13)

in the range

x>y>2 z2>2 2,0 asx— . (14)
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It remains to understand the behaviour of y(x,y;z) when z is a fixed power of
log x. We shall prove, in Section 10:

Theorem 8.  We have the estimate

log x
log z

logw(x'=% x%;2z) ~ G(d,1) (as x — c0)

intherange 1/2>6 >0, x=2z=>2, where

z

t= 5
log x
G(5,t)—t10g( : )+1°g(t+V)+(25—1)1°g< t+1—20

— dlog(46(1 — 9)),
and

V2 =1 +45(1—9).

It is possible to get precise asymptotic estimates for y(x,y;z) in certain ranges: By
applying some estimates of Ivi¢c and Tenenbaum ([14] to the sieve identity

wxy2) = Y u(@w(%n)w(%;z)

d>1,0(d)<z

(where Q(d) is the largest prime factor of d), we can show that, for each ¢ > 0, we
have the the estimate

oy vxs2)p(y;z) 1 loglog(z + 1)
vinyiz) = 4] {1+O€<logy u logz )}

in the range

x>y>2 z>(logxlogy)*, (15)

where o = 2 — log(log x log y)/log z, and { is the Riemann-zeta function.

In [11] we use combinatorial methods of counting pairs of orthogonal lattice points
inside an n-dimensional tetrahedron to prove that

1 n 0 2 ) . 22
. —_— ——e J ") Tre v e o
»(x,y;2) n!Hlogpz(j) log’ x log y{1+o<logxlogz)} (16)
p<z

j=0
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for x > y in the range
2<z < logl/2 x, where n = n(2). (17)

This compares nicely with the estimate

1 z?2
o) — n 1 _c
wx;2) n! 1 logplog x{ +O(logx logz>}

p=z

in the range (17) which was given by Ennola [5]. Note that this implies that, in the
range (17),

v (27n(2)
w(x,x,Z)—( ) (x; Z){1+O(logxlogz)}

If we combine the estimates above, we see that we are only lacking asymptotic

estimates for p(x, y;z) in the range
log'? x < z < (log x log y)'** < log*** x

In his thesis Gunderson [12] gave the one sided estimate

p(x,y;z) = - ]—[zlogp (] _ 1)( )log x log" 7y (18)

=<z

which is weaker than the estimate (16) only by a small factor; it is thus a very good
lower bound in the range (17). Actually Gunderson described a method to get a
better lower bound than (18), by including terms of lower degree in log x and log y;
this was recently implemented on a computer by Tanner and Wagstaff [23], who
also incorporated some ideas of D.H. Lehmer [16].

It is also possible to get a general upper bound by suitably adapting a method of
Rankin [21]: For any o,7 > 0, we see that

e ( ) ( ) S u@)
dl(mn)

mn=>1, Q(mn)<z

- x?y* il
- Z 'u'(d) de+t Z yo st

d>1,0(d)<z r,s=>1,0(rs)<z

where m = dr and n = ds, v
Lz (19)

= XY@ ey
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where

Us;iz)=[Ja=p™)"

p=z

By choosing ¢ and 7 so as to minimize the expression in (19) we can get a fairly
good upper bound.

10. Proofs of Theorems 2, 6 and 8.

Lemma 5. Fix A4, 1 < 1 < e. For any real z and integers n and u, with u > u,(4),
z > 22u? and n > uz'/? /A, we have y(z*,z%;P) > z¥, where P is any set of n primes,
each < z. (N.B. uy(1) = 1, uy(2) <6).

Proof: Stirling’s formula, u! = (u/e)*(2nu)/>{1+0(1/u)}, implies that if u > uy(4)
then u! < (u/A)*. We also have

u

=[le—u+pm+u+1—j)=[]0*+n—@=ju+1-})
j=1 j=1

(n+uw!
(n—u)!

u
> l_I(n2 +n—u(u—1)) > n*,
j=1

as n > uz'/? /) > u? > u(u — 1). Therefore, by Theorem 1(ii),

- n+u\/n (n+u)! an\ % "
wen= () () =gt~ () =

Proof of Theorem 6: Suppose P = {primes a < p'/#: a is a pth power residue
(mod p)} has n > up'/? elements. Taking 4 = 1 and z = p!/* in Lemma 5, we get
p(p,p; P) > z¥ = p; but, by Lemma 2(ii), w(p, p; P) < p — 1, giving a contradiction.

Lemma 6. If x > exp(39) then w(x, x;log? x) > x.

Proof:  Let u be the smallest integer > log x/2log, x and z = x!/* = log? x/9?,
so that u > 6 and 8 > 1. Therefore log3 = (2ulog, x —logx)/2u < log, x/u <
21og3 x/log x < log2 as x > exp(39), and so log, x > 1og39 > 2+1log2 > 3+1log 3.
Thus x'/? = logx/9 > log x/(log, x — log ) = 2u. Therefore, by taking A = 2 in
Lemma 5 we get w(x, x:log?x) > w(z¥,z%;2) >z = x,asu > 6,z = x'/* > 4 > 17
and n(z) > z/logz ([22], Corollary 1) > (logx/logz)z'/?/9 > uz'/?/2.

Proof of Theorem 2: By Lemma ¢ ° -uffices to show that the result holds for
10 < x < exp(39).




On pairs of coprime integers with no large prime factors 347

We give below a table of values of x; such that w(xj, xj;log2 x;) = x;;, for each
Jj < 18. This is proved by direct computation for j = 1,2 and 3, and by taking
x=x;,u=1+[logx/2log,x] and n = n(x'/*) in Theorem 1(ii), so that

Wi, 108 x,) = i x x4 = ("*”)(")
u u

(")) =0

(by computation), for each j > 4.

Therefore if 10 < x < exp(39) then there exists j, 1 < j < 18 such that
x; < x < Xy and so

and

v(x, x;log? x) > w(xj,xj;log2 X)) =X =X

x;= 10 xg = 53130 x,= 241107  x,,= 5316:10
Xy= 45  x; = 105  x,=9011-108  x,,= 4.84 -10'°
Xy= 551 x5 = 247105  x;3=101510° x4 = 6.534-1016
xs=5500  x;o= 9.510°  x,5=3219-10"?

Proof of Theorem 8: By (11) and (13) we may assume that ¢ is bounded non-
trivially both above and below. We may also assume that  is bounded below by
some constant greater than zero: if not then the result follows from the trivial
bounds in (10), and the estimate yp(x%;z) = w(x'~%;2)°") which we can deduce
from (9).

We define M (A, B;n) to be the number of pairs of vectors (a,b) of non-negative
integers, with n components each, such that a.1 < 4, 6.1 < B and a.b = 0.

Let k =z/logz and p, < p, < -*- < p, be the primes in (k,z). If (a,d) is a pair
counted in M((1 — )}Zg: 5;22; n) (where a = (a;,...,a,), b = (by,...,b,)), then
(a,b) € S(x'%, x%;z) (where a = py'...pin b= p’l’1 ...pn); therefore
log x Iogx =5 8
= n) < ;Z).
M((1-0) B 0125 n) < plai?, 52 0

If (a,b) € S(x!7°,x%;z) (where a = a'p{'...p", b = b’pll’1 ...pbn) then ' € S(x'%;k),
b € S(x°;k) and the pair (a,b) is counted in M((1 — 5)}g§;j ,5}g§;‘,n) (where
a=(a,...,a,), b= (b,...,b,)). Therefore

log x logx _
1-5 _ ) 1-5. 5.
R (BT bt IO ell
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Now note that logk = logz{1 + o(1)} and
w3k < w05k = p(x;2)°0 = p(x!, x?;2)°

by (9) and (10), as t and ¢ are assumed to be bounded non-trivially. Therefore the
result follows from substituting the following result into (20) and (21):

Theorem 9.  Fix ¢; > ¢, > 0. The estimate
M((1 — d)x, 6x;tx) = exp[xG(J,t) + O(log x)]
holds in the range ¢, >t > c,, 1/2> 6 > c,.
Proof: Letn=1tx, B=(1—6)x and A = 6x so that A < B. Then

M(A,B;n) = > 1

ay+ - +an<A, by+- +by<B
and a; or b;=0 for each i.

A B
=ZZ coefficient of X°Y? in (1 + X + Y + X2+ Y2 -
a=0 b=0
1 X Y \"
- H f AyB ;
coefficient of X4Y ln——(l—X)(l—Y) (1+——1—X+_1—Y>

2600
2 00E)

j=0
Now, by comparing each pair of successive terms of the sum in (22), it is easy
to show that the maximum of (;') (l;) (**77) occurs when j is an integer within a
distance O(1) of one of the solutions of

o\ 2 A
(B+n—4(%)-m+2m(£>+3=o

Now as the larger of the two roots of this equation is certainly larger than min(B, n)
we see that

j_ (n4+2B—-A)
n 2(B4+n—A)
A

2=n?+44B (= V2x?). When we substitute this into (22) we see that

A A A —_j
log M (A4, B;n) = nlog (_+Inij:__> + Alog (__ji_l>

+0O(1),

A
+ Blog ( ) + O(log(n + x))

= xG(0,t) + O( :x), after some rearrangement.

—J
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