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1. INTRODUCTION

Given a prime p and distinct non-zero integers aq,as,...,ar (mod p), we investigate the
number N = N(ay,ag,...,ax;p) of residues n (mod p) for which
(1.1) (nai), < (nag)y < -+ < (nak)p,

where (b), is the least non-negative residue of b (mod p). If £ = 2 then N = (p — 1)/2,
since (nay), < (naz), if and only if (—na;), > (—nag),.

The first non-trivial case is when k = 3. Since there are 3! = 6 ways to order the residues
(naq)p, (nas)y, (nas),, one may expect that N ~ p/6 for most choices of ay, as, as; this is
indeed the case, as we will see later. However the value for N can differ from p/6 quite
significantly, and we have the following rather simple lemma.

Lemma 1.1. Ifas = ay + a3 (mod p) then N(ay,az,as;p) = 0.

Proof. First note that (naq), + (nas), = (naz), (mod p). Since 0 < (na;), < p for each 1,
we have —p < (nai1), + (nas), — (naz), < 2p. Therefore either (nay), + (nas), = (naz),
in which case (nai)p, (nas), < (naz)y; or (nai), + (nag), = (na2), + p in which case
(naq)p, (nas), > (naz2), since each (na;), < p. In neither case do we have (na;), <
(naz), < (nas), so N(a1,as,as;p) = 0.

It turns out that, for £ = 3, we have N > 0 whenever as # a1 + a3z (mod p) (see [3]), but
we have no proof which is both simple and elementary. Our proof here is based on the use
of Dedekind sums, which also shows that

(1.2) []il}

< N(ay,az,as;p) < [g]

if ag # a1 + as (mod p). When k = 4, there are other conditions under which N = 0, and
we find that if N(ay, a9, as,aqs;p) > 0 then

(1.3) [%] — [%} < N(ay,a2,a3,a4;p) < [ﬂ
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The bounds in (1.2) and (1.3) are sharp, and we also give asymptotic formulae for N (in
terms of the a;). Explicitly evaluating these formulae appears to be rather complicated in
general: we conjecture that

(1.4) N(al,...,ak;p)g[%}, k=3,4,...

noting that the upper bound is attained when each a; = i; we have proved N < [2p/(k+1)]
for all p and k, and also that for all £ > 42 we have N < [p/k] if p is sufficiently large.
One can easily show that N ~ p/k! as p — oo for “almost all” choices of ay,as,... ,ak.
Our main concern here is to understand the spectrum of possible values of N when k£ = 3
and 4; our methods give little for £ > 5.

2. ASYMPTOTIC FORMULAE FOR N(a,p), AND A RECIPROCITY RULE.

It will be convenient to let a represent the vector with components aq,...,a. For a
given vector a = (aq,...,ax), we let b = (bg,...,bx) be given by by = —a; (mod p) and
bj =aj; —a;_1 (mod p) for j =1,2,...,k, with ap = 0. Thus

(2.1) bop+b1+---+b,=0 (mod p),
and we let M (b; p) be the number of residues n (mod p) for which
(2.2) (bor)p + (b1n)p + - -+ + (bpm)p = p.

The next result simplifies our calculations since it is easier to deal with the equation (2.2)
than with the inequalities (1.1).

Lemma 2.1. We have N(a;p) = M(b;p).

Proof. If we have a solution to (1.1) then p > (a;n), > (aj—_1n), > 0 so that p > (a;n), —
(aj—_1n)p, > 0, and (a;n), — (aj—1n), = (bjn), (mod p), and hence (a;n), — (a;—1n), =
(bjn)p. Thus (bin)p + -+ + (bkn), = (axn), and so (2.2) is satisfied.

In the other direction, we define a; = b; + bj_1 + --- + by for each j,1 < j < k. Then
(a;n), = (bjn)p+-- -+ (b1n), (mod p) and, by (2.2), 0 < (a;n),, (bjn)p+---+ (b1n), < p,
so they are equal. Thus (a;n), = (aj—1n), + (bjn), > (a;—1n),, so we have (1.1).

In order to state our results concerning N(a;p), we define a function 6 = 6, as follows.
Given integers u, v (mod p), select a,b (mod p) with |a| 4 |b| minimal such that a/b = u/v
(mod p), and then let 0, (u,v) = 1/ab. We remark that if |u|, |v| < \/p/2 then 0,(u,v) =
(u,v)?/uv. The following is our main result.

Theorem A. Let k=3 and let b = (bg, b1, ba, b3) be associated with a. Then
(2.3) N(ap) =2+ 257 0,(b5,0) + O(/p)
. ) 6 p\Ui, 05 .

12 4~
0<i<y<3
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Similarly, for k = 4, we have

(2.4) N(ap) = 2o+ 2= 3" 0,(bi,b5) + O(/p)-

The error term “O(,/p)” may be replaced by “O(max;|a;|)”. In section 5b these error
terms are given explicitly in terms of Dedekind sums when the b; are all prime. This
inspired a certain Reciprocity Rule for Residue Races:

Let bg,...,br be pairwise coprime, nonzero integers which sum to 0, and then define
My(bg,...,bk;b) =#{n: 1 <n<b—1, for which (bgn),+---+ (bgn), = £b} for positive
integers ¢ and b; and My(b; —b) = —M;(b;b). Then

A 1 if #{i: b; >0} <l <#{i: b, <0}
(2.5) > My(bibi) =< —1 if #{i: b <0} <L <#{i: b >0}.
=0 0 otherwise.

In our case we have ¢ = 1 so the above gives:

5 1 if #{i: b;>0}=1
> M(bibi) =< —1 if #{i: b <0} =1,
=0 0 otherwise.

From Theorem A (and a weak generalization) we deduce

Corollary 1. Fix integer k > 3. Let n(p) — oo as p — oo. We have
N(a;p) ~ p/k!

for all but at most O(p*~'n(p)) of the ~ p¥ choices of residues a mod p. On the other
hand N(a;p) = 0 for 2 (k — 2)p*~! choices of distinct non-zero residues a (mod p).

Two challenges arise: Determine all a mod p for which N(a;p) = 0; and, since N(a;p)
can take values other than 0 and ~ p/k!, determine the spectrum of possible values, and
the accumulation points of this spectrum. We met both challenges for £ = 3 and 4, but
not for larger k.

3. SPECTRA FOR k = 3, k = 4 AND BEYOND

N(a;p) can take values other than 0 and ~ p/k!l. Our main interest in this paper is to
investigate the spectrum of possible values, and the accumulation points of the spectrum,
for k =3 and 4. (Our methods do not yield much for larger k).

Since (an), = p{%'}, (1.1), and equivalently (2.2), can be rewritten as

{ait} <{ast} <--- < {axt}
{bot} + {b1t} + ...+ {bpt} =1
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where t = n/p. Let v(ay,as,...,a;) be the measure of the set T" of t € [0,1) for which
(3.1), or equivalently (3.2), holds. A simple argument (see section 3c¢) gives that

(3.3) N(ay,...,ax;p) =v(ai,...ax)p+ O <Z|a2|> .

i=1

Without loss of generality one can assume that the a; are not too large (by Lemma 4.2 be-
low), and so the “spectrum” of values of N (a;p)/p is more-or-less given by the “spectrum”
of values of v(a), when p is large. This is what we will study in section 10 below.

In section 3¢ we show that N(a;p) = 0 whenever v(a) = 0. Moreover, if v(a) # 0 and p >
L := LCM]Jby,by,...,b;] then N(a;p) > 0. This suggests that to study when N(a;p) =0
we need to classify when v(a) = 0. One can interpret this geometrically as asking which
vectors t€ T* (where T is the torus R/Z) of the form t(ai,as,...,a), t € [0,1), never
intersect the region t; < ty < --- < t,7 We have been unable to find elementary criteria
describing the a; that satisfy this.

The results that we do have can be summarized as follows:

3a. The spectrum for k = 3.

M (bg, by, ba, bs; p) = 0 if and only if some proper subset of the b;s sums to zero.
If M(b;p) > 0 then M(b;p) > [(p+ 1)/12]. Equality holds for the races

b p
4’3
b p
6’4
Also, M (b;p) < [p/3] and equality holds for the race

{I1<n<p—-1:n<(-n)y< (3n)p}:( ), when p = +1,+5 (mod 12);

{1<n<p—-1: n<(—2n), < (@n),} = ( ) ,  when p=41,+7 (mod 12).

{I1<n<p-1: n<(2n), <(8n),}= (0,%).
Notice the surprising fact that if M (b;p) is non-zero then it is quite large. This can be re-
interpreted as stating that 1/3 > v(a) > 1/12, so long as v(a) # 0; and that these bounds
are sharp since v(1,2,3) = 1/3 and v(1, —2,4) = 1/12. Moreover, Corollary 1 implies that
v(a)=1/6 “almost always”. In section 10a we show that the spectrum of values taken by
v(a) is discrete, though there are accumulation points at 0, 1/6 and all numbers of the
form 1/6 + 1/12d with d an integer other than 0 or —1, and nowhere else. The largest
accumulation point is 1/4 and the only numbers in the spectrum > 1/4 are 1/4 itself and
the numbers of the form (1/4)(1+ 1/d) with d > 3 odd. The smallest accumulation point,
other than 0, is 1/8 and the only numbers in the spectrum < 1/8 are 1/8 itself and the
numbers of the form (1/8)(1 —1/d) with d > 1 odd.

3b. The spectrum for k = 4.

M(b;p) = 0 if and only if the b;s satisfy the hypothesis of Lemmas 6.1 or 6.2, or belong
to the list in section 10b. If M (b;p) > 0 then M (b;p) > [p/21] — [p/22] = p/462 + O(1).
Equality holds for the race

(1<n<p—1: (3n), < (10n), < (—n), < (21n),} = (2% %) .
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Also, M (b;p) < [p/4] and equality holds for the race

{1<n<p—-1: n<(2n), <(3n), < (4n),} = (0,%).

We can re-interpret this as 1/4 > v(a) > 1/462, so long as v(a) # 0. Moreover, we
know that v(a)= 1/24 “almost always”. The spectrum of values is again discrete, and the
accumulation points are described in section 10b. The smallest elements of the spectrum
are, in ascending order,

$11r 1 1 1 1 1 1 1 1 1 1 1 1 1 1
46274207 3907 336 330" 3127 308’ 288’ 286 2737 270’ 266’ 264’ 260’ 255" 252"

3c. Calculating the spectrum.

Define 3(t) := [bot] + [b1t] + - - - + [bxt], so that (3.2) is equivalent to 3(t) = —1, since each
{b;it} = b;it — [b;jt]. Thus v(a) is the measure of the set ¢t € [0,1) for which §(t) = —1.
Now [(t) is fixed on intervals for which each [b;t] is fixed; and [b;t] only changes value
at rationals of the form k/b;. Therefore T is a collection of subintervals of [0, 1), where
each subinterval is of the form [r/L,s/L] with L := LC'M[by, by, ..., bg], and so Lv(a) is
an integer. The number of values of n/p € [r/L,s/L] is p(s —r)/L + O(1). Moreover if
p(s —7)/L > 1 we are guaranteed such an n, so if v(a) > 0 and p > L then N(a) > 1 as
claimed above.

The number of intervals in 7" is no more than half the number of values of ¢ for which
{b;t} = 0 for some 4, which is < ) [b;| =2 |a|; this gives (3.3).

Now if v(a) = 0 then 7" = () so that (3.1), and thus (1.1), is never satisfied, and so N(a) = 0
as claimed above.

This description of v lends itself to an easy way to compute the value of v(a): Let tg =
0 <ty <---<t. =1, be the sequence of fractions of the form j/|b;| with 0 < j < |b;| and
0 <i < k, put in ascending order. Then v(a) is the sum of the measure of those intervals
(te,te+1) for which §(t) = —1. Since [(t) remains constant on each such interval, we need
only evaluate it at one point in the interval. Therefore

(3.4) viay, ... a) = > (tos1 — to).

0<t<r—1
B((tettes1)/2)=—1

3d. The spectrum for k£ = 5.

The methods used to determine the spectra of v(a) for £ = 3 and 4, do not work for
k > 5 (because we would need to be able to simply evaluate higher order Dedekind sums
as in (5.2) below which are, for now, somewhat mysterious). However we can, via direct
computation of values of v(a) using (3.4), see what seems likely for k& = 5. The largest
element of the spectrum we found was 1/5 as predicted. The smallest nonzero element
found was v(211, 199, 203, 210, 225) = 1/47475.
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3e. The spectrum for arbitrary k.

We have shown that the largest element of the spectrum is 1/k for k = 2,3,4 and > 42
(in section 9), justifying our conjecture that the answer is always 1/k. This should surely
have a straightforward geometric proof: As at the beginning of section 3, one can interpret
this geometrically as the question: Show that the total length of the segments of the line
t(ay,az,...,ax), t € [0,1) inside the region t; < to < --- < tj is always < 1/k. This
puts one in mind of an old open problem of Poincaré (see e.g. [1]): Find the maximal
intersection in R¥ of a degree d curve with the unit sphere. Even the k = d = 2 problem
is non-trivial (see the 2001 Putnam exam, question A6).

We have shown that the smallest non-zero elements of the spectra are 1/2,1/12,1/462, <
1/47475 for k = 2,3,4, 5, respectively. We have no idea what to predict should happen in
general!

4. DEDEKIND SUMS AND EXPONENTIAL SUMS

We need a characteristic function on the set of residues n satisfying (1.1), and we find the
use of Dedekind sums the most suitable for this purpose. Let

p—1
S(ur. g, g p) = ¢(M)¢<@)¢(M)
1, s " Zl . . ;

where ¢(t) = {t} — 1 for t ¢ Z, and 1)(n) = 0 for n € Z. Note that the value of the sum is 0
if k£ is odd, since the n and —n terms cancel, as ¢ is an odd function. Another observation is
that, by considering residue systems, S(gu1, gus, . . ., gug;p) = S(u1, ..., ug; p) if (g,p) = 1.
Lying much deeper is Rademacher’s remarkable ‘reciprocity law’ [4]: If a,b and c are
pairwise coprime positive integers then

-1 1 (a b c
(4.1) S(a,b;c)+ S(c,a;b) + S(b,c;a) = e + D (E + s + %) .
This has subsequently been generalized in many different directions, and it implies the

following: If a + b+ ¢ =0 (mod p) and p fabc then

1 1
(42) S(a,b,p)—i—S(a,c,p)—{-S(b,c,p):Z—4—p,

A byproduct of our work here leads to a new simple proof of (4.2), (see section 6b).
With the usual Fourier expansion for v (t), namely
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where e(t) = *™, we have

hl,...,thZ*
hiui+--+hpur=0 (mod p)

(Here we could include the ‘n = 0’ term since the contributions for h and —h cancel). We
now define

( ) 1 1
oluy,...,up) = - E —_
’ ’ (—227T)k A e T hlhg...hk’
1seee5ll
hiui+--+hrur=0

since we expect the dominant term in (4.3) to be o(uq,...,u;)p. By the same argument,
though replacing sums by integrals, we have

o(uy,...,ug) = /0 (urt)(usat) ... (ugt)dt;

so, for example, o(1,...,1) = 1/2%(k 4+ 1) if k is even. As with Dedekind sums, we have
o(guy,...,gux) = o(uy,...,ur), and o(uy,...,ux) =0 if k is odd.
Lemma 4.1. Let U = |ug| + -+ + |ug|, where k > 2. If pfuy ... uy then

S(/U/l?"'?uk;p):po-(u17"'7uk?)+o(U/2k:)7 p—>m'

Proof. Since |¢(z)| < 1/2, we have

f[lw (Uzg) - f[lw(uit)

= i=1 i=j+1
< 2k1_1 ; (4 (Ujg) - qb(uﬂt)"
and
1 if [uw] # [ut],
¥ (uw) — P (ut)] = {uw} — {ut}] < { luljw —t| if [uw] = [ut].
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Therefore
1 p Pk n k
stup o) =3 [ (T]0 (w?) - TTvtwn)a
n=1,7, =1 =1

IN

1 k P n/p n/p
SQHZ ;] Y / g—t'dt+z / 1dt
7= "n-1)/p "EAm=1)/p

where A is the set of positive integers n < p for which [u;n/p| # [u;(n—1)/p]. Since there
are exactly |u;| such integers n, the above is < (U/2*71)(1/2p + 1/p), as required.

Lemma 4.2. Suppose that pfuy ...ur. Then there exist m # 0 (mod p) and vy,... , v
such that v; = mu; (mod p) and |v;| < p*~/* for1 < j<k.

Remark. The number of non-zero vectors (uq,...,ux) (mod p) up to scalar multiples is
(p* —1)/(p — 1). The number of non-zero vectors (vy,...,v;) with each |v;| < z is (22 +
1)k — 1, and this is < (p* —1)/(p — 1) for = < (p'~/* —1)/2. So Lemma 4.2 is ‘best
possible’ up to a constant factor.

Proof. Draw a rectangular box around the point @, = ({rui/p},...,{rux/p}) on the k-
dimensional torus [0,1)* with side lengths p~'/* and @ in the center. The total volume
of all these boxes is p(p~'/*¥)¥ = 1, so two, say @, and Q,, must touch, say at (t1,...,t).
Taking m = |r — s| we have

== -

< TU; ;. . Su; < 1 1 -
=N i At D —2p1/k+2p1/k—p ’
and the result follows.
Corollary 4.3. Suppose that pfu; ...up and choose vy,...,v according to lemma 4.2.

Then
S(u17 i '7uk;p) :po-(vl7 .t '7Uk) + Ok(pl_l/k)'

This follows by noting that S(u;p) = S(v;p) and then using Lemma 4.1.
If (uq,u2) =1 and hyuy + houg = 0 then hy = ugt, ho = —uyt for some t € Z*. Therefore

1 1 1 1 1
4.4 ,Up) = — = 2 '
(44 7l ) 4 teZZ* (ugt)(—urt)  Am%ujug té t2 12u1us

and, in general, we have o(u1,us) = (u1,u2)?/12uqus.
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Corollary 4.4. If pfujus then S(uy,uz;p) = {50, (u1, u2) + O(\/D).

Proof. By the pigeonhole principle we know there exists w;,wy with each |w;| < \/p and
wy/we = uy/uz (mod p). Thus S(ui,us;p) = S(wy,we;p) and the result follows from
Corollary 4.3.

Lemma 4.5. Let a+ b+ ¢ =0, where abc # 0. Then o(a,b) + o(b,c) + o(c,a) = 0.
Proof. Write ¢ = —a — b # 0, so that

1 1 1 1
O'(b,C):—O'(b,a—l—b):m Z E:m Z E

br+(a+b)s=0 as+b(r+s)=0
r,s€Z* r,s€Z*
5 Y et Y
" 4q2 m(n —m)  4n2 m(n —m)’
am+bn=0 am-+bn=0
m,n—meZ* m,nezZ*

since a,b and a + b are non-zero by hypothesis. Together with the analogous expression
for o(a, c), we find that

o(a,c)+o(b,c) = 4%]_2 Z (m(nl_ = 4 n(ml_ n)) = —o(a,b),

am-+bn=0
m,nez*

as required.
Define .
oo b )= 3 % (: (—2im)? /0 e(—Jt)w(at)z/;(bt)dt).

ar+bs=J
r,s€Z”

Note that o(a,a, J) = —2a*/J? if a|J, and 0 otherwise. If a + b+ ¢ =0 and J # 0 then
1
o(a,b; J) +a(b,c;J) +o(e,a;J) = —5(0(a,a; J) + o (b, b J) + o (e, ¢ ).

5. THEOREM A AND BEYOND

5a. Proof of Theorem A.
We rewrite (2.2) as

(5.1) {bo?"}+{%"}+...+{%”}:1

By (2.1) the sum on the left-hand side is always a positive integer not exceeding k. There-

fore
1 ﬁ _ Z’“: bin)\ [ 1 if(5.1) holds,
(k—1)! i ’ p L0 otherwise,

=0
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so that, since {t} = ¥ (t) +

M(bo,bl,.--,kaP):p_l (k_ll)! ﬁ (j_<%)_iw(b;n)>

n=1 7j=2 1=0
k—1 p—1 [ k b\ \
k—1
(52) - Ck;,m Z S(bilabi27 e 7blm?p)
m=0 i1,i27... ,zme{O,k}

where we define ¢, as the coefficient of X in
k—1 k

k+1
St L (- (7))

In (5.2) we need only consider those terms with m even, since the value of the inner double
sum is 0 when m is odd. Thus, for k = 2 we have ¢o g = % so that M (b, b1, bo; p) = (p—1)/2,
which we already observed! For k = 3, we have c3 0 =0 and ¢35 = %, so that

M (bo, by, ba, bs; p) = 25(1, 1;p) + Y S(bs, by;p)

0<i<j<3
(5.3) = %’ +OoM)+ > Sbibip),
0<i<j<3
since S(1,1,p) =& — 1 + 6 by (4.1).
For k = 4, we have ¢4 0 = — 55 and Ci2 = i so that
(5.4) M(bg,by,... by p) = ﬂ +0(1 Z S(bi, bj; p).
0<’L<]<4

The asymptotic formulae in Theorem A follow from Lemma 2.1, and using Corollary 4.4
in the last two equations.

5b. Beyond Theorem A.
We remark that by the above two equations and (4.1) we can obtain more precise results
if the b; are pairwise coprime: For k = 3

(5.5 Mp) =2+ Y G000 -2+ Y Sumby) |

12 — —
0<i<j<3 0<i#£;5<3

and for k = 4, we have

1
(5.6) M(b;p):% L+ > 6bub) | =5 |3+ D Sipiby)

0<i<j<4 0<iz#j<4
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5c. A reciprocity rule for residue races.

The reciprocity rule (2.5) was inspired by the two equations above and noticing that
by taking a suitable sum we may obtain cancellation using the reciprocity law (4.1) for
Dedekind sums. In this way we proved (2.5) for k = 4 and k = 5, with ¢ = 1. However
(2.5) can be given a direct and easier proof:

Proof of the reciprocity rule (2.5). Define B(t) := {bot}+{b1t}+- - -+{bxt}, so that (bgn)p+
-+ -+ (bgn)p = b is equivalent to B(n/b) = £. Note that B(t) = —([bot] + [b1t] + - - - + [bt])
and so is an integer. Moreover, for ¢t € (0,1), we have 0 < B(t) < k + 1 and so B(t) is
always one of the integers 1,2,..., or k. Write the set of fractions {0,1} U U¥_,{n/|b;] :
1<n< |bl‘—1} asto =0<t1 <ty <-'-<tr<tr+1=1. Let Tz:bz/|bz| so that

M(bz, bl) = E T
1<5<r
B(t;)=¢ with tj=n/|b;| for some n

and so

k

(*) S M(bibi) = > Ti) = D Ti(i.)»
v=1

i=0 1<j<r
B(t;)=£ with t;=n/|b;(j|

where j; < jo < -+ < j, are precisely those values of j with B(t;) = ¢.
Notice that B(t) = —([bot]+[b1t]+- - -+[bkt]) does not change value in any interval (¢;,t;11).
However B(t) does change value at each ¢, for 1 < j <r: A simple calculation reveals that
if b; > 0 then B(t]) = B(t;) = B(t; ) — 1, and if b; < 0 then B(t;) = B(t;) = B(t]) — 1.
Therefore if B(t;) = ¢ then either B(t;) > £ and B(t;r) = ( in which case 7;(;) = 1, or
B(t;r) > £ and B(t;) = £ in which case 7;;) = —1. Thus 75(;,) = —Ty(j,,,), and so the
sum in (*) equals (7;¢;,) + Tij,.))/2.
Now B(t]) = > ; bity +> 4. .o 1 = #{i: bi <0} sothat 735,y = —1Lif #{i: b; <0} <,
and = 1 otherwise. Similarly B(t;\) = #{i: b; > 0} so that 7;¢; y = 1if #{i : b; > 0} < ¢,
and = —1 otherwise. The result follows.

6. WHEN 1S N(a,p) = 07

Lemma 1.1 (where by + by = 0) may be rephrased and generalized as follows.

Lemma 6.1. If non-zero by, by, ..., by satisfy (2.1), and I is a proper subset of {0,1, ..., k}
for which ), ., b; =0 (mod p) then M(by,b1,...,bx;p) = 0.

Proof. Re-ordering the b;s as necessary, we may assume that > .., b; = 0, where ¢ < k.
Then 3 ;<o (bin)p =Yy ;<(bin)p, =0 (mod p), and so both sums are > p, since each is
composed of positive terms. But then the sum in (2.2) must be > 2p, so that (2.2) cannot
be satisfied.

When we examined k = 4 we discovered another general phenomena that forces M (b;p) =
0:
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Lemma 6.2. If non-zero by, by, ..., by satisfy (2.1), I is a proper subset of J and M is
a proper subset of L, where J and L are disjoint subsets of {0,1,...,k}, and if

Dbi+> b= > but Y b=0

il jeJ meM el
then M (bg, by, ..., bk;p) = 0.

Proof. Re-ordering the b;s as necessary, we may assume that [ ={0,...,i}, J=TU{i+
L...,jbh, M={j+1,...om}, L=MU{m+1,...,¢}, so that a; +a; = ap, +ar =0
(mod p). Therefore (a;n), + (ajn), = p = (amn), + (aen),, so that we cannot have
(ain)p < (a;n)p < (amn)p < (agn)p.

Proof of second part of Corollary 1. Select a; # 0 (mod p) (for some j,2 < j < k —1),
and then a; # 0 or a; (mod p) and let ay = a; — a; (mod p). The remaining a; can take
any non-zero values (mod p) so that the set aq,...,a; (mod p) are distinct. Thus if (1.1)
is satisfied we have (na;), < (na;), < (nax),, contradicting Lemma 6.1.

One can easily improve “k — 2” in Corollary 1 to (l?f) by selecting any i < j < ¢ and
ensuring a; = a; + a¢ (mod p); and one can go further by using other configurations that
ensure N = 0. One of the key open problems is to determine all sets ay,...,a; (mod p)
for which N = 0 for p sufficiently large. As we shall see, for k = 3 this is straightforward,
and for k = 4 we succeeded in finding all possibilities. However, we do not know how to do
so for larger k. At the start of section 3 we gave a geometric interpretation of this question
which may shed further light on it.

6b. Identities involving Dedekind sums. By Lemma 6.1 we know that if by = —bg
then M (b;p) = 0 and S(bg, b;; p) + S (b4, b;; p) = 0 for any b;. Therefore (5.3) becomes: If
b1+b2+b3 :0then

1

4p;

-1 3
S(b1, b2, ;p) + S(ba, bs; p) + S(bs, b1;p) = P _ 55(17 L;p) =

1
8 1

so we have a new, easy proof of (4.2).

7. THE TYPICAL RESIDUE RACE

In this section we shall give two quite different proofs of the first part of Corollary 1. It is
not hard to deduce this from well-known results on discrepancies but we give two proofs
more in tone with the rest of this paper.

7a. The tail of o(u).
We prove the following useful result:

Proposition 7.1. For any non-zero integers uy, ..., ug,

1 ]
Z < (logy

|myime ... myg| Y

mi,...,mgEL*
miug+--+mpur=0
max; |m;|>y
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for any positive integer y, where the constant is independent of the choice of the u;.

Proof. We will partition the sum above into subsums indexed by integers j, 1 < 7 < k and
¢ > 0 where we have |m;| > |m;| for i < j and |m;| > |m;| for i > j, and z := y2* < |m;| <
y2¢t!. From the linear equation miuq + -« - + mpur = 0 we see that m; is determined by
the other m; and thus this subsum is

S S et | DD

m;EZ", |m;|<2z 1<’L<k m; €L
for all 1<i<k, i#j ] |m1|<2z

1
|m| ; (2logz + O(1))F 1,

Summing over j and ¢ gives the result.

Remark. It would be interesting to know what the “best possible” result is here. Certainly
if we take each u; = 1 then the sum is > (log y)*~2/y; we guess that this gives the “correct”
power on log y.

(First) proof of the first part of Corollary 1. For any (my,...,my) € (Z/p)* —{0} there are
exactly p*~1 vectors u in (Z/p)* with m-u= 0 (mod p). Thus there are < y*p*~1 vectors
u for which there exists some non-zero m with u - m = 0 (mod p) and each |m;| < y.
Therefore for all but O (y*pF=1) vectors u we have

1 lo

Z my...my < = Yy .

mi,...,mpEL*

m-u=0

by Proposition 7.1, since in any other solution to m-u = 0 we have some |m;| > y. Applying
this to each “non-diagonal” term in (5.2) using Lemma 4.1, we find that M (by, ..., bk;p)
equals the sum of diagonal terms in (5.2) plus an error of O(logkfly/y) (a “diagonal
term” is a S(bi, ..., b;,,;p) where the b;; are all equal), for all but O (y*p*—1) choices
of vectors b. Therefore, in such cases, M(by,...,by;p) equals ¢p + O(plog® ' y/y) for
some constant c¢. We could compute ¢, with some difficulty, directly from (5.2), since
S(b,...,b;p)=5(1,1,...,1,p) = 1/(m+1)2™. However, if we average over all possibilities
for by, ..., by satisfying (2.1), then the average of m’s is p/k!, which equals, by the above,
ep + O(p(logy)* 1 /y + y¥) so that ¢ = 1/k! by taking y = n(p)'/*.

7b. Mean and Variance of Dedekind sums.

Assume k is even, else S(b;p) = 0 for all b (mod p). Since 1(—t) 4+ 1(t) = 0 we see that
S(byy...,bk—1,bg;p) = —=S(b1,...,bg_1, —bk;p); and so S(b;p) is zero on average, running
over the distinct vectors b (mod p). Now

> Slhr,...,bsp)2= ﬁ 3 ¢(b;m)¢(b;n>

b1,b2,...,b (mod p) m,n (mod p)i=1 | b; (mod p)

(7.1) = Y Smmp).

m,n (mod p)
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For each nonzero r (mod p) define a, and b, > 0 to be those coprime integers with
max{|a,|, by} minimal and a, = rb, (mod p). There are exactly p — 1 non-zero pairs m, n
(mod p) with m = rn (mod p). By Corollary 4.4 we see that |S(m,n;p)| = p/12|a.|b, +
O(+/p), for each such pair m, n.

Now, if 0 < |a|,b < \/p/2 are coprime integers then a, = a and b, = b where r = a/b
(mod p), since a,.b — b,a = 0 (mod p) and |a,b — b.a] < 2max{|al,b}? < p and thus
ayb—bya = 0. If |a,| or b, is > \/p/2 then |S(m,n;p)| = O(,/p) by the above. Combining
all of this information gives for k > 2:

7 k
Z S(m, Tl;p)k ={p-1) Z (12ab + O(\/@) + O<p2+k/2)
m,n (mod p) 0<|al,b<r/p/2
(a,b)=1

20k k+1/2 | o 24k/2

where ((s) is the Riemann zeta function.
Combining the last two displayed equations gives, for k > 2,

1
oF > S(bip)? <k p,
b (mod p)
and so, by (5.2),
1 p—1]?
oF >, M(bip) = ——| <kp.

bo,bl,...,bk (rnod p)
bo+bi+4---+bx=0 (mod p)

The first part of Corollary 1 follows immediately from this estimate.

The attractive identity (7.1) generalizes as follows: For any positive integers k, ¢

(7.2) Z S(by,...,by;p)" = Z S(u, ..., uep);

b17b2:---9bk: (mOd p) UL, U2,.eeyUp (mOd p)

though note that this is vacuous for k = /.

8. MORE ANALYSIS

We note that

1 1 —e(kO)
(8.1) o3 > o =0(1-0) for0<f<1.
kezZ*
This may be established noting that the identity is trivial for 6 = 0 and then that the

derivatives of both sides are equal in our range by the Fourier expansion of 1 (t).
Next we prove a useful lemma:
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Lemma 8.1. Suppose p is prime and constants «;, 3; are given with oy, |G| < 1 for
1 <i<p. Let ajyp = o and Biyp, = Bi for all i. For any non-zero a (mod p) select
integers r and s with a = r/s (mod p) and max{|r|,|s|} minimal. Then

(67) Bai 1 Oés'ﬂr' 1
Z — T = s Z ;.2 L+ 0 <%>

1 al
1<|i|<(p—1)/2 (ai)y jEL*

where (t), is the least residue of t (mod p) in absolute value.

Proof. By Lemma 4.2 we have max{|r|, |s|} < /p. If |i| < \/p/2 and |(ai),| < /p/2 then
|ri — s(ai),| < p and divisible by p, so that i = js and (ai), = jr for some integer j. All
such terms from the left side are part of the sum on the right. Moreover the terms in the
sum on the right which arise this way are precisely those with |j| < (p—1)/(2 max{|r|, |s|}),
and so the extra terms contribute < (1/rs) max{|r|,|s|}/p < 1/p.

We need to bound those terms 1/ij on the left side with j = ai (mod p) and either
il > \/p/2 or |j| > \/p/2. We shall work under the assumption that |i| < |j| (the estimate
for the other terms may be obtained by replacing a by 1/a in the argument), so that

7] > v/P/2-

Those terms on the left side with |j| > \/plogp contribute < >, ;. 1/(i\/plogp) <
1//p. So we may now assume that |j| < /plogp. Now for ¢ =1,..., L := [loglogp| + 1,
consider those terms with ez_l\/m < il < € \/m The contribution of the terms
with (1/e)\/p/2 < |i| < e/\/p/2 is < £/e‘\/p < 1/2%\/p. Now consider the terms with
li| < (1/€%)\/p/2. Tf i’,j’ are another such pair then |i’j —ij’| < p and is divisible by p,
so equals 0. Thus for some pair of coprime integers u,v > 0 we have i = ku and j = kv
for some integer k. The contribution to the sum above is < Zk> N |1 /K uv| <
1/|uly/p. We claim that there is no more than one such pair u,v with v < logp for if
there were another such pair «/, v’ then |uv’ — v/v| < 2\/1310g2 p < p and is divisible by
p and so equals 0, which is impossible. The total contribution from these terms is then

<1/yp+L/\/plogp < 1/,/p.

We also note an elementary identity that will come in useful: If 0 < o, 8 < 1 then

(82) S((a—0)+ (1=~ (1-5)) ~ ({1 +a~ B}~ {1 +a—F)*) = min{a, 5} — af

Proposition 8.2. For a given prime p, integers 1 < a, M, N < p— 1, with « = N/p and
B = M/p, and integers r and s > 0 with a = r/s (mod p) and max{|r|,|s|} minimal, we
have

(83) > 1= i (min{{ra}. {s8)} — {ra}{s5)) + O(V)
mnESa]Z’ (nnllcg) (i\/;)

Proof. The left side of (8.3) equals

_ _ ks M —krN
Z lp le( Sm—rn)) +lpl 1—6(‘;)) l—e(TT>
et El)
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Now since 1/(1 — e(—t/p)) < p/2int + O(1) for 0 < |t| < p, we get from Lemma 8.1,

and then the result follows from (8.1) and (8.2).

By partial summation on (8.3), or by a direct calculation, one can deduce that

(8.4) Sy (;") = 2 ({ra}® — {ra}) + O(v/b).

2rs
n<N

Corollary 8.3. Fix integer k > 42. For a given prime p, and integer 1 < a < p — 2,
define integers r and s > 0 with a = r/s (mod p) and max{|r|,|s|} minimal. Let w; <
wy < ... < wp_1 be the set of integers {n + (an), : 1 < n < p—1} put in ascending order
(where (t), is now the least positive residue of t (mod p)). Then

wy 4 wa + -+ W > 207K+ O(p*?),

unless r/s = 1,1/2 or 2 in which case it equals (r + s)p?/2k> 4+ O(p*/?)

Proof. The numbers w; < wa < ... < wp—; run through a reduced residue system mod p
and are all in [2,2p — 2]. Therefore n + (an), = ((a + 1)n), or p + ((a + 1)n),. We are
interested in the smaller w;, that is when n+ (an), = ((a+1)n),. A characteristic function
for this happening is 1/2+ v ((a+1)n/p) — ¥ (n/p) —1(an/p). We wish to count how often
this happens with ((a + 1)n), < N so let’s write m = ((a + 1)n), and our characteristic
function becomes 1/2 4 ¢»(m/p) — (rm/(r + s)p) —p(sm/(r 4+ s)p). Therefore

#{n: n+(an), <Ny =Y m/p—s(rm/(r+s)p) — ¥ (sm/(r + s)p)

N p ({ra}—{ra}® _ {sa}—{sa]?
2 +2(7"—|—s) < r + s >+O(\/Z_))

by (8.4). Let Nj = wy, k- Note that {t} — {t}* = {|¢t|} — {|¢|}*.

We start by considering r > 0:

If @ < 1/ max{r, s} then {ra} = ra and {sa} = sa, so that #{j : w; < N} = N/(r+s) +
O(\/p). Thus if k > (r 4+ s) max{r, s} then Ny = (r + s)p/k 4+ O(/p), and so, by partial
summation wy + wy 4 - - - + wyy K = (r + s)p*/2k* + O(p*/?).

If r+s > 8 and 4rs < k then {ra} = ra and {sa} = sa for all a < 4/k < 1/ max{r, s},
and so #{j : w; < N} = N/(r + s) + O(y/p), and in particular #{j : w; < 4p/k} =
dp/k(r+5)+0(\/p) < p/2k+0(/p) so that wi+wo+- - -+wp, /i > (p/2k+0(/p))(4p/k) =
2p° [k + O(p*/?).
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Now, since t —t? < 1/4 for t € [0, 1), we deduce that #{j : w; < N} < N?/2p+ p/8rs +
O(y/p). If 4rs > k then #{j : w; < N} < N2/2p+ p/2k; and so N, > p/Vk. But then,
by partial summation we deduce that wy + wa + - - - 4 wy, /5 > p?/3k3/2.

Now we consider r < 0. By changing a to 1/a if necessary we may assume that s > |r|.
If « < 1/s then #{j : w; < N} = 0 by the above formula; therefore if s < 2k/3 then
#{7 1 w; < 3p/2k} =0, so that wy + wa + ++ + Wk = D5, ok cwespor W > 2p? /K%, 1f
s > 2k/3, then 4s(s + 1) > 2k so that #{j : w; < N} < N?/2p+p/8s(s+r) + O(/p) <
N?/2p+p/2k+0O(/p); and so by partial summation we deduce that wy +wa+- - Fwip/k >
P /3632 + O(p*/?).

Corollary 8.4. Fiz 1 < 7 < 2. For a given prime p, and integer 1 < a < p — 2, define

integers v and s > 0 with a = r/s (mod p) and max{|r|,|s|} minimal. Let N be a set of
[p/k] integers all < Tp/k. Then

o if rs <0
Z(an)p > O(y/p) + % (1- i)Q ifrs>0ands>T1/2.
neN —

%(14—%) ! ifrs >0

Proof. Taking 6 = {7r/k}, equation (8.3) becomes

S 1= (minfs (s5)) — 6{s8) + O(/B).

n<tp/k, m<M

m=an (mod p)
If s < 0 then this is < 7M/k 4+ O(,/p), and so by partial summation this gives the first
result. Now assume rs > 0. If r > k/7 then rs > k(s/7) > k(s/7)0. If r < k/7 then
d = mr/k and so rs = k(s/7)d. Since min{d, {sB}} — d{sB} < J thus the above bound is
< TM/k + p/2k(s/T) + O(/p), which yields the second result by partial summation. If
rs > 0 then min{é, {s3}} — d{sB} < sB so the above bound is < M(7/k+1/2r)+ O(/p),
which yields the final result by partial summation.

9. UPPER BOUNDS ON N

As we stated in the introduction, we believe that N(aq,...,ax;p) < [p/k]. Moreover
that for k > 3, equality holds if and only if {bg, b1,...,bx} = {9,9,...,9, —kg}, for some
non-zero g (mod p). We have shown this for k£ = 3 and 4.

One can prove N(aq,...,ax;p) < 2p/(k+ 1) as follows: Let N be the set of residues n for
which (2.2) holds. Note that since {(bn),: 1 <n<p—1}={n: 1 <n <p-—1}, we have
Sonen(bin)p > > wm= N(N+1)/2, where N = N(a,...,axr;p) = |[N|. Therefore

PN = 37 ((bon)y + (i) + -+ (bin)y) > (k+ NN +1)/2,
neN
and the result follows.
Getting rid of that extra factor of “2” has taken us considerable effort; however we do
suspect that there is a simple geometric proof (that v(ay,...,ax) < 1/k).
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Theorem 9.1. Let k > 42 be a given integer. If p is sufficiently large (as a function of
k) then N(ai,...,ar;p) < [p/k].

Tracing through the arguments below we get Theorem 9.1 for p > k¢ for some absolute
constant C.

Corollary 9.2. For k=2,3,4 and all k > 42, we have v(ay,...,ax) < 1/k.

Our proof needs certain complicated hypotheses. First note that by (2.1) (changing by by
a suitable multiple of p, if necessary) we have by + by + - - - + b, = 0. Thus at least one b; is
negative, and at least one b; is positive. We may assume that the majority are positive and
that by < 0; this assumption is valid since we can multiply the b; through by any constant
that is nonzero mod p. Note that (2.2) is equivalent to the statement

(91) (bln)p + -+ (bkn)p <p,

since 0 < (bopn), < p and (bon), + (bin)y + -+ + (bgn), = 0 (mod p). Let us assume we
have a set N of [p/k] distinct n (mod p) for which (9.1) is satisfied. The one solution we
know is the case where by = by = --- = b;. Let us assume that there is another such
solution (that is, where the b;’s are not all equal).

Corresponding to any set of k integers {b1, ..., bi} there is a (unique) “frequency sequence”
dy >dy > --->dy > 1, where di+dso+- - -+dy = k, and there are distinct integers ¢q,..., ¢y
such that d; = #{i : b, = ¢;} for each j. We can order these frequency sequences
lexicographically; that is (dy,ds,...,ds) > (D1, Da,..., D) if there exists integer I such
that d; = D; for 1 <i¢ < T —1, and d;y > Dj. The frequency sequence of the one solution
we have is simply (k). Under our assumption that there is another solution we select that
with the next largest frequency sequence in our ordering (that is, the largest other than
our known solution).

We now show that there exists m such that #{i : b = m or 2m} > v = [(k + 1)/2].
If not, we re-order the b; as follows: First take those b; = 1 (mod p), then those b; = 2
(mod p), b; = 4 (mod p), and so on until we get those b; = 2" ! (mod p) for h is the
order of 2 mod p. Then we start with a reduced residue not already accounted for, call
it R, and then take those b; = R (mod p), then those b; = 2R (mod p), and so on.
By our assumption, in this re-ordered sequence, b;/b; 1, # 1,1/2 or 2 (mod p). Thus
S nen (in)p + (biton)p > 2p%/k? + O(p/2) by Corollary 8.3. Therefore

2plp/k] =2 ) ((bon)p + (bin)y + - -~ + (brn)y)
nenN

k
=3 (bin)p + (bion)p > 2(k + 1)p?/k* + O(p*/?),
1=0 neN

giving a contradiction.
We shall now prove that either #{i : b; = m} < 1 or #{i : b; = 2m} < 1, so that
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First, assume #{i : b; = m} > #{i: b; = 2m} > 2, so that #{i : b; = m} > k/4. Divide
all the b; through by m (mod p) (that is, we may take m = 1). Select I so that by = 2. If
(9.1) holds then we must have n < 4p/k. In this range (2n), = 2n and so we can construct
a new sequence satisfying (9.1) for all n € N, by taking B; = b; if b; # 2 or i = I, and
B; = 1if b = 2 and 7 # I. Evidently this new sequence has larger frequency sequence
than the original sequence, contradicting hypothesis.

Now, assume #{i : b; = 2m} > #{i : by = m} > 2, so that #{i : b; = 2m} > k/4. Divide
all the b; through by 2m (mod p). Select I so that by = 1. If (9.1) holds then we must
have n < 4p/k. If n is odd then (n/2), = (p+n)/2 > p/2 but there are > 2 values of i with
b; = 1/2, so that (9.1) cannot hold. Thus we must have n = 2¢ for some integer ¢ < 2p/k.
But now we can construct a new sequence satisfying (9.1) for all n € N/, by taking B; = b;
ifb; #lori=1,and B; =1/2if b; = 1 and i # I. Evidently this new sequence has larger
frequency sequence than the original sequence, contradicting hypothesis.

By scaling by an appropriate constant we may now assume that #{i : b; = 1} = d; >
[(k+1)/2] > k/2. Therefore in any solution of (9.1) we must have n < 2p/k.

Define integers r; and s; > 0 with b; = r;/s; (mod p) and max{|r;|,|s;|} minimal. Let £
be the set of i with r; < 0, or r; > k/5 or s; > 3. By Corollary 8.4 with 7 = 2, we find
that Y, c\(bin)p > p?/9k + O(/p) for i € L, and so

PP/ > plp/k] = Y ((bon)y + (ban), + - - + (bxn))
neN

> |L|p%/9k + (k + 1 — |£])p?/2k> + O(p*/?);

therefore |£| < 5, that is |£]| < 4.

Other elements of our sequence have 1 < r; < k/5 and s; = 1 or 2. Now r;n < 2p/5 and so
(bin)p, = bin if s, = 1; and (b;n), = rin/2 or (p+rn)/2 if s; = 2, depending on whether
n is even or odd. Either way ((b; — 1)n), < (b;n), for all n € N if b; > 1. Let J be the
1 with s; = 2. We may assume r; = 1 for all i € J, else we can construct a new sequence
satisfying (9.1) for all n € N, by taking B; = b; if i ¢ J, and B; = 1/2 if i € J. Evidently
this new sequence has larger frequency sequence than the original sequence, contradicting
hypothesis. We claim that J cannot contain more than one element else, arguing as above,
every n € N must be an even integer so we can construct a new sequence satisfying (9.1)
for all n € N with larger frequency sequence. Let P be the i with s; = 1 < r;. We
claim that P has at most one element if £ U J contains just {0}; otherwise P is empty. In
the latter case we can construct a new sequence satisfying (9.1) for all n € N/, by taking
B; =b;ifi ¢ P,and B; = 1if i € P, but this has a larger frequency sequence. In the
former case we take some j € P and set B; = 2 in our new sequence.

In summary, we have now proved that there are at most 5 integers i for which b; # 1.
This means that n < p/(k — 4) in any solution of (9.1) so we can now take 7 = 21/19
in Corollary 8.4 (since k& > 42). Now let £ be the set of ¢ with r; < 0, or r; > k/7 or
s; > 2. Proceeding as above we find that ., . (bin), > 3025p?/12768k + O(,/p) for
i € L; and thus deduce that |£]| < 3 so that |£] < 2. Arguing as above (but now noting
that s; can only be 1), we see that there are at most 2 integers i for which b; # 1. In
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fact there are exactly two such integers for if there were just one we would be in the case
by =+ =b, =1, by = —k. This means that n < p/(k — 1) in any solution of (9.1) so
we can now take 7 = 1.05 in Corollary 8.4 which implies that >, .\ (bin), > p?/4k for
i € L, and thus |£| < 2 so that |£]| = 1. Arguing as above this means that our set must be
by =--=br_1=1, by =2, by = —k — 1, but then N has just [p/(k + 1)] elements giving
a contradiction.

10. SPECTRA

10a. The case k = 3. Given non-zero integers by, ..., b3, whose sum is 0, we wish to
understand the values taken by

w(b) :=12v(ay, as,a3) = 2+ E (bi, by)"
. ].7 27 3 . ‘ bzbj N
0<i<j<3
By Lemma 6.1 we know that if b;/b; = —1 for some 4,j then w(b) = 0, so we may

assume b;/b; # —1, and therefore (b;,b;)%/b;b; > —1/2. But at most 4 numbers amongst
{bib; : 0 < i < j <3} can be negative so that w(b) > 2+ 4(—3) + 2x positive terms > 0.
Thus

w(b) =0 if and only if b; + b; = 0 for some 1, j.

Since the sum of the b;’s is 0 at least one of them is negative and at least one is positive.
Reordering if necessary we may assume by < 0 < bs. Since w(b) = w(—b) we may also
assume by > 0. So we have two cases to consider, as by > 0 or by < 0. We now look at
how small w(b) can get.

If by < 0 < by, b, by then, since b/c > (b, c)?/bc for any positive integers b and ¢, we have

>2+Z bo, b;)?/bob; >2+Zb/b0_2—1—1

If b, by < 0 < bo, by and w(b) < 1 then

Swapping by and by if necessary, we thus deduce that the values of (bg, b;)?/|bo|b; for j = 2
and 3 are 1/3 and 1/m, for m = 3,4 or 5, or 1/2 and 1/m for some m > 2.

If 9p(b0, bQ) = gp(b(), bg) = —1/3 then b = {—3, —7, 1,9} so that w(b) = 4/3

If 6,(bp,b2) = —1/3 and 60,(bo,b3) = —1/m for m = 4 or 5 then b { ,—(m
2),3,m},{—(2m + 1), —m,3m, 1} or {—(3m — 2),—-3,1,3m}. Thus w(—1,—-6,3,4) =
and w(b) > 1 otherwise.

We can now assume that by = —2bg, so b = {m, —2m,n, m —n} for some coprime integers
m,n > 0.
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If m is even then w(b) = 3/2+3/2n(m—n), which is > 1 unless {m,n} = {—1,1},{-2,1},{1,2}
or {2,3}. Excluding those cases with b; + b; = 0 we are left with w({1,4,-2,-3}) = 1.

If m is odd we may assume n is even (swapping n and m — n if necessary) so that w(b) =
3/2 4 3/2m(m — n), giving rise to w({1,4, -2, -3}) = w({-1,3,4,—6}) = 1.

We now look at how large w(b) can be. Notice that w({1,1,1,—3}) = 4. Since by + b1 +
bs + b3 = 0, at most 3 of the numbers {(b;,b;)?/b;b; : 0 < i < j < 3} can be positive;
and their sum is > w(b) — 2. If w({1,1,1,—3}) > 4, then their sum is > 2 so at least
two of them equal 1 (else their sum is < 1+ 1/2 + 1/2 = 2). Thus either by = b; and
by = bs, so that by = —by and w(b) = 0 by Lemma 6.1, or by = by = bz and we find that
b= {1,1,1,—3} up to scalar multiples.

The Spectrum beyond the first accumulation points: In the spectrum of values of w the
smallest accumulation point, other than 0, is 3/2. Since w(b) = 3/2 — 3/2d where d =
n(n —m) or m(n —m) is odd, for b= {m, —2m,n,m — n}, we see that 3/2 is indeed
an accumulation point. To show it is the smallest we now determine all b for which
w(b) < 3/2 — ¢, for some given € > 0, which is a finite set: First note that

0<i<j<3
bibj<0

so that the largest two of the values of (b;,b;)?/|b;b;| with b;b; < 0 are —1/2 and —1/m
where m < 3/¢, or {—1/n,—1/m} where 3 <n <m < 6n/(n —2) with n < 7. Thus we
have finitely many possibilities as claimed. If one of the ratios is —1/2 we return to the sets
b= {m, —2m,n, m—n} considered above. Otherwise we find, by computing all possibilities,
that the values taken by w(b) < 3/2 are all of the form 3/2 — 3/2d, or equal 3/2. For
example, w(1,—-3,-10,12) = 7/5, w(l,—4,-9,12) = 4/3, and w(3,—4,—15,16) = 3/2.
Thus

The set of values of v(ay,as,a3) which are < 1/8 are precisely the numbers of the form
(1/8)(1 — 1/d) with d odd, and 1/8 itself. Indeed note that v(1,—1,d) = (1/8)(1 — 1/d)
for odd d, and v(4,1,16) = 1/8.

As we will see below, the largest accumulation point occurs at 3, created by having b; = b;
for some i # j. In fact if b= {m,m,2n, —2(m + n)} with (2n,m) = 1 then w(b) = 3.
If b= {m, m,n, —2m — n} with (n,2m) = 1 then w(b) = 3 4+ 3/n(n + 2m), which equals
3 + 3/d where d = n(n + 2m) is odd. Any odd d can be written in this form, and thus
arises from such a set b, except when d = 1 since then we would have m = 0.

Now assume w(b) > 3 and b; # b; for all ¢ # j. Proceeding as at the end of the last
subsection, we note that at most 3 of the numbers {(b;,b;)?/b;b; : 0 < i < j < 3} can be
positive; and, under our assumptions here, their sum is > 1, whereas they are each < 1/2.
Therefore we must have three positive terms, and they would have to be 1/2+1/2+1/m
for any m > 2, or 1/2+1/3 + 1/m for m = 3,4 or 5. If the latter case the third ratio
would have to be 1/6 giving a contradiction. In the first case the only configuration that
could arise is from b= {1,2,4, —7}, in which case w(b) = 3. Thus
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The set of values of v(ay,as,as) which are > 1/4 are precisely the numbers of the form
(1/4)(1 + 1/d) with d > 3 odd, and 1/4 itself. Indeed note that v(m,m + 1,—m) =
(1/9)(14+1/(2m+1)), and v(1,2,4) = 1/4.

The Accumulation Points: 2 is an accumulation point, since w(b) — 2 if by = 1 and
bQ, bg — 00 so that (bg, bg) = (bg, b3 — 1) = (bg, bg — 1) =1.

If |w(b) — 2| > € then

OSIZI'l<a]X§3 |bzb]|

(bi,bj)* _ 1 (bi,b;)? _ |w(b) —2|
> - > > €/6,
) Z |bzbj| - 6 E/
0<i<j<3
so there are only finitely many possibilities for this largest fraction; that is, b;/b; = r/s for
some coprime integers r and s with |rs| < 6/e. Then b= {rm, sm,n,—n — (r + s)m} for
some integer n, with mn(r 4+ s) > 0 and (n,m) = 1, and so

1 r? 52 r? 52 r+ s|? 1
wb)—(2+—)| + + + plresf L
s |rmn| ~ |smn|  |rmn|  |smn] InN| In|

where |N| = [n+(r+s)m| > |n|. Therefore the accumulation points are precisely points of
the form 2 + T—ls with 7, s coprime. Now any integer d can be written as rs with » = d and
s = 1, so the accumulation points are all of the form 2 + 1/d,d € Z*. However if d = —1
then rm + sm = 0 so this is not allowed. Thus we deduce

The set of accumulation points of v(ay,as,a3) are precisely 1/6 and the numbers of the
form 1/6+1/12d with d an integer other than 0 or —1. Indeed v(1,d+1,n) — 1/6+1/12d
asmn — oo.

10b. The case k£ = 4. In this case we define

w(b):=24dv(a) =1+ )

Below we see that the largest accumulation point for w is 4 created by having by = b3 = by,
and the smallest, other than 0, is 1/6 created by having by = —2by and b3 = —3b;. All
cases for k = 4 are considerably harder then for £ = 3, though one can obtain the results
below by essentially the same methods.

There are either four or six positive numbers amongst {(b;,b;)?/b;b;}. If w(b) > 4 then
the sum of these positive numbers is > 3. Suppose for now that no three of the b;s
are equal. Then there must be six positive numbers in this set, and one of them must
be 1. Testing the five possibilities that arise, the only values > 4 are w(1,1,2,2, —6) =
w(1,4,2,2,—9) = 4. If three of the b;’s are equal we either have w(a, a, a, 3b, —3(a+b)) = 4,
or w(a,a,a,b,—(3a+ b)) = 4+ 8/b(b + 3a) whenever (b,3a) = 1. Now b(b + 3a) with
a,b # 0 represents every integer = 1 (mod 3) except 1; and thus the spectrum contains
every number of the form 4 + 8/d where d =1 (mod 3) with d # 1. Thus

The set of values of v(ay, as, as,as) which are > 1/6 are precisely the numbers of the form
(1/6)(1 4+ 2/d) with d > 4 and d = 1 (mod 3), as well as 1/6 itself. Indeed note that
v(m,2m,3m,—1) = (1/6)(1 +2/(3m + 1)), and v(1,2,3,6) = 1/6.
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The lower end of this spectrum is much more difficult to understand. We start by studying
when v(a)= 0. By Lemmas 6.1 and 6.2 we know that v(a)= 0 if a subsum of the b;’s is
0, or b= {m, —2m,n, —2n, m + n} for some m and n. Working as above we can restrict
our computations to a finite set of cases and establish that, other than those sets b just
described, w(b)= 0 if and only if b is one of the sets below:

—9,-1,2,3,5

—9,-2,1,4,6

—9,-4,2.3,8
~10,-6,2,5,9
~12,-1,2.3,8
~12,-1,3.4,6
~12,-2,1,4,9
~12,-2,34,7
~12,-3,1,6,8
~12,-3,4,5,6
—12,-5,3,4,10
—14,-1,3,5,7
~14,-3,1,7,9
~15,-1,2,5,9
~15,-1,3,5,8
~15,-2,1,6,10
—15,-2,3.4,10
—15,-4,2,5,12
—15,-4,5,6,8
—15,-7,3,5,14
—18,-1,4,6,9
~18,-2,5,6,9
—18,-4,1,9,12
—20,-1,3,8,10
—20,-1,4,7,10
—20,-3,1,10,12
—20,-3,4,9,10
—24,-1,5,8,12
-30,-1,6,10,15

By the same computation as before we can compute the finitely many sets b with w(b)<
1/6 —e. In fact there are the sets b of the form {m, —2m,n, —3n, m+2n}, and only finitely
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many other sets with w(b)< 1/6. We computed all of them, far too many to include here.
The smallest nonzero values found, < 1/11, were, in ascending order

4)77 = w(—21,-11,3,7,22)
2/35 = w(—28, —5, 4, 14, 15)
4/65 = w(—26,—3,1,13, 15)
1/14 = w(—21,—8,6,7,16) = w(—21, —4,2,7, 16)
4/55 = w(—30,—2,6,11,15) = w(—22, —6,2, 11, 15) = w(—22, -5, 1, 11, 15)
1/13 = w(—24,-3,6,8,13) = w(—24, —13,3,8, 26)
6/77 = w(—28,—1,4,11, 14)
1/12 = w(—32, 3,1, 16, 18)
12/143 = w(—26,—1,3,11,13)
8/91 = w(—21,—1,2,7,13)
4/45 = w(—27,—4,2,9, 20)
12/133 = w(—38, -3, 1,19, 21)

To verify this, we note that if 0 < w(b)< 4/77 and the largest two ratios are 1/m + 1/n
with 2 < m < n, then either n > 3 in which case the third largest ratio is < 4/(73/77 —
1/m —1/n); or m = n = 2 and, since we are avoiding the case of Lemma 2, the third
largest ratio is < 4/(73/77 —1/2 —1/2+ 1/4) < 21. Either way, with three ratios given,
the set b is determined and there is a finite computation remaining.

Accumulation points: We proceed much as for £ = 3. By (5.4) the accumulation points

are for a “typical” b;
1 1
1 7"
21 ( + ) , mE 4,

which we obtain from b = {1, m, —by, —ba,b; + by — (m + 1)} as by, by — o0;

ﬂv

1 1 1
2 <1 + —+ ) , myn, € Z\ {0,—1}, m,n not both in {—2, —1/2},

which we obtain from b = {1, m, by;,nb;, —(m +1) — (n+ 1)b1} as by — oo; and

1 1 1 1 . . *
ﬂ<1+AB+AC+BC> with (A, B,C)=1and A,B,C € Z*.

To obtain this last one take b = {r,s,t,b,b —r — s —t} with b — oo and (r,s,t) = 1.
We have v(a) = ( 14 ooy (nt | (s ) Writing ¢ = (r,s),h = (r,t),j = (1)

T8

and R = r/gh,S = s/gj, T = t/hj, the internal sum is 1/AB + 1/AC + 1/BC with
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A = ¢gT,B = hS,C = jR. One can check (A,B,C) = 1. On the other hand, given
(A, B,C) =1 we select

IT » =11 ».i= ] »
Pl(A.B) pl(B.0) Pl(C.A)
p*|A p*||B o

(where p*||A means that p*|A but p**! JA) and T = A/g,S = B/h and R = C/j, and

we can recover 7, s,t as above.

11. ACCUMULATION POINTS FOR GENERAL k.

Define T, = {v(ay,...,a;) : a; distinct non-zero integers} and let T'; be the set of accu-
mulation points of I'y.

Proposition 11.1. Ifv(ay,...,a,) € Iy \ {0} then vi(as,...,ax) € Dii1 for any 7,0 <
7 <k, where
vi(ai,...,ag) = / {b;t}dt.

0<t<1
(3.2) holds

Proof.  Note that v} (a) = lim;,—. v} ,(a) where we define

U;,p(a) = ig Z (bjn)p

neA

where A is the set of n (mod p) for which (1.1) is satisfied. Let N,(a,t;p) be the number
of n € A satisfying the additional inequality

(11.1) (aj-1n)p < (tn)p < (ajn)p.
Then
1 1
b, Z (atp)=—- . 2 Z > 1
(mo t (mod p) mne€A: (11.1) holds nEA t (mod p):
(11.1) holds
= = Y (@~ (agmam)y = 1) = pujy, — [Al/p = pv, + O(L).
nEA

Also

1 2_1
}—) Z Nj(a,tj,p) = p Z Z 1

t (mod p) m,ncA t (mod p)
(11.1) holds for
m and n
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Now, Proposition 8.2 gives

1 Z 1= (bym)p (bjn)p L0 (L n ﬁ)
p t (mod p) \/ﬁ uv
(11.1) holds for m and n

where u/v = m/n (mod p) with |u],|v| < /p. There are p — 1 pairs m,n (mod p) for
given u and v, and so the above sum becomes

(bym)y (), o) (L A\
m%( Jreo(35)) o P2 ] | T @) OET

Thus Nj(a,t;p) has normal order pv} , and the result is proved, varying over t.

Jp?

12. GENERALIZATIONS

One can generalize our question to residue races between given polynomials. That is, if
fi(x), fa(z), . .., fr(z) € Z[z] then define N(f1, fa,--., fr;p) to be the number of residues
n (mod p) for which

(12.1) (fi(n)p < (f2(n))p < -+ < (fx(n))p3
(1.1) is the case where the f;’s are all linear with no constant term. Even when k = 2 this
question can be a little tricky:

12a. Two polynomials race.

Notice that (f(n)), < (9(n))p if and only if {f(n)/p} +{(9— f)(n)/p} = {g(n)/p}, and so

o 3 (oo {22)- (2] ()

n (mod p)

T G0 ()

(mod p)

For non-constant polynomials f(z) of small degree (compared to p) one can show that

> on (mod p) ¥(f(n)/p) = o(p). Therefore N(f,g;p) ~ p/2 provided none of f,g and f —g
are constants.

12b. Three linear polynomials race.
We briefly investigate N(f1, fa, f3;p) where each f;(z) = b;x + ¢;. Imitating (4.3) we find

that . .
oy L c1my + cama \
_S(flanap)_ 4:7'('2 Z hthe( D )a

hi,ha€Z*
h1 b1 +h2b250 (mod p)
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and then, as in the proof of Theorem A, this equals

1 (bl,bg)Q 1 t(Cle —-Cgbl) logz)
47’(’2 blbg Z t2€ p(bl,bg) +O( \/]7? )

tez*

1 1 i (L =i
= =S(by,by;p) +o(1) — Y ) ﬂ_j’j( 5 ’YJ),
p 0<i<j<g FhIrae

by (8.1), where (3; ; = b;/(b;, b;) and ~; ; = {(Bs,5¢; — Bj,ici)/p}. When none of the ratios
b;/b; has a small numerator the last term here is swallowed up by the “o(1)”, so that
S(f1, f2;p) = o(p). When some b;/b; has a small numerator the calculation is evidently
more intricate.

12c. General distribution problems.

Let w1, ug,...,uq be a set of points in T* and let Q C T*. One estimates #{1 <i < ¢ :
u; € Q}/q, and enquires whether this is approximately Vol({2)?

In our problem (1.1) above ¢ = p—1 and u,, = ({a1n/p}, {aan/p}, ..., {axn/p}), with Q =
{(t1,ta, ..., tr): 0 <ty <ty <---<tp <1}. The points u, may be described as follows:
Take all points on the line £ which is the xz-axis mod p, in other words, {n: 0 <n < p—1},
and then consider the map ¢ : £ — T* given by n —an/p. Here we had Vol(Q2) = 1/k!
and we found that #{1 <i <gq: wu; € Q}/q is close to Vol(Q2) provided there is no linear
relation with small coefficients involving the a;’s (see the first proof of the first part of
Corollary 1). Moreover when k = 3 and 4 we have seen that if there is a linear relation
with small coefficients involving the a;’s then the value of #{1 < i < ¢q: u; € Q}/q is
often quite different from Vol(Q2), and can be determined in terms of the linear relations
involving the a;’s. Note that the linear relations satisfied by the a; determine a subspace
of T* in which ¢(L) lives.

In (12.1) we consider the map ¢ : £ — T* given by

o(n) = (f1(n)/p, f2(n)/p, ..., fu(n)/p) (mod 1);

this provides our u,.

More generally we can replace the line £ by any curve C and consider any rational map
¢ : C — T*, letting the u,, be the images of the F,-rational points on C. In the very simple
examples above we found that when #{1 < i < ¢ : u; € Q}/q is not close to Vol(2),
it transpires that ¢(C) lives in a (linear) subspace S of T* described by linear equations
with small coefficients. In [2] it is shown that this is also true in the level of generality
described at the start of this paragraph; moreover that #{1 <i < gq: u; € Q}/q is very
close to Vol(2 N S). Thus the difficulty in such (seemingly deep) distribution problems
boils down to the same (difficult) linear algebra problems we are having in our seemingly
much simpler question.
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