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Abstract. — We report on a large-scale project to investigate the ranks of elliptic

curves in a quadratic twist family, focussing on the congruent number curve. Our

methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests,
the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of

cases. We find that rank 6 quadratic twists are reasonably common (though still
quite difficult to find), while rank 7 twists seem much more rare. We also describe

our inability to find a rank 8 twist, and discuss how our results here compare to

some predictions of rank growth vis-à-vis conductor. Finally we explicate a heuristic
of Granville, which when interpreted judiciously could predict that 7 is indeed the

maximal rank in this quadratic twist family.

Résumé. — \tofrench{We report on a large-scale project to investigate the ranks of

elliptic curves in a quadratic twist family, focussing on the congruent number curve.
Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer

tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple

of cases. We find that rank 6 quadratic twists are reasonably common (though still
quite difficult to find), while rank 7 twists seem much more rare. We also describe

our inability to find a rank 8 twist, and discuss how our results here compare to

some predictions of rank growth vis-a-vis conductor. Finally we explicate a heuristic
of Granville, which when interpreted judiciously could predict that 7 is indeed the

maximal rank in this quadratic twist family.}

1. Introduction

Let E : y2 = x3 − x be the congruent number curve, so that d is a congruent
number precisely when the dth quadratic twist Ed : dy2 = x3 − x has positive rank.
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We are interested in how the rank behaves as d varies. More generally, we could fix
a different elliptic curve y2 = x3 + ax+ b, and enquire about its quadratic twists.

Honda [26, §4, p. 98] conjectures the rank is bounded(1) in any such family, basing
this on an analogy [26, Theorems 5-6] between Mordell-Weil groups of abelian varieties
and Dirichlet’s unit theorem. Schneiders and Zimmer [53] presented some preliminary
evidence for Honda’s conjecture back in 1989, though it seems that modern thought
has preferred to intuit that ranks are unbounded in quadratic twist families, partially
relying on function field analogues such as in [55] and [56].(2)

In this paper, we give some experimental data regarding quadratic twists of rank
6-8 for the congruent number curve. In particular, we find “lots” of rank 6 examples
(over 1000), while we know of no rank 8 example. A number of rank 7 examples are
also given (27 currently). We also explicate a heuristic of Granville that might lead
one to suspect that rank 7 is the maximal rank in this family.

1.1. Acknowledgements. — Some of our computations catalogued below were
done on sage.math.washington.edu (and associated machines) acquired under
National Science Foundation (USA) Grant No. DMS-0821725. We thank W. A. Stein
for the use of this.

We thank K. Rubin and A. Silverberg for feedback, and M. O. Rubinstein for
noting some errors in a previous version. W. B. Hart assisted with a couple of issues
in coding, while A. R. Booker and M. O. Rubinstein were instrumental in convincing
us that the explicit formula (§7) could be usefully applied to our situation. The
anonymous referee also provided us with a thorough reading and helpful comments.

This paper is written from the standpoint of the primary author (Watkins), who
might better be termed the “project manager” for some aspects of the research.
Indeed, the paper has taken a much different route than might have been guessed
following the initial data accumulations in 2008. The primary author apologises for
the delay in publication — however, the topic of ranks seems to be of sufficient
interest to merit the additional computational time that was needed. Similarly, the
somewhat lengthy descriptions of elements which could be considered tangential (such
as Mestre-Nagao sums) seems warranted as guidance to future investigators.

(1)The conjecture as printed appears to contain a typographical error, as it asserts an equality for

the rank rather than an upper bound.
(2)We are indebted to F. Rodriguez Villegas for indicating to us that Néron, in a 1950 footnote in

Poincaré’s collected works [42, III, p. 495, Footnote 3], stated that it was considered “probable”

there was a universal upper bound for ranks of elliptic curves over Q (not just in quadratic twist

families): On ignore s’il existe pour toutes les cubiques rationnelles, appartenant à un corps donné

une borne absolute du rang. L’existence de cette borne est cependant considérée comme probable.

One can contrast the abstract of [35] (Mestre, 1982): Au vu de cette méthode, il semble que l’on

puisse sérieusement conjecturer que le rang des courbes elliptiques définies sur Q n’est pas borné.

[This method seems to suggest that the rank of elliptic curves defined over Q is not bounded.]
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2. Outline of experimental methodology

In this section we give a general outline of our experimental methods, and then
give details in the following sections. Our goal was typically to find quadratic twists
of the congruent number curve whose rank was at least as large as a target rank r.
In some cases we also wished to be able to give an upper bound on the rank for some
given collection of twists, particularly to say that the ranks were less than r. Here is
an enumeration of the methods we used.

– Generate prospective quadratic twists of large rank. We used two principal
techniques here. The first (chronologically in our experiments) was to adapt
the method used by Rogers in [46] (see §3.1 for more history), corresponding
to a rank 1 parametrisation of elliptic curves. This method allows us to find a
high-rank twist provided it has a point of small height.

The second method was a nearly exhaustive search of twists up to a given
d-bound. Here we used Monsky matrices (see §4) and variants thereof due to
Rogers, so as to efficiently bound the possible rank from 2-Selmer information.

Finally, in §3.2 we discuss whether a higher rank parametrisation could be of
use, and in §3.3 we give a lattice-based method to find twists.

– Bound the 2-Selmer rank via a Monsky matrix computation (using linear algebra
over F2). We also used variants of Monsky’s formula (derived by Rogers, see §4)
applicable to isogenous curves.

– Apply a Mestre-Nagao heuristic (§5), ignoring curves (for instance) for which
the average ap-value for p ≤ 105 indicated that large rank was not too likely.
This step is largely heuristic, and essentially says that curves with “many” local
points (on average) are more likely to have large rank.

– Bound the 4-Selmer rank (on all the isogenous curves) via the Cassels-Tate
pairing (§6), as implemented in Magma by Donnelly.

– Bound the 8-Selmer rank via higher descent pairings due to Fisher (§6.1), again
implemented in Magma. These rely on the rationality of the 2-torsion.

– Apply the (Guinand-Weil) explicit formula to attempt to bound the analytic
rank upon assuming a suitable Riemann hypothesis (§7).

Usually we would also search for points at some stage, typically after the number of
curves was suitably reduced, for instance after the Cassels-Tate pairing was applied.
Due to the experimental nature of our work, we were willing to assume a parity
conjecture, that is, we would accept a curve with (r− 1) independent points as being
rank r if this was implied by parity. We typically only searched on 2-covers (including
isogenous curves), but for a few curves Fisher computed 4-covers (extending methods
of Bremner and Cassels [6], see [21, §5]), and searched on those (see §9.1).(3)

(3)Indeed, for 150 of our 1486 putative rank 6 curves we still only know 5 independent points, and

hope to remedy this via a more large-scale usage of 4-covers in the near future. (This is now done.)
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3. Generating prospective twists

We now give more details about our methods for generating prospective high-rank
quadratic twists of the congruent number curve. The first method parametrises curves
by a point of “small” height u/v, with d = uv(u + v)(u − v). We then comment on
parametrisations by multiple small points, and give a lattice-based method that loops
over square divisors of uv(u+ v)(u− v) rather than u and v. Finally, in §4 we present
a method of Rogers (from his 2004 thesis) that gives a near exhaustive method of
finding high-rank quadratic twists with d up to a given bound.

3.1. Parametrisation via a point of small height. — We review the “stan-
dard” method to find high rank quadratic twists of a given elliptic curve. This is
given in [46], with Rogers noting that Rubin and Silverberg suggested this algorithm
following the ideas of [48], who in turn note that one of the principal observations
dates back to Gouvêa and Mazur [22]. Letting E : y2 = f(x) be the given elliptic
curve, any rational number x = u/v is the x-coordinate for exactly one of the twists
Ed : dy2 = f(x), namely when d = f(u/v), and here we can reduce the problem by
taking the square-free part of d. Alternatively, we can homogenise the equation to
note that for f(x) = x3 + ax + b we have f(u/v) = (1/v3)(u3 + auv2 + bv3), and
are thus interested in the square-free part of v(u3 + auv2 + bv3) for a given u/v. In
analogy with more general attempts to find high-rank curves, we might hope that
d-values that appear for “many” small-height points u/v will be more likely to have
large rank.

The main step in finding the d-values involves computing the square-free part of
the specialisation of a binary quartic form. This is done most easily when the quartic
splits completely, which is the case of full 2-torsion for the elliptic curve.

3.1.1. The case of the congruent number curve. — For the particular case of the
congruent number curve given in the introduction, we have f(x) = x3 − x so
that v4f(u/v) = uv(u − v)(u + v), and we can note that if u and v are coprime and
not both odd, then the four terms on the right side are all pairwise coprime. This
implies that we need only compute the square-free part of each term individually,
which is most conveniently done by pre-computed table lookup. We also note that
for the congruent number curve we can restrict to u > v > 0 and to u, v of opposite
parity, both of these due to the 2-torsion.(4)

The method of computation then proceeds by looping over 1 ≤ v < u ≤ L up to
some limit L, and for each u/v computing the associated d-value as indicated above.
It is at this point that the methods that are used tend to vary. Rogers [46] used a
hash table of the d that are found (to find d’s given by multiple u/v), and also some
requirements related to the 2-Selmer group, such as demanding that d have sufficiently

(4)Namely, translation by (0, 0) gives (u : v)→ (v : −u); by (1, 0) yields (u : v)→ (u+ v : u− v).
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many prime factors (possibly of a certain size). The searches in [46] reached L = 105.
Rogers also used alternative methods to find high rank twists (including three of
rank 7), such as full 2-descent on all the isogenous curves as a filter for which d to
consider (see §4.3).

Dujella, Janfada, and Salami [14] appear to first compute the 2-Selmer rank via a
formula of Monsky [25, Appendix], and then use Mestre-Nagao heuristics (see §5) to
select which curves to investigate further. They work additionally with the 2-isogenous
twist dy2 = x3 + 4x corresponding to the quartic form uv(u2 + v2)/2 from x = 2u/v;
as the quadratic term here does not factor, this limits their possible range of (u, v)
and indeed they take L = 105.

We chose to use only the congruent number curve in the u/v stage. We first
computed the 2-Selmer rank via Monsky’s formula (via linear algebra over F2, which
is quite fast), and then filtered via Mestre-Nagao sums. However, we later used code
from Rogers that computes the 2-Selmer rank of the isogenous curves again via linear
algebra over F2, using a variant of Monsky’s formula and quadratic reciprocity in the
Euclidean rings Z[

√
−1] and Z[

√
2]. This allowed us to eliminate approximately 90%

more curves before computing Mestre-Nagao sums. Note these formulæ require us to
factor d, which is again feasible via table-lookup in our case. We do not use a hash
table of popular d-values as Rogers did; rather, having one (u, v) point is enough for
us to pass the resulting d to the Selmer machinery. We searched up to L = 108 in
some cases, with the caveat that we ignored curves for which d was rather large. More
information appears below in §8

The 2-Selmer machinery was able to process about 105 twists per core-second.
In particular, in our L = 107 experiment we computed about 2

π2 1014 such Selmer
groups, taking about 6-7 core-years. With the L = 108 experiments, many d-values
were pruned due to exceeding our size restriction, but a similar number of Selmer
group tests seem to have been applied (we do not have an exact accounting).

3.1.2. Previous computations and records. — In November 2003, Rogers [47, p.45]
found that d = 797507543735 yields Ed of rank 7. He found this rank 7 curve via
testing all possible d (up to some bound) that allowed rank 7 from the 2-descent
information [47, §4.4]. Rogers also found 14 quadratic twists of rank 6, listed in [14].
The work of Dujella, Janfada, and Salami [14] determined about 25 more such rank 6
quadratic twists.

The twist d = 797507543735 is first found via the (u, v)-searching method with
(v, u) = (79873, 235280), taking less than a core-hour to find.(5) The first rank 6
twist is d = 6611719866 and for rank 5 it is d = 48242239. The purported growth
rate for the first rank r twist is obscure, but one suggestion has been along the lines
of 2r

2
. The principal rationale here is that (perhaps from L-function considerations)

(5)There are two rank 7 twists with smaller u, found in Table 5 of §9.2.1 below. However, to find the

first d this fast, one filters out larger d (say d > 250), greatly reducing the number of Selmer tests.
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the rank might be roughly as large as
√

log d, with the speculation then being phrased
in a simple form (though see Footnote 32, and compare [20]). However, alternative
schools of thought (e.g., descent bounds or function field analogues [56], or rank
bounds under a Riemann hypothesis [7, 36]) suggest the rank might be as large
as log d

log log d . The numerics are conflated by the fact that the smallest d of rank 7 is
rather small (perhaps abnormally so), for the second smallest d is more than 2500
times as large. In particular, an estimate of 282

/272 ≈ 30000 might be quite low for
the rank 8 versus rank 7 ratio. In §10 we discuss more fully our thoughts on whether
our computer searches should have found a rank 8 twist if one exists.

3.2. Searching in larger rank families. — Another search method could be
to restrict to d which are in a parametrised family with larger rank, for instance the
rank 3 family 6(u12−33u8−33u4+1)y2 = x3−x given in [49, Theorem 4.5]. However,
the degree 12 polynomial has 2 quartic factors, making it difficult to accumulate data.

Instead, as proposed by Elkies, we tested a couple of rank 2 families. The first (I)
equates y-values, solving s3 − s = t3 − t via (s, t) =

(
− 2w+1
w2+w+1 ,

1−w2

w2+w+1

)
, obtaining

(s3 − s)y2 = x3 − x, or w(w + 1)(w − 1)(w + 2)(2w + 1)(w2 + w + 1)y2 = x3 − x.
Writing w = m/n, via the symmetries of the homogeneous octic polynomial in m

and n, we can restrict to m,n that are not congruent modulo 3. The second (II) takes
x = w2+2

w2−1 as one point, and then x + 1 also yields a point on dy2 = x3 − x where
d = 3(w + 1)(w − 1)(w2 + 2)(2w2 + 1) here.(6) For both families, for the purposes of
comparison, we considered w up to height 104, which meant only minor modifications
to our factoring tables.(7)

One goal of this experiment (or “pilot test”) was to see how many rank 6 curves
are found up to height 104 – if the number does not exceed the total from the rank 1
family, it is probably not worth trying to find a rank 8 example in these families.(8)

However, there are various problems with a direct comparison. Consider Family I,
where the d-values now have 7 factors (six, plus one more for projectivisation) in
their polynomial factorisation, compared to 4 previously. This means that the Selmer
ranks are likely to be higher, and thus X tends to abound. The d-values also now
come from a polynomial of degree 8, rather than one of degree 4, and will thus
typically be much larger. This implies that searching for points on 2-covers of the

(6)When w2 + 1 is square, upon writing w = (u2 − 1)/2u we recover the above rank 3 family, and

there is a third (independent) small point with x-coordinate −(w2 + 2)/(2w2 + 1).
(7)For Family I, instead of factoring m2 +mn+ n2, one could (say) loop over (a, b, c, d) up to some

limit T , and generate (m,n) up to L from (a+ bζ3)(c+dζ3) = (m+nζ3), thus allowing factorisation

by table on each part of the LHS. One could also take T slightly larger than
√
L here, perhaps

(L, T ) = (107, 104) would be useful. Elkies notes that the use of lattice reduction should allow one

to similarly loop over suitable factors of the quadratics in Family II.
(8)As Bober remarks, one nice feature of the rank 1 parametrisation is that it contains all twists of

positive rank, while the corresponding statement for the other families is not true.
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surviving curves is much less likely to actually find anything, for the regulators will
typically also be larger. Furthermore, the existence of another point of small height
means that the other generators will tend to have larger height, again diminishing the
expected returns from point searching. Finally, the larger d implies larger conductor,
which makes the explicit formula computations (see §7) less valuable. The situation
is slightly better with Family II, though similar concerns might apply.

We give the results of the comparisons in Section §12.1 below.

3.3. A variant search method. — A second search method, suggested and imple-
mented by Elkies(9) (with further implementations by Hart/Watkins), parametrises
the square divisors of uv(u+ v)(u− v) via

d2
1|u, d2

2|v, d2
3|(u+ v), d2

4|(u− v),

and then loops over pairwise coprime (d1, d2, d3, d4), looking for short vectors in the
(u, v) lattice. The lattice has determinant D2 =

∏
i d

2
i , which gives a measure of what

size of (u, v) to expect. One restricts (say) to 5 ≤ di ≤ 400 and H1 ≤ d1d2d3d4 ≤ H2

for parameters such as H1 ≈ 106, H2 ≈ 108, the lower bounds being imposed to
preclude the “trivial” cases from swamping the calculation.(10)

For instance, the 4-tuple (16, 167, 9, 389) yields d = 797507543735 (the first rank 7
twist) from the pair (u, v) = (3764480, 2705233). The time taken to find this is
comparable to the method of §3.1.1; an exact analysis depends upon various cut-
off ranges that one uses. There is a (minor) side issue, in that if (u, v) is sufficiently
small then the point was already considered via the previous searches, while otherwise
computing the square-reduced part (and factorisation) via table lookup might not be
feasible. We give some preliminary data about this method in §12.2 below.

3.3.1. Searching via restriction to (u, v) with large square divisors. — In the same
vein, considering the parametrisation in §3.1.1, it might be noted that for L = 107 we
would already have d ≈ 1028 if we did not take the squarefree part. Indeed, in our
table of rank 7 twists (Table 5 in §9.2.1) we find the point (v, u) = (2202624, 98856259)
with 22812|u and 962|v. It thus might be feasible to enlarge the L-bound (in a
heuristic sense) in conjunction with a demand that uv/s(u)s(v) be of decent size
(where here s(x) is the minimal positive integer such that xs(x) is square).

The exact correspondence between this method and that given in the previous
subsection has not been fleshed out completely.

(9)The lattice displayed here is also given by Rubin and Silverberg in [50, §9].
(10)Indeed, trivially (d1, d2, d3, d4) = (1, 1, 1, 1) generates all (u, v), but the “short” vector enumera-

tion for lattices of such small determinant is typically infeasible.
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4. 2-Selmer ranks and Monsky matrices

As noted above, Rogers was able to derive Monsky-like matrices for the isogenous
curves of dy2 = x3−x. We briefly recall the construction of Monsky [39], and then give
the generalisation of Rogers. We then describe how to use the 2-Selmer information
sequentially, considering d as a product of primes and building up the matrices one
prime at a time. The effect that appending primes has on the 2-Selmer ranks can be
bounded, which then gives a lower bound on how many additional primes must be
included if a target rank is to be met.

4.1. Monsky’s matrix. — Factor d =
∏
i pi into primes pi for d odd, and similarly

with d/2 =
∏
i pi for d even. Monsky defines a matrix A over F2 as follows. For i 6= j

let Aij be 0 or 1 according to whether
(pj

pi

)
= +1 or not. Then define Aii so that the

row sums are all zero. Define Du to be the diagonal matrix with entries given by 0
or 1 depending on whether

(
u
pi

)
= +1 or not. Then the Monsky matrix M is given

alternately for d odd or even as

M =
(
A+D2 D2

D2 A+D−2

)
and M =

(
D2 A+D2

AT +D2 D−1

)
.

This is a square matrix of size 2w, where w is the number of odd prime factors of d.
The 2-Selmer rank (modulo torsion) of Ed is the nullity of this matrix.

4.2. The variant of Rogers. — For the isogenous curve E′d : y2 = x3+4dx, Rogers
uses arithmetic over Z[

√
−1] to determine a matrix similar to Monsky’s. For d even,

we factor d =
∏
j qj into elements qj corresponding to prime ideals, where q1 = 2 and

the other qj are aj + bj
√
−1 with aj odd (so bj even), being either part of a conjugate

pair, or simply qj = aj > 0 for an inert prime. For i, j ≥ 2 define Rij for i 6= j to be 0
if qi and qj are either conjugate or squares modulo each other, and 1 otherwise. For
the prime above 2, define Rj1 to be 0 if the norm of qj is 1 mod 8 and 1 otherwise,
and define R1j to be 1 if bj is ±2 and 0 otherwise. Finally, define R11 to be 0, and the
other diagonal Rii entries to make the row sums be 0. The 2-Selmer rank (modulo
torsion) of E′d is then one less than the nullity of R.

For odd d, most of the Rogers matrix is the same, while the conditions at 2 need
to be modified. There are two cases with the latter, depending on whether d is ±1
modulo 8 or not; both are sufficiently involved that we omit them here. Letting w be
the number of odd prime factors of d over Z[

√
−1], the Rogers matrix has size (w+1)

when d is even or ±3 modulo 8, and (w + 2) when d is ±1 modulo 8.
The other isogenous curves involve arithmetic over Z[

√
2]. Again the bulk of the

matrix involves quadratic residue symbols, with more complicated computations for
the prime

√
2. The case of conjugate qi and qj also differs, as one determines the

matrix entry via considering if
√

2 is a square modulo qi.
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Rogers has implemented the above in both GP/PARI and C. We adapted the
former into our own C code. Via the use of parity, one finds a quite robust test for
correctness, as the computed 2-Selmer ranks (modulo torsion) of the isogenous curves
should all have the same parity.

The quadratic reciprocity law over Z[
√
−1] is rather simple for odd primes, for qi

is a square modulo qj only if qj is a square modulo qi. Additionally, inert primes are
always squares modulo each other, and squareness is preserved upon conjugating all
the primes involved. The latter two statements remain true for Z[

√
2].

4.3. Sifting for small d via 2-Selmer tests. — Rogers has used his variants of
the Monsky matrices as the basis of a method for finding small d which have large
2-Selmer rank for all isogenous curves. Namely, one recurses over primes, noting the
2-Selmer rank (modulo torsion) is determined from the nullity of a matrix, while the
possible increase in nullity from appending an additional prime can be computed by
considering the choices of diagonal elements, the other entries staying constant.(11)

Given a rank bound r, to reach a d-limit of D should be approximately linear in D,
with the constant depending essentially on the probability that a random F2-matrix
of the prescribed type has augmented nullity (that is, the nullity when considering all
relevant choices of diagonal elements) of at least (r − 2) + 1.

There is a minor issue about having a small core-product times one large prime, for
instance Rogers notes 20162 has augmented nullity 5 while for 723558 it is 6, which
then allow(12) ranks 6 and 7 respectively when appending one more prime (albeit
with congruence conditions). There are eventually many such core-products, so in
our experiments we curtailed the size of this final prime at 108. Comparatively, with
the (u, v) searching method of §3 one knows that no prime dividing d can exceed 2L.

Using these methods, Rogers was able to find the first three rank 7 examples,
namely 797507543735, 2067037027955295, and 2210857604820494. We catalogue our
results from this method in §8.2 below.

5. Mestre-Nagao sums

There are various ways of forming a sum over small primes that heuristically corre-
lates with curves of large(r) rank. The typical underlying idea derives from the original
form of the BSD conjecture [2, (A)]. Namely, fixing an elliptic curve E of rank r and
writing Np = p+ 1− ap for the number of points of E/Fp (ignoring bad primes), we
should have the asymptotic relation

∏
p≤Y Np/p ∼ CE(log Y )r as Y → ∞, for some

constant CE depending on the elliptic curve E.

(11)See also [18, §4] which mentions a similar method for 3-descent on X3 + Y 3 = k.
(12)A prime can raise augmented nullity 5 to nullity 7, then subtract one for the 2-Selmer bound.
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Then by taking logarithms and expanding in a power series we find∑
p≤Y

log
(
1− ap/p+ 1/p

)
∼ −

∑
p≤Y

(
ap − 1
p

+
(ap − 1)2

2p2

)
∼ r log log Y,

and by analytic properties of the symmetric-square L-function we have that a2
p is p

on average (independent of whether the curve has complex multiplication), so this
yields that ap is 1

2 − r on average.(13) There are historical reasons why L′

L (s) has
been considered as opposed to L(s), and thus more frequently the heuristics have
been described with an extra weighting of log p. In our experiments we followed this
tradition largely out of inertia, though below (§5.2) we give some consideration as to
whether or not this weighting is the most useful for our purposes.

Thus the sums we consider are more analogous to∑
p≤Y

ap
p

(log p) ∼ (1/2− r) log Y.

As a heuristic, these seem more useful when the conductor is “small” relative to the
rank (recall r . 1

2
logN

log logN under suitable hypotheses [7, §2.11]), as then the effect of ap
being significantly negative (particularly for small p) tends to be more pronounced.

Note that the standard deviation of the above sum should also be of size log Y
(and thus the “∼” symbol is not truly correct), as the variance should resemble(14)

∑
p≤Y

(
ap − (1/2− r)

)2
p2

(log p)2 ∼
∑
p≤Y

a2
p(log p)2

p2
∼
∑
p≤Y

(log p)2

p
∼ 1

2
(log Y )2.

But there is a secondary term here, and this very well might not be negligible for
the Y we use — for instance, we can recall an equivalent form of a related theorem
of Mertens [34], which states that

∑
p≤Y (log p)/p ∼ log Y − 1.33258 . . .

As Mestre-Nagao sums are written(15) in terms of (2−ap), we thus might expect(16)∑
p≤Y

2− ap
p

(log p) ≈ (r + 3/2 + σ/
√

2) log Y,

where σ is a random Gaussian variable with mean 0 and deviation 1.
In particular, both r and σ are multiplied by log Y in this main term, so taking Y

larger does not have much impact. If we wanted to find a given rank 6 curve with

(13)We are indebted to M. O. Rubinstein who indicated a flaw in our earlier computation. The work

of Nagao [41, §3] contains the correct balance with 1/2. See [10] for the general context.
(14)This model for the ap is probably most useful when Y is sufficiently smaller than

√
N , else effects

from modularity of the L-function may play a part. When Y → ∞, analysing the variance via the

explicit formula might be preferred, see Rubinstein’s method [51] noted in §5.2 below.
(15)The historical reason for this could derive from a possible typo, namely (p − 1) appears in the

numerator rather than (p+ 1) in [38], which thus lists the formula
P
p

` p−1
#E(Fp)

− 1
´

log p.
(16)Here we switch to the ≈ notation rather than ∼. This is to indicate we are using a finite Y in

our experiments, but still largely ignoring the error in the asymptotic.
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probability 1− 1
30000 , thus corresponding to σ about −4, this would say that we might

restrict to considering curves with the above sum exceeding (15/2 − 4/
√

2) log Y ,
though as above, secondary effects might be apparent.

A typical choice of Nagao [40] is to consider∑
p≤Y

2− ap(E)
#E(Fp)

(log p) and/or − 1
Y

∑
p≤Y

ap(E) log p,

where the denominator in the first can be re-written as p+ 1− ap. These appear to
derive from Mestre [35]. We used

Σ5 =
∑
p≤105

2− ap(E)
p+ 1

(log p).

It is unclear exactly what effect these minor modifications have.

5.1. Observations from obtained data. — We record here some data about Σ5

from our experiments. For instance, in the first experiment below, we had almost
38 million curves of even parity for which 2-descent allowed rank 6 (or more) on
all isogenous curves. The maximum Σ5 ≈ 70.429 was for d = 141486274882017786
of rank 2, and the first rank 6 curve was 9th in the list at Σ5 ≈ 69.216, namely
d = 718916589348840586. The top 1% of the data (after imposing Σ5 ≥ 35 as we
indicate below) went down to Σ5 ≈ 50.1, and contained about 1175 curves which
survived the 4-descent test (there were about 35000 twists overall that survived this
test). Of these, after applying a strict d ≤ 260 bound, there were about 530 for which
we found at least 5 independent points. The second percentile reached Σ5 ≈ 48.4, and
had about 600 curves that survived the 4-descent test, of which about 170 yielded at
least 5 independent points. The 50% percentile reached Σ5 ≈ 37.7, with 332 curves
surviving the 4-descent test. There were similarly almost 300 survivor curves in the
last percentile, so the number of 4-descent survivors does not decrease too much.
However, the number of rank 6 curves fell considerably, as the entire bottom half
of the data produced only 18 curves on which we found enough independent points
(compared to 1243 for the top half). See also the comments at the end of §9.1.3.

5.2. Variations of Mestre-Nagao heuristic. — Elkies notes that removing the
weighting by log p from Σ5, or indeed returning to the original BSD-weighting, has an
advantage asymptotically, as a rank increment is of size log log Y , while the deviation
is only

√
log log Y . Furthermore, the constant in the analogue of the Mertens theorem

is now positive (approximately 0.265) rather than negative. Both of these aspects
help to increase the ratio of the rank increment to the deviation, doing so not only
asymptotically, but also for practical values of Y (such as 105).

However, for practical Y this change also has the negative aspect that larger r will
then induce greater deviation, upon accounting a2

p more precisely in our computations
as (ap − (1/2− r))2. Our preference in using a Mestre-Nagao heuristic was to try to
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miss as few curves of rank 6 or more as possible; while the modified heuristics proposed
by Elkies might do better in reducing false positives, the question of whether they
miss more borderline curves is comparatively not so clear.(17)

Unfortunately, it seems difficult to construct a relevant data set for comparison
between these heuristics without redoing much of our experiment. More specifically,
we would typically be looking for “borderline” curves that were eliminated by one
heuristic but accepted by the other, and then would need to determine which of
these curves had rank 6. One might only expect a handful of relevant curves to be
produced (say 10 or 20), and the statistical significance of the end result from such
an experiment would probably be rather iffy.(18)

Another alternative method for a rank heuristic is to perform an integrated esti-
mate via the explicit formula. For instance, Rubinstein [51, (1.15)] reports the bias
for various curves in terms of such an integrated quantity. As we observe later (§7),
the explicit formula can actually be used to produce an upper bound on the (analytic)
rank when assuming GRH, but here we are more interested in heuristic aspects.

These methods are dependent on the choice of a test function, but (following [51])
upon taking a suitable sum over primes up to X one essentially has an indicator I
that is (r− 1/2) + 1

logX

∑
t

Xit

it(1+it) where the sum is over noncentral imaginary parts
of zeros (assumed to be on the central 1-line). With a prediction of 2π/ logN for the
lowest height zero, the secondary terms are of size logN

logX though admittedly with fairly
reasonable constants. However, in our experiments, we might have N = 32d2 ≈ 1037

and X ≈ 105, and thus (just as with the Mestre-Nagao sums) we would likely have
to sort through a lot of examples where the estimation from I was higher than the
actual rank. Below we shall indicate a case where we had perhaps 109 rank 7 survivors
(meaning here that they survived the 2-descent test) to which we wished to apply a
rank heuristic, and this obliged us to use one that was relatively fast. As with the
Mestre-Nagao heuristic, it seems this method should be more useful when the rank is
large compared to the conductor (or d).

(17)Here is an analysis. Suppose we fix r = 6 as our target rank. As above, we propose the ratio

of rank increment to the deviation as a useful metric. For the congruent number twists, the rank

increment seems best modelled by
P′
p 2/p (or multiplied by log p) where the sum is over primes up

to Y that are 1 mod 4. So a rank increment for Y = 105 is approximately 1.87 when considering

just
P
p ap/p, and is about 9.30 when weighting by log p.

The deviation for the unweighted sum is modelled by
qP

p

`
ap − (1/2− r)

´2
/p2, which is about 1.30

for r = 0, 1, but then starts rising to 1.57, 2.05, 2.61, 3.22, and finally 3.85 for r = 6, so that a rank

increment is actually quite a lot less than a deviation for rank 6 curves. But with the log-weighted

sum, the deviation only changes from 7.78 for r = 0 to 9.14 for r = 6, still (slightly) less than a rank

increment. Finally, the effect of small primes dividing d would presumably also affect the log-less

sum more than the log-weighted, which is an aspect we ignored here.
(18)Comparing the heuristics on a smaller data set is not unreasonable, but could produce bias as

the curves with relatively small d for a given r tend to have more significant Mestre-Nagao sums,

while as stated above, we would be more interested in the borderline ones.
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A final idea is to produce (say) two independent statistical measures from non-
overlapping ranges of primes. For instance, one might take the primes up to 103 as
a first cut-off, and then the primes from 103 to 107 as another. However, the second
such sum here must be taken quite long if its deviation is to be (say) equal in size to
a rank increment; with the above choices, a rank increment is (7 − 3)(log 10) ≈ 9.2,

while the deviation is
√

(log 10)2

2 (72 − 32) ≈ 10.3. Again there are secondary terms,
and in the end we concluded that all this was too much work for a mere heuristic.

6. Use of the Cassels-Tate pairing and beyond

The 2-Selmer test, even when combined with a Mestre-Nagao heuristic, still leaves a
large number of curves that could attain the prescribed target rank. For the surviving
curves we used the Magma [5] implementation of the CasselsTatePairing due to
Donnelly [13]. This has the feature that it requires solving a conic only over the base
field (whereas [8] demanded nontrivial calculations in the 2-torsion field).

We have a pairing Sel2(E)× Sel2(E)→ Z/2Z such that a 2-covering C ∈ Sel2(E)
trivially pairs with all C ′ if and only if C is in the image of Sel4(E) → Sel2(E); so
we obtain precisely the same information as doing 4-descent on E. Thus by taking a
basis of the 2-covers (after removing 2-torsion), the 2-covers that lift to 4-covers are
exactly those in the kernel of the pairing matrix on such a basis.

Each call to CasselsTatePairing takes typically about 0.2 seconds(19) (though it
can depend upon the size of d and the target rank), and in some cases computing
the 2-covers themselves is nontrivial. However, in the most common case where our
target rank equals the 2-Selmer rank modulo torsion, we need only find one nontrivial
CTP result to conclude the rank is smaller than the target. Note also that one can
apply the CasselsTatePairing to each of the isogenous curves.

6.1. Use of higher-descent pairings. — We are indebted to Fisher for the de-
scription of these, and for running the Magma programmes that implement them.
Given a 2-isogeny φ : E → E′, Fisher computes the image of Sel4φ(E)→ Selφ(E) and
similarly for the dual isogeny. This involves the solution of quadratic forms (over Q)
of ranks 3 or 4, then the computation of local points, minimisation and reduction
steps, and finally linear algebra over F2. See [21], which extends the method in [6].

For our congruent-number twists, there are three choices of 2-isogeny, thus giving
three upper bounds for the rank from the higher descents. Furthermore, Fisher has
a similar pairing corresponding to full 8-descent that is applicable when the curve
has (as in our case) full 2-torsion. We do not have precise timings for these higher
descents, but a typical example might take 10 seconds for each 4φ-computation.

(19)Some of this is implementation-dependent; the discriminant of an auxiliary conic has a factor

that is the size of the twisting parameter d, but this conic construction could be modified if needed.
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7. Bounding the analytic rank via the explicit formula

The use of the explicit formula to bound the analytic rank seems to be first de-
scribed by Mestre [36]. Other examples appear in [43] and [3].

Let F be even, continuous, and supported on [−1, 1], and write FS(x) = 1
SF (x/S).

Define F̂ (t) =
∫
eixtF (x) dx so that F̂S(x) = F̂ (Sx). The Guinand-Weil explicit

formula [24, 59] applied to an elliptic curve L-function (see [36, p.219]) then gives∑
γ

F̂ (Sγ) = FS(0) log
N

4π2
− 2

∫ ∞
0

(
FS(x)
ex − 1

− FS(0)
e−x

x

)
dx

− 2
∑
pm

(αmp + βmp )FS(log pm)
log p
pm

Here the γ-sum is over nontrivial zeros 1+iγ (with multiplicity) of the L-function, N is
the conductor, and αp+βp = ap with αpβp = 0 if p|N else αpβp = p. When F̂ (0) = 1,
as S →∞ the left side converges to the analytic rank (from the γ = 0 terms).

A basic principle of L-functions ([30],[9, §10.3]) is that we can approximate values
(via the functional equation) using O(

√
N) terms of the Dirichlet series. Here we

hope to do better than this, as we only want an upper bound on the analytic rank.
If we choose F̂ to be nonnegative on the critical line, then the evaluation of the right
side for any S-value will give an upper bound on the analytic rank (assuming GRH).
The method does best when the closest noncentral zeros are not too near to the
central point, as then (heuristically) a smaller S-value will suffice to make Sγn large
enough so that the decay in F̂ dominates. One expects the (low-height) zeros to be
spaced at about 2π/ logN , though elevated analytic rank might tend to make the
first noncentral zero a bit larger. We often found that taking eS ≈ N1/4 or even as
small as N1/6 or N1/8 would suffice to give a suitable rank bound.

The condition that F̂ be nonnegative can be recast as saying that it is the square
of some entire function, and so F is the self-convolution of some function supported
on [−1/2, 1/2].(20) We will normalise so that F̂ (0) = 1. We want F̂ to be concen-
trated as much as possible around t = 0. For instance, we might want to minimise∫
F̂ (t) dt = 2πF (0). Note that we do not require that F itself be nonnegative, though

this essentially follows from our other conditions.
Mestre uses Odlyzko’s function F̂ (t) = π4(cos t/2)2/(t2 − π2)2, though for us per-

haps simply F̂ (t) = (sin t/2)2/(t/2)2 is superior. Booker [4, §3] introduces a more
complicated method,(21) for instance taking

F̂ (t) =
(sin t/2M)2

(t/2M)2

(M−1∑
k=0

ck cos
kt

2M

)2

(20)The Paley-Wiener theorem [44] reinterprets supp(F ) in terms of the exponential type of F̂ .
(21)Booker and Dwyer showed (see [3, Remark 1.2]) the Elkies curve [16] has analytic rank at most 28

(under GRH) via this, but both Booker and Bober tell us the method of [3] suffices.
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for some (large) integer M , where the ck are undetermined coefficients.(22) Indeed,
one gets a quadratic form in the ck, which can be minimised subject to the condition
that F̂ (0) =

∑
k ck = 1.

Booker’s method can give a slightly sharper upper bound on the analytic rank, but
usually the gain is rather small (say 0.05). The point seems to be that the use of an
interpolating sum can quell contributions from zeros that are not too close to t = 0,
but the uncertainty principle precludes the method from sharply distinguishing zeros
at t = 0 from those that are close by. In the hardest examples, we expect that there
are indeed such zeros that are fairly near to the central point.

We implemented the above method (without Booker’s extension) for the function
F (x) = 1− |x| compactly supported on [−1, 1], that is, F̂ (t) = (sin t/2)2/(t/2)2. Our
C-based implementation could compute with S = 26 in about an hour. It does not
spend much time computing the ap, as this can be done quite efficiently for the con-
gruent number curve via a pre-computation which enumerates over a2 + 4b2 in annuli
(rather than solving p = a2 + 4b2 for each p). The Kronecker symbol computations
(for a given d) are nonnegligible though not dominant, and similarly with the time
spent by the memory-management subsystem in looking up pre-computed ap values.

Booker’s method incurs some overhead regarding the bookkeeping with the
quadratic form. However, the additional computations with minimising the quadratic
form are typically negligible, and indeed, in a case where the ap-computation
dominates the running time, there would be no reason (other than simplicity of
implementation) not to use it.

As an illustrative example, we consider S = 18 for d = 32058375240488794. The
upper bound on the analytic rank from the direct method is 7.1379, while Booker’s
method with M = 10 gives 7.0901 and increasing to M = 40 yields 7.0885, so it seems
that we have essentially reached the point of diminishing returns. The minimising
vector ~c for M = 10 is given approximately by

(0.02354, 0.18034, 0.03976, 0.18067, 0.03592, 0.17445, 0.03035, 0.16604, 0.01320, 0.15573).

In Figure 1, we plot F̂ (t) = (sin t/2)2/(t/2)2 versus the optimal B̂10(t) given by
Booker’s method for (M,S, d) = (10, 18, 32058375240488794), the former being the
solid line. For this d, with S = 27 the direct method gives a rank bound of 5.99, so
that (assuming BSD and GRH) the rank is not 6 (we have 4 independent points on
this curve, so the rank is presumably 4).

We have logN ≈ 78.78 and S = 18 here, so that the re-scaled mean spacing of
low-height zeros is 2πS/ logN ≈ 1.44. However, the effect at having 4 zeros at the
central point must be taken into account in this. Also, noting that the maximum of
F̂ (t) − B̂10(t) is about 0.0226 near t ≈ 8.45, while B̂10(t) exceeds F̂ (t) by twice this

(22)He actually takes (sin t/4M)4/(t/4M)4 as the multiplier, as the contribution from trivial zeros

is a bit simpler (to write) when F (t) is continuously differentiable.



16 WATKINS, DONNELLY, ELKIES, FISHER, GRANVILLE & ROGERS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5  0  5  10

Figure 1. Comparison of F̂ (t) = (sin t/2)2/(t/2)2 to B̂10(t)
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Figure 2. Comparison of F̂ (t) and B̂10(t) for larger values of t

amount around t ≈ 4, the placing of zeros must be rather delicate to simultaneously
have both

∑
γ F̂ (Sγ) ≈ 7.1379 and

∑
γ B̂10(Sγ) ≈ 7.0901. Looking at Figure 2,

one sees that the minor contributions from distant zeros are approximately halved
with B̂10. For instance, there should be approximately 4 zeros between 4π and 6π,
contributing maybe 0.02 more to F̂ than B̂10, this then being doubled by evenness.
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8. Our experiments and results

We performed three experiments with the first method (§3.1.1), which we describe
in this section. We keep the notation of §3.1.1, searching for (v : u) pairs with
1 ≤ v < u ≤ L up to some limit L, with d the square-free part of uv(u + v)(u − v).
We write s(x) for the square-free part of x (which is the minimal positive integer such
that xs(x) is square), and B(u, v) = blog2 s(uv)c+ blog2 s(u2 − v2)c.

In Experiments P6a and P7a we took L = 108 and restricted to B(u, v) ≤ 60. This
kept us within 64-bit arithmetic (though latterly we determined this was not a real
excuse), and more importantly greatly limited the number of d that got sent to the
2-Selmer tests. One goal of this first data collection was to find as many twists of
rank 6 or more as possible in a given d-range.

In Experiment P7b (and P8b), we took L = 107 but did not restrict d at all. Here
our goal was to find as many rank 7 twists as possible, and possibly one of rank 8.

In Experiment P8c we took L = 5 · 107, and restricted B(u, v) ≤ 80. Here our goal
was simply to try to find a twist of rank 8.

In all cases, we used Monsky’s formula (and possibly the extension by Rogers)
before turning to our heuristic Mestre-Nagao sum Σ5. With Experiments P6a, P7a,
and P8c we required Σ5 ≥ 35, while for P7b and P8b we required Σ5 ≥ 40. A rough
estimate (with L = 105 for r = 6) is that about 81.5% of the curves were eliminated
by the Σ5 ≥ 35 condition. From both the analysis in §5 and the data we obtained, we
expect that only a few curves of the desired rank were accidentally eliminated by this
criterion. Each of the above experiments took roughly 6-7 core-years (for instance,
about 4 months on 19 cores).

8.1. Data from these experiments. — We label the first experiment by P6a

and P7a, splitting the obtained data into parity classes of the rank. Similarly, the
data from the second experiment falls under P7b and P8b, and the third consists of P8c.

In Table 1, for the experiments we list the L-limit, the B-limit (if any), the Mestre-
Nagao bound Σ5, the target rank r; then the number of curves that survived the
2-Selmer tests, then the 4-descent Cassels-Tate pairing, then the number that survived
the 4φ- and 8-descent pairings of Fisher; and finally the number Nr for which we found
at least (r − 1) independent points. The others were eliminated (under BSD/GRH)
by an explicit formula calculation, with 3-descent being used for 3 curves from P6a.

L B Σ5 r 2-Selmer CTP F4φ F8 Nr
P6a 100 million 60 35 6 37873578 21016? 3691 2006 1261
P7a 100 million 60 35 7 1912493 71 17 16 13
P7b 10 million ∞ 40 7 217704329 4902 67 21 12
P8b 10 million ∞ 40 8 8576723 3 0 0 0
P8c 50 million 80 35 8 22516203 9 0 0 0

Table 1. Conditions for experiments (first method), and survivor counts
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Note that with Experiments P6a and P7a, we actually applied the Monsky-like
formulæ of Rogers (on the isogenous curves) in a separate run, for these experiments
were started before we received the code from Rogers. They were thus partially inter-
twined into the further CTP sifting, and the numeric accounting listed was actually
determined after the fact.

Furthermore, there was a minor programming bug in one of the cases in some
initial versions of our code, and it thus failed to properly eliminate about 4% of
curves in some cases; these were easily detected and eliminated upon applying the
CasselsTatePairing as in §6. With this caveat, the curves that survive the 2-Selmer
tests have a sufficiently large 2-Selmer rank on all isogenous curves.

For comparison with the data from the sifting method (§8.2), we note that 352
of the (presumed) rank 6 curves have d ≤ 250. The rank 7 data obtained from
Experiments P7a and P7b have large overlap, and in the end we only get 15 twists of
rank 7 from combining these.

In the even parity case of the first experiment, we actually had approximately
35000 curves that survived the CTP sifter, but in order not to skew the counts in the
rank 6 statistics we enforced a bound of d < 260 rather than B(u, v) ≤ 60. This is
the reason for the asterisk on the P6a/CTP entry (21016) in Table 1.

For the first experiment, processing the 40 million curves took around a core-year.
The even parity data for the second experiment, comprising about 5 times fewer
curves, took about the same amount of time,(23) and the data for the third experiment
was of the same magnitude. The odd parity data for the second experiment was
processed in 3 weeks on a cluster of 128 threads, so about 7-8 thread-years.(24)

8.2. Results from 2-Selmer sifting. — Recall that Rogers used his variants of
Monsky matrices (§4.3) for a nearly exhaustive search for d up to a given bound for
a given target rank (on all isogenous curves). As noted there, we exclude(25) prime
factors larger than 108. The largest prime divisor in our rank 6 data is 78988561
from d = 681563383055674, and four others(26) have a prime factor exceeding 107.

In Table 2 we give a list of the smallest d for each rank r ≤ 7, with the proof of
correctness following as in §4.3. The “num” column indicates where the curve stands
(in order of d) among those that survive the 2-descent test, for instance the first rank 5
curve is the 742nd to survive the 2-descent test for rank 5.

(23)The d are larger, making each test slightly harder, while the chance of hitting a nontrivial CTP

result is lower when the target rank is 8 rather than 6.
(24)Specialised code could undoubtedly make the CTP test faster, but we have not pursued this.
(25)In the rank 8 data up to 260, we find 10.2% of the survivors with a prime factor exceeding 107,

another 21.9% with one exceeding 106, while the majority (67.9%) have no prime factor this large.
(26)The most notable are d = 336476810846858 with p = 22425577 >

√
d and 132233570668249

which is 41 · 227089 · 14202401. The latter and 119222067089 = 3769 · 4729 · 6689 are currently the

only known rank 6 twists that only have 3 prime factors.
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r d factorisation num
1 5 1
2 34 2 · 17 1
3 1254 2 · 3 · 11 · 19 3
4 29274 2 · 3 · 7 · 17 · 41 2
5 48272239 23 · 31 · 79 · 857 742
6 6611719866 2 · 3 · 17 · 31 · 449 · 4657 1346
7 797507543735 5 · 7 · 17 · 97 · 173 · 79873 4388

Table 2. Smallest rank r quadratic twists y2 = x3 − d2x

8.2.1. Data and comments. — One difficulty with this method is the large amount
of unwanted 2-Selmer survivors that then fail a 4-Selmer test. Comparatively, the
(u, v)-search sidesteps the (substantial) rank 0 subset. Similarly, a point on a rank 1
curve is not likely to be of low height, so the (u, v)-search avoids most rank 1 curves.

We implemented a variant of the C code that Rogers gave us. With the upper
limit of 108 on prime divisors of d, it takes about 2 minutes to find all 955353 rank 6
survivors up to 240, about 2.5 minutes to find all 529011 rank 7 survivors up to 245,
and again about 2.5 minutes to find all 36771 rank 8 survivors up to 250 (all timings
on one core), with the behaviour close to linear in the D-bound.

In Table 3 we catalogue our experiments: we list the target rank, the D-bound
for the computations, the Mestre-Nagao bound we used (if any), the total number
of survivors, the number of survivors that exceeded the Mestre-Nagao bound,(27) the
number that survived the Cassels-Tate 4-descent pairings, the number that survived
Fisher’s 4φ- and 8-descent pairings, and the number Nr for which we have r indepen-
dent points. All 8-descent survivors not included in the final column were eliminated
via the explicit formula (assuming GRH/BSD).

r D Σ5 survivors large Σ5 CTP F4φ F8 Nr
R6a 6 250 35.0 2343956262 53082687 3455 849 819 577
R7a 7 255 35.0 1382722102 31455895 29 9 9 8
R7b 7 260 45.0 55406567157 26360572 61 28 28 23
R8a 8 260 193727581 193727581 2 0 0 0
R8b 8 265 35.0 9668039478 218261949 2 0 0 0
R8c 8 270 45.0 413434136874 193744327 2 0 0 0

Table 3. Data for the 2-Selmer searches for small d

In particular, a putative rank 8 twist with d ≤ 260 must have a prime factor
exceeding 108, and we have fair confidence there is no rank 8 twist with d ≤ 270.

Note that the rank 6 data has 50.8% of its “large Σ5” data with odd d, while this
percentage is 25.3% for rank 7, and 40.8% for rank 8 (similarly for survivor counts).

(27)Note the percentages for a given Σ5 will differ from the earlier experiments (those were biassed

toward curves with a point of small height). Also, the speed of the Mestre-Nagao computations be-

comes non-negligible, even dominant in some ranges, particularly when 64-bit arithmetic is exceeded.



20 WATKINS, DONNELLY, ELKIES, FISHER, GRANVILLE & ROGERS

8.2.2. Comparison to the first method. — We find that the parametrisation from a
point of small height (§3.1.1) found 352 of the 577 rank 6 twists up to 250. The
smallest Σ5 in this range is approximately 38.064 (for d = 562073132513082); as this
is sufficiently greater than our bound of 35.0, it seems reasonable to expect that we
did not miss any rank 6 curves due to this. The smallest d that was missed by the
other method was d = 855100330394, with a point of (näıve) height 7980742225.

9. Data for high ranks

9.1. Rank 6 data. — Upon applying the 4-descent Cassels-Tate pairing (on all
isogenous curves) in Experiment P6a, we were left(28) with 21016 rank 6 survivors
with d < 260. Fisher then used pairings for higher descents to reduce the count of
rank 6 survivors to 2006. We were then able to find at least 5 independent points (via
searching to height 105 on the 2-covers of all isogenous curves) on 1230 of these.

For the 776 remaining curves, we turned to the explicit formula methodology.
Applying this with S = 26 (or smaller values), we were able to show that the rank
was less than 6 (assuming BSD and GRH) for all but 49 of them. Raising this to
S = 30 left 34 twists. For 22 of the remaining curves, we were able to find at least 5
independent points via searching to height 3 · 106 on the 2-covers of all isogenous
curves. Fisher then provided us with enough points on 9 of the 12 remaining curves,
by searching on 4-covers that he computed as in [21, §5]. We probably could have
eliminated the final 3 rank 6 survivors by the explicit formula, but instead chose to use
the 3-Selmer machinery of Magma. This was originally implemented by Stoll based
on [52]. Due to recent class group improvements by Donnelly, each run took only a
few days (assuming GRH), and found each 3-Selmer rank to be 4 (as expected).

For Experiment R6a using the method of §4.3, we had about 2.3 billion 2-Selmer
survivors for d ≤ 250, of which around 53 million had sufficiently high Mestre-Nagao
indicator Σ5. The 4-descent Cassels-Tate pairing reduced this to 3455 survivors, and
Fisher’s pairings left us with 819 of which 577 have rank 6, while using S ≤ 26 with
the explicit formula eliminated the other 242 upon assuming BSD and GRH.

For 150 of the 1486 rank 6 curves we currently only have 5 independent points, and
thus are relying on a Parity Conjecture (we expect that 4-cover computations should
resolve most of these in the near future).

9.1.1. Selmer rank data. — We can ask how often these (presumed) rank 6 curves
have nontrivial even part of X. We summarise this data in Table 4. The curve Ed is
y2 = x3−d2x, the curve E′d is y2 = x3+4d2x, and E±d are y2 = x3−11d2x±14d3. The
next 3 columns indicate how many curves have reduced 2-Selmer rank (that is, modulo
torsion) of the given size, while the fourth column gives the number of curves with
reduced 4-Selmer rank of 8. Note that if any isogenous curve has reduced 4-Selmer

(28)The total amount with B(u, v) ≤ 60 was about 35000, but we chose to switch to a hard d-bound.
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rank 8, then the reduced 2-Selmer rank of Ed must be at least 8. The information is
then replicated (to the right) for the 577 rank 6 twists with d ≤ 250.

6 8 10 8 6 8 10 8
Ed 1309 162 15 1 513 58 6 0
E′d 1184 300 2 17 516 61 0 4
E+
d 1369 117 0 0 553 24 0 0

E−d 1218 265 3 5 513 64 0 0

Table 4. Selmer rank data for rank 6 twists

There are 12 rank 6 curves that have reduced 2-Selmer rank 8 on all isogenous
curves. Of these, two (d = 457038106894219, 13449178862457819) have reduced
2-Selmer rank 10, while d = 86784274056751354 has reduced 4-Selmer rank 8 on
both Ed and E′d. Three others from these 12 have reduced 4-Selmer rank 8 on one of
the isogenous curves.(29)

9.1.2. The ratios prediction for the rank 6 data. — As already suggested by the
analysis in §5, the d which yield rank 6 are not equidistributed to various moduli.
A similar phenomenon was described (for instance) in [58, §3]. A particular prediction
from random matrix theory might be that, fixing a prime modulus p, the ratio of
the number of rank 6 d-values that are nonzero quadratic residues (QR twists) to
those that are nonquadratic residues should be about ( p+1+ap

p+1−ap
)k for some k, possibly

k = 3/2− r so k = −9/2 here.(30)

The data agree with this qualitatively quite well. We consider the 577 curves
with d ≤ 250 (the set of 1486 curves reveal similar data), and primes p up to 104.
When ap is not too close to zero, say a2

p ≥ p (which by sector equidistribution is 2/3
of the primes that are 1 mod 4), the quantity of QR twists almost always exceeds the
quantity of non-QR twists precisely when ap is negative. For p ≤ 104 this fails only
for p ∈ {4153, 5573, 8581, 9293}.

The quantitative fit is also not bad. Writing S±p for respectively the number of
QR and non-QR twists, the best-fit log-log slope derived from the 609 data points[( p+1+ap

p+1−ap

)
, S+
p /S

−
p

]
for p up to 104 that are 1 mod 4 is approximately −3.5.

Another minor comment about this congruence data is that certain primes, namely
those that are 1 mod 8, tend to divide d with large rank more often, as might be
guessed from an analysis of quadratic residue symbols (say) in the Monsky matrix.
For instance, 346 of the 1486 d-values are divisible by 13, while 729 are divisible by 17.
Similarly, 373 are divisible by 41 compared to 208 divisible by 29.

(29)Except for d = 301980419090843394 (where we only have 5 independent points), the isogeny

invariance of the BSD-quotient implies that none of the rank 6 curves has any 8-torsion in X.
(30)Predictions along these lines (first seen in [11, Conjecture 2]), are sometimes called the “ratios

conjecture” though that phrase has now taken upon a different meaning in the field of number

theoretical random matrix theory, so we prefer “ratios prediction” instead.
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9.1.3. Rank 6 distribution. — One might ask whether we can determine a putative
distribution of rank 6 twists from our limited data of 577 curves. A graphical repre-
sentation is in Figure 3, which is a log-log plot of rank 6 counts versus d, with the
x-axis (the d-value) labelled in powers of 2.

1

4

16

64

256

 32  34  36  38  40  42  44  46  48  50

Figure 3. Log-log plot of rank 6 counts vs d-value

If the rank 6 count satisfies a power law, the graph should be close to linear. The
best-fitting ecDa is e−9.1D0.45 for the 577 data points, though it could be imprudent
to speculate from such limited data. One can similarly best-fit to ecDa(logD)b, but
here the data seem totally inadequate, yielding the nonsensical (a, b) = (−0.52, 29.9).
The best-fit ec(logD)b is approximately e−42.6(logD)13.8.

9.2. Rank 7 data. — In Experiment P7a, searching to L = 108 with B(u, v) ≤ 260,
we had almost 2 million rank 7 survivors of the 2-Selmer tests, while an application
of the Cassels-Tate pairing left a mere 71 rank 7 survivors. For 13 of these we found 7
independent points via searching (see §9.2.1 and Table 5).

Fisher then eliminated 54 of the survivors via an additional isogeny descent (cor-
responding to a degree 32 map), and a 55th (d = 326800477198750566) via a pairing
corresponding to full 8-descent. The remaining 3 curves were eliminated via the
explicit formula (see §7 and Table 6).

Given that the lowest observed Σ5 (at least in this d-range) for a rank 7 twist
was 49.5, which is comfortably above our bound of 35, it seems reasonable to suspect
that we did not miss any rank 7 twists due to the imposition of this bound.
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For Experiment P7b we searched up to L = 107 with no d-limit, with the purpose
being to try to find as many rank 7 twists as possible. The Mestre-Nagao limit used
here was 40. This found just 2 new rank 7 twists, though d = 24951070826189778270
has a point (v, u) = (34440, 145343) with smaller height than for d = 797507543735.
Three of the curves found in Experiment P7a were not found here (cf. Table 5), as
the height of the point is too large (namely u ≥ 107).

The Cassels-Tate pairing for 4-descent (on all isogenous curves) eliminated all but
4902 of the 217.5 million 2-Selmer survivors. Fisher then reduced this to 67 via a
pairing corresponding to an extra isogeny descent, and then further to 21 from the
full 8-descent information. Table 5 includes the 12 that have rank 7, while the other 9
were eliminated by the explicit formula (see Table 6).

Experiment R7a considered d ≤ 255 and produced 1.38 billion 2-Selmer survivors,
of which about 31 million had sufficiently large Σ5. Of these, only 29 survived the
4-descent CTP test, and Fisher reduced the survivor count to 9. One of these was
eliminated by the explicit formula, while the other 8 do indeed have rank 7, and in
fact 5 of the 8 were not found by the methods of §3.1.1.

Experiment R7b considered d ≤ 260 and produced over 55 billion 2-Selmer sur-
vivors, of which about 26 million had sufficiently large Σ5. Of these, only 61 survived
the 4-descent CTP test, and Fisher reduced the survivor count to 28. Five of these
were eliminated by the explicit formula, while the other 23 do indeed have rank 7.
Here it appears reasonable to assume that the Mestre-Nagao bound Σ5 ≥ 45.0 did
not exclude any rank 7 curves (the smallest Σ5 in Table 5 is 49.5).

9.2.1. Twists of rank 7. — Table 5 lists the 27 rank 7 twists we found. The smallest
(canonical) height ĥ of a point on the curve is given, and if u ≤ 108 we list (v : u). The
Mestre-Nagao sum Σ5 is listed, while the last four columns record the 2-Selmer rank
(modulo torsion) of the isogenous curves as per the notation with Table 4. The E′d
curve for d = 674252816149274406 has nontrivial 4-torsion in X (thus the asterisk)

The first 8 of these 27 were found by Experiment R7a and the next 15 were ad-
ditionally found by Experiment R7b. The 13 twists with u ≤ 108 and d ≤ 261 (the
final two due to the difference between B(u, v) ≤ 60 and d ≤ 260) were found by
Experiment P7a, while Experiment P7b found the 12 twists with u ≤ 107.

9.3. Data for rank 8. — Experiment P8b with L = 107 and Σ5 ≥ 40.0 produced
8576723 twists of even parity that could have rank at least 8 from the 2-descent
information. It took about 1 thread-year to process these with CasselsTatePairing.

We found no rank 8 curves, but did note 3 examples where the 4-descent informa-
tion allows rank 8 on all isogenous curves, namely d = 211348261439238289719306,
d = 999813059534639477880290, and d = 143336924388134266044361386. Again
Fisher ran his higher degree pairings on these twists, and they showed that the first
has rank at most 4, the second at most 2, and the third at most 4.
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d ĥ v u Σ5 sd s′d s+d s−d
797507543735 12.507 79873 235280 68.4 7 7 7 7

2067037027955295 18.758 66.8 7 7 7 7
2210857604820494 15.464 1492992 4542367 64.2 7 7 7 7
7616488732945534 23.857 72.1 7 7 7 7

11805305708568790 19.736 67.5 7 7 7 7
17056825108852669 23.999 55.8 7 7 7 7
17260078859287719 13.540 57175 733552 57.3 7 7 7 7
34872135169596005 19.814 50.3 7 7 7 7
46521610872080974 15.835 717241 7213568 49.8 9 7 7 9
55423105368015838 19.879 59.5 7 7 7 7
72909257919534679 22.254 56.8 9 7 7 7
82449281639107110 13.199 376909 383264 55.7 7 7 7 7
88770882541545735 19.146 49.6 7 7 7 7

187756280391835974 15.236 1441834 3511291 61.6 7 7 7 7
204817995109385574 12.369 62936 207689 63.7 7 7 7 7
254563891000186614 27.328 66.8 7 7 7 7
262456590553161245 18.419 2202624 98856259 64.2 7 7 7 7
344926532953988286 22.695 51.6 7 9 7 7
361526994851532510 13.912 70699 1069440 55.1 7 7 7 7
626123180330580614 33.543 52.9 7 7 7 7
667159490914887399 13.910 1577 1098816 49.5 9 7 9 9
674252816149274406 17.284 22664923 22702950 58.5 9 9? 7 9
763168101947645646 27.164 49.7 7 9 7 7
1500797991496877286 16.670 9221704 13454667 51.9 7 7 7 7
1584837449477135854 16.196 7545824 7677377 57.8 7 7 7 7

24951070826189778270 11.987 34440 145343 58.2 7 7 7 7
123014221849062598515846 14.621 770953 1901416 53.8 7 9 7 7

Table 5. Twenty-seven known rank 7 quadratic twists

Recall Experiment P8c was aimed at trying to find a rank 8 twist, searching up
to L = 50 · 106 with B(u, v) ≤ 280. We used a Mestre-Nagao cut-off of Σ5 ≥ 35.0.
This yielded 22516203 curves that were possibly of rank 8. This is less than thrice as
many as from the previous experiment, even though we increased the L-bound by a
factor of 5 (so that one might expect 25x more curves). The reason is that most of
the d lie outside our B(u, v)-bound. We found no curves of rank 8. There were only 9
curves that survived the CasselsTatePairing test, and Fisher could show that each
of these has rank no more than 6 (in fact, each has rank 4 or less).

The 4-descent Cassels-Tate pairing was almost completely successful in Experi-
ments R8a, R8b, and R8c, leaving only a handful of curves to be eliminated by Fisher’s
8-descent pairings. Again we found no curves of rank 8 (see Table 3).
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9.4. Curves unresolved by 8-descent pairings. — As noted above, Fisher’s
higher degree pairings were able to eliminate a significant number of curves from our
consideration. However, some curves were still left, and for these we turned to using
the explicit formula methods (§7).

With rank 6, as noted in §9.1 the explicit formula (with S = 26 necessary for
a couple of curves) eliminated all extraneous 242 survivors of 8-descent for Experi-
ment R6a. Similarly, using S = 26 or smaller eliminated 727 of the 8-descent survivors
from Experiment P6a, and raising this to S = 30 pruned out 15 more.

We still had 3 curves of unknown rank from Experiment P6a, which as noted
above, Donnelly was to eliminate by using the 3-descent machinery in Magma. The
d-values here were 54638221936676081, 120250527896300074, 529340421036976874.
The explicit formula bounds with S = 26 were respectively 6.54, 6.48, 6.30, and with
S = 30 were 6.08, 6.01, 6.04, so perhaps Booker’s method would have sufficed.

With the rank 7 experiments, Fisher’s 8-descent pairings only left 15 survivors for
which we could not find sufficiently many independent points, and the explicit formula
was able to eliminate all of these. Table 6 gives data(31) concerning these 8-descent
survivors. We give the logarithm LN of the conductor, the cutoff parameter S so that
we consider coefficients up to eS , and the analytic rank bound b (assuming GRH) from
our computation. The r-column indicates how many independent points we found.

d v u Σ5 r LN S b

9216040803197470 34587520 58049161 50.5 5 76.3 18 6.89
248384796376777526 237402050 241161007 56.3 5 82.9 22 6.95
540517599062334679 648491137 779723300 47.9 5 85.1 20 6.84
570241054482429926 10299572\

68797169

10303548\
45705538

52.9 5 84.5 22 6.97
907957034379641662 37945242475 609479331936 48.8 5 85.4 18 6.76

1488977816607274326 18570553 18637634 45.7 5 86.5 21 6.84
1606761724662540886 56910150 63632821 35.3 5 86.6 17 6.91

96652756814973839942 1732721 3279154 46.1 3 94.8 21 6.87
132645399823739432742 1141600 3057073 51.2 3 95.4 20 6.84
493240121331611079055 228769 8313104 53.4 4 98.8 26 6.92
2229007454996999309574 1685977 3440594 41.0 1 101.1 18 6.95

15976519624716905845534 3141233 8517664 43.9 1 105.1 20 6.75
139720610704182979487414 90008 7952921 41.9 1 109.4 21 6.86

6737702895723796083999229 3438756 5072533 40.2 1 117.8 20 6.91
40044726772560104885558214 6739177 6803666 40.2 1 120.7 26 6.82

Table 6. Fifteen rank 7 survivors not eliminated by 8-descent pairings

(31)The twist d = 9216040803197470 has another small point (v, u) = (156217, 322592).
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9.5. Comments about higher descents. — Fisher also noted about 15 curves
(of target rank 7) for which his programme returns a bound of rank 1 for all three
choices of 2-torsion point, even though 4-descent allows a rank of 7. The largest
example here is d = 1176708781878011833746605406. This could be of interest, for
we know a point of quite small height, namely (v, u) = (4748713, 7465946), so that
either #X must be quite large (much more so that the 46 from the 2-part), or the
L′-value must be quite small (assuming that BSD holds). To be precise, we should
have L′(Ed, 1)/#Xodd ≈ 1/388292.

9.6. Bottlenecks to computing further. — We briefly state the limiting factors
for extending our experiments. With Experiments P6a and P7a, the d-cutoff of 260

means most (u, v) are simply ignored. For Experiments P7b and P8b the time for the
4-descent Cassels-Tate pairings becomes dominant, due to the large number of false
positives (indeed, we raised the Mestre bound Σ5 due to this). In Experiment P8c the
d-cutoff (now 280) again eliminates the great majority of (u, v) pairs.

For the experiments using the method of Rogers (§4.3), the great number of false
positives (thus Cassels-Tate pairings) again dominates, though perhaps with a suffi-
ciently large Mestre bound the time for the 2-Selmer tests would be comparable.

10. Musings about a rank 8 twist

Here we speculate about when one might expect to find a rank 8 twist (if one
exists). The conductor Nd will also appear below; for squarefree d it is either 32d2

or 16d2 depending on whether d is odd or even.
There are competing conjectures for the size of the smallest d of a given rank. The

first is r ∼ 1
2

logNd

log logNd
, which is an upper bound under GRH ([7, §2.11]). This is also

the upper bound one obtains for the congruent number curve from 2-descent (counting
the number of prime factors of d). One impetus for this guess is the function field
analogue, though [56, Conjecture 10.5] is not restricted to twist families. The second
guess is approximately the square root of this [45, Corollary in Appendix] (only an
upper bound is stated), possibly with the log log(Nd) in the numerator [20, (5.20)].(32)

Again neither of these suggestions was originally restricted to twist families.
The first guess looks contraindicated by the data, as it predicts that by d ≈ 260

we should already have seen rank 9. Of course one can speculate a smaller constant
than 1

2 , though for an analogous problem [19, §5] it seems that the secondary terms
actually seem to increase the main term for small conductors. Furthermore, one still

(32)One could also use Heath-Brown’s result [25] on the density of d with a given 2-Selmer rank

to conjecture something similar. Namely, the density of d with (reduced) 2-Selmer rank of r is

proportional to 2r/
Q
j≤r(2

j − 1), which on a logarithmic scale is ∼ 1/2r
2/2. If this predicts the

size of the smallest d as 2r
2/2, inversion gives r ∼

p
2 log d/ log 2 ∼

p
logNd/ log 2. Perhaps using

isogenous curves could sharpen this, or one might consider an analogue for 2l-Selmer ranks.
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must muse on an explanation of the r = 7 data. Even if one uses d ≈ 1015 (close
to the second r = 7 data point) and takes ratios so as to dismiss the constant, one
has(33) F (260)/F (1015) ≈ 8

7 for F (d) = logNd

log logNd
, implying 260 to be the expected size

for rank 8 under this model.
The situation is not quite so bad with a guess such as(34) r ≈ c

√
logNd, at least

if one (rather rashly) assumes the r = 7 data to be an outlier point, and so substi-
tutes d ≈ 1015 for it. But even upon this assumption one finds (by taking ratios as
above, and solving G(x)/G(1015) ≈ 8/7 with G(d) =

√
logNd) that r = 8 should

appear around 6.6 · 1019, bordering the range where we have guarded confidence.(35)

11. A variant of a heuristic of Granville

We now give a heuristic of Granville, which purports to bound the rank of elliptic
curves in various families, most specifically quadratic twists. We then give extensions
of this heuristic, and some warnings concerning similar problems.

Fix E : Y 2 = f(X) = X3 + aX + b, and consider quadratic twists in projective
form as

Ed : y2z = x3 + ad2xz2 + bd3z3.

Granville’s idea is that we can guess an upper bound on the number of (integral)
(d, x, y, z) points on this surface (in some range, considering d as a variable) while
one twist of sufficiently large rank will produce more points than this upper bound.

11.1. Heuristic for the number of integral points. — The above formula for Ed
has some implications for primitive integral points (x, y, z): first z is cube, say z̃ = 3

√
z;

then x ≡ 0 (mod z̃); and also f̄(x, dz) ≡ 0 (mod y2) with f̄(X,Z) = X3+aXZ2+bZ3.
We next split the variables into dyadic-like intervals,(36) taking |d| ∼ D, then |x| ∼ T
and z ∼ U/D. We also assume that (x3 + ad2xz2 + bd3z3) does not generically have
much cancellation, so that typically we have y ∼

√
DV 3/U where V = max(T,U).

Following Granville’s lead, we then proceed to estimate the number ND(T,U)
of (d, x, y, z) points with |d| ∼ D and |x| ∼ T and z ∼ U/D as

ND(T,U)�
?

∑
d∼D

∑
y∼
√
DV 3/U

∑
z̃∼ 3
√
U/D

∑
x∼T,z̃|x

f̄(x,dz̃3)≡0 (y2)

1.

The y2-congruence has a density of solutions given by approximately σf (y2)/y2,
where σf (y2) is the number of roots of f modulo y2.

(33)Here we use Nd = 32d2 as with odd d; the adjustments for Nd = 16d2 with even d are minor.
(34)If we included a log log in the square root the d-estimate for r = 8 then goes down by about 10;

it goes up by about 50 (to around 272) if one inserts the reciprocal of log log.
(35)With r = 6 and d ≈ 6 · 1010 (the 2nd rank 6 twist), we similarly get r = 8 around 5.5 · 1019.
(36)In this section we use the notation a ∼ A to denote a in a dyadic interval A ≤ a ≤ 2A, or if

necessary A ≤ a ≤ A+A/F (A) where F (x)→∞ slowly as x→∞, say F (x) = log log x.
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Granville uses this density to make the heuristic guess that

ND(T,U)�
??

∑
d∼D

∑
y∼
√
DV 3/U

σf (y2)
y2

∑
z̃∼ 3
√
U/D

T

z̃
� TD

√
U

DV 3

(
logDV 3/U

)η−1
,

where η ∈ {1, 2, 3} is the average number of roots of f modulo primes.
Summing dyadically over T,U up to a bound G accrues an extra logarithm (from

the T = U contributions), and this gives us an overall bound of

CD(G)�
??

√
D(logG)η

for the number CD(G) of points (d, x, y, z) with |x|, z ≤ G and |d| ∼ D.

11.1.1. Remarks. —

– Granville notes that something like this should be provable for G � Dδ for
some δ > 0 via sieve theory, but he applies it for G ≈ eDl

with l > 0.
Compare the work of Hooley [27] regarding solutions to Pell equations.

– The original Granville heuristic dealt with dY 2 = Z(X3 + aXZ2 + bZ3), where
one seems to lose a logarithm due to the Z-factor on the right.

– At a cruder level, writing x = x̃z̃, we have z̃ ∼ S, x̃ ∼ S2D, and so y2 ∼ S6D3.
Taking (x̃, z̃) pairs and (crudely) asking for y2 to be a square of this size gives the
probability S3D/

√
S6D3. Summing over d yields

√
D integral points per dyadic

interval. Counting local roots for f is more precise in obtaining logarithms.

11.2. Relating this to high rank curves. — Next we count the number of points
of “small” height on an elliptic curve of rank r and regulator R, where asymptotically
the number of points up to (canonical) height H as H →∞ is Hr/2/

√
R. We assume

(from ellipsoids) this is a lower bound for H � R1/r and that canonical and näıve
heights are close. The conjectural BSD formula implies Rd �

√
D · L(r)(Ed, 1) for

twists d ∼ D (the variation of the real period being dominant), and a Lindelöf-like
hypothesis would imply L(r)(Ed, 1)�ε D

ε for all ε > 0. From this we obtain

Hr/2

D1/4+ε
�ε

Hr/2

√
R
� # of pts up to heightH on

one rank r twist of size D � CD(eH)�
√
DHη.

Finally, we must guess how large we can take H = Dl. Plugging into the above, we
get r ≤ 2η + 3

2l as D →∞, so in particular any l > 0 gives an upper bound on ranks
in twist families. Contrarily, allowing l > 3/2 implies r ≤ 2 for the generic case η = 1,
while the data of [58] suggest otherwise. Granville offers, in relation to the size of
solutions to Pell equations, that l = 1

2 seems reasonable, leading to r ≤ 2η + 3.
For curves with full 2-torsion (η = 3) there is an additional subtlety, as every such

curve is isogenous to one with only one 2-torsion point (η = 2), and it is unclear
whether the bound for the latter should dominate. If so, one obtains an asymptotic
bound of r ≤ 7 for quadratic twists of an elliptic curve with 2-torsion. Obvious
additions allow heuristic guesses about densities.
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11.3. Adaptation to cubic twists. — One can easily adapt Granville’s heuristic
to cubic twists of X3 + Z3 = 1. Here dY 3 = X3 + Z3 for the twists, which gives the
congruence X3 +Z3 ≡ 0 (mod Y 3). Upon writing σ(Y 3) for the number of cube roots
of unity modulo Y 3, in each dyadic T -range we get a heuristic bound for the number
of (d,X, Y, Z)-points with d ∼ D and X,Z ∼ T as∑

Y∼T/D1/3

∑∑
X,Z∼T

X3+Z3≡0 (Y 3)

1� T 2
∑

Y∼T/D1/3

σ(Y 3)
Y 3

� D2/3(log T )ν−1,

where ν = 2 is the average number of cube roots of unity modulo p as p→∞.
Summing dyadically over T gives a heuristic upper bound of D2/3(logG)2, which

is to be compared to the lower bound of Hr/2/D1/6 coming from counting points
in ellipsoids. With H = logG = Dl, this implies rl

2 −
1
6 ≤

2
3 + 2l, or r ≤ 4 + 5

3l .
Granville suggests that l = 1

3 is appropriate here, yielding r ≤ 9. Here the finitely
many exceptions would include the examples found by Elkies and Rogers [18] that
have rank 11.

As noted by Elkies, the above curves are isogenous to dY 3 = XZ(X + Z), where
the right-side factors completely. From this, we might speculate that the situation of
“arithmetic influence” is analogous to quadratic twists of curves with full 2-torsion.

11.4. Other twists, and the family of all elliptic curves. — It does not seem
that Granville’s heuristic can be directly adapted to quartic or sextic twists. However,
probabilisitic reasoning of a similar sort, which seems not to go past what is already
available via conjectures of Lang [29], suggests the following bounds:(37) that r ≤ 21
except for finitely many elliptic curves; that r ≤ 13 for all but finitely many (Mordell)
curves y2 = x3 + k; and that r ≤ 11 for all but finitely many quartic twists of the
congruent number curve y2 = x3 − nx. Furthermore, one might presume each of the
“borderline” cases should have no faster than log-power growth as an asymptotic.

However, as with the cubic twist case above, the current records exceed the bounds
suggested above, namely rank 14 with

y2 = x3 + 402599774387690701016910427272483x

for quartic twists (listed in [1, Acknowledgements]), rank 15 for the Mordell curve

y2 = x3 + 46974552981863676115647417

(see [17]),(38) and rank 28 for elliptic curves over the rationals (see [16]).(39)

(37)In general, if up to (absolute) discriminant D there are Dδ members of the family, the bound

would be r ≤ 2τ − 1 + 24δ where τ is the generic number of factors of the relevant form.
(38)Elkies has “many” such r = 13 curves, but it is unclear if the growth rate exceeds a log-power.
(39)It so happens that this curve of Elkies has logN

2 log logN
≈ 28.16, and [19, §5] again gives some

evidence (admittedly a bit tenuous) for such growth. Meanwhile, the rank 24 curve [32] actually has
logN

2 log logN
≈ 20.39 (and Elkies has a rank 24 curve with 19.86 here) indicating that the secondary

terms should play some rôle here. (continued)
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11.5. Further warnings. — In addition to the previous paragraph, there are sim-
ilar problems where one can notice possible failings of probabilistic models. For
instance, Elkies notes (in a letter to Zagier [15] reproduced in the appendix to [57]),
one can achieve large integral points on elliptic curves Y 2 = X3 + AX + B (where
all four variables are parameters), namely an infinite family with logX

logH → 12 where
H = max(|A|1/2, |B|1/3), whereas the probabilistic heuristic suggests a limiting upper
bound of 10 for this quotient.(40)

Similarly, for integral points of small height on curves y2 = x3 + Ax + B, say
|x| ≤ H2, |y| ≤ H3 with |A| ≤ H4 and |B| ≤ H6, upon looping over (x, y,A) and
solving for B, one finds that there are H9 such (x, y,A,B) with an integral point
of small height. The paper [19] extends this observation to pairs of integral points,
essentially indicating a bound like H8(logH)• (for some unspecified power of logH).
One can pass from “integral points” of small height to “rational points” of small height
via increasing the power of logarithm, and a similar logarithmic effect should come
about from enlarging the notion of “small height” to any polynomial bound in H.
However, the rank 11 (or 12) families of Mestre [37, 38] have 11 (or 12) independent
points, with all of these of small height (indeed, for the points to be written down
easily, they must of necessity be of polynomial height). So the natural extrapolation
of this heuristic about k-tuples of points of small height appears to break down.

11.6. Data about Granville’s heuristic. — There are several possible avenues of
trying to collect data about Granville’s heuristic, particularly the first consideration
(in §11.1) regarding the bound on integral points on the twist surface. For instance,
again sticking with the congruent number curve, one could take the twisting para-
meter d in a dyadic-like range around 104, so that the regulators might typically be
of size 100. This is sufficiently small that one could expect to be able to find Mordell-
Weil generators on all the twists, either by Heegner points for twists of rank 1, or
by 4-descent and point searches for twists of higher rank. In fact, taking d ∼ 105

or even d ∼ 106 may be feasible, but one still must consider whether the asymptotic
behaviour is beginning to be seen.(41)

It has also been suggested that 28 is so large that one should not expect it to be a natural barrier.

However, given the discussion in the next subsection, namely that parametrisations often allow one

to beat the strong Lang surmises by a small amount, one might alternatively propose that 28 does

not really exceed 21 to an irrefragable extent.
(40)Elkies considers Q(t)Y (t)2 = X(t)3 +A(t)X(t) +B(t) where deg(X,Y,A,B) = (4, 5, 0, 1) and Q

is quadratic; via a parameter count there should be a nondegenerate 0-dimensional solution variety,

which happens to yield a rational point here. Upon scaling appropriately, the sparse (Pellian) set of

t-values for which Q(t) is a square then give large integral points via specialisation.
(41)One of Granville’s concerns was whether one should really expect the bound

√
D(logG)η as

opposed to
√
D(logD)η , particularly in ranges where logG is much larger than logD.
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Another idea, especially as Granville uses solutions of Pell equations to intuit
that l = 1/2, is to investigate solution sizes of conic twists, namely dy2 = f(x) with f
quadratic. Some calculations in this regard have been carried out by Lacasse [28].

12. Data from affiliated experiments

Here we give the data for the experiments described in §3.2 and §3.3.

12.1. Initial data from rank 2 families. — We recall the rank 2 families intro-
duced in §3.2. The first (I) has w(w+1)(w−1)(w+2)(2w+1)(w2 +w+1)y2 = x3−x.
Writing w = m/n, via the symmetries of the homogeneous octic polynomial in m

and n, we can restrict to m,n that are not congruent modulo 3. The second (II)
family has 3(w + 1)(w − 1)(w2 + 2)(2w2 + 1)y2 = x3 − x. For both families, for the
purposes of comparison, we considered w up to height 104, which meant only minor
modifications to our factoring tables. One goal of this experiment was to see how
many rank 6 curves are found up to height 104 – unless the count exceeds that from
the rank 1 family, it is probably not worth trying to find a rank 8 example in I or II.

Table 7 lists the data we obtained from these experiments. It lists the number
of m/n up to height 104 that survived the 2-Selmer test (note that a few d appear
twice), the number of d that survived the 4-descent Cassels-Tate pairing,(42) then
the number that survived Fisher’s higher pairings, the number of curves on which we
found at least (r− 1) independent points, followed by the number of unknowns (after
applying the explicit formula machinery), and finally the smallest example (if any)
for the target rank. The first two lines correspond to the full (u, v) experiment, and
the latter ones to the indicated families. In these comparisons we omitted the Mestre-
Nagao filtration step.(43) For some curves, Fisher’s implementation took too long to
compute a bound; the number of such failures is noted by a plus sign in the tabulation.
For instance, 11 of the 6135 Family I rank 6 survivors took too long at the 4φ-step,
and 342 of the 1437 remaining hit time constraints with the 8-descent pairing.

Fam r num CTP F4φ F8 Nr ? first
(u, v) 6 16692 36 21 18 17 0 779/134

7 740 0 0 0 0 0
I 6 447030 6135 1437+11 122+342+11 1 449 227/210

7 56197 38 3 0 0 0
II 6 546208 7839 1416 380+6 18 133 103/41

7 80275 76 5 4 0 0

Table 7. Comparison with rank 2 families up to height 104

(42)There was also a missing step in the Magma integer factorisation code (not detecting powers

before entering ECM in all cases), which caused CasselsTatePairing to take hours occasionally.
(43)There was one d in the (u, v) family which survived the descent tests but had rank only 4 (using

the explicit formula); this d = 344333282586 has Σ5 ≈ 34.566, less than our cutoff of 35.
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Family II contains a number of examples of notable rank. For instance, Elkies
notes m/n = 18 gives the rank 5 twist d = 205015206 found by Rogers.(44) Similarly
m/n = 103/41 gives the smallest rank 6 example, while both m/n = 229/146 and
m/n = 248/203 yield d = 61471349610. We found 18 curves of rank 6 via searching
to 105 on 2-covers (increasing to 106 yielded no additional ones), and currently have
133 remaining curves, having pruned the original list of 386 via the explicit formula
with S = 26. As a general conclusion, this Family produces a comparable amount of
high-rank curves to the (u, v) family, but also produces a lot more false positives.

Our results are largely inconclusive for Family I, due to computational difficul-
ties.(45) Note that Family II had 4 rank 7 survivors after the 8-descent pairing was
applied (all were eliminated by the explicit formula with S = 22 or less), while Fam-
ily I had none. Also, the largest Σ5 for Family I is only 54.569 (for m/n = 7382/1531),
much less than 65.873 for Family II.

12.2. Data concerning the lattice search method. — We recall the lattice-
based method given in §3.3. We parametrise the square divisors of uv(u+v)(u−v) via

d2
1|u, d2

2|v, d2
3|(u+ v), d2

4|(u− v),

and then loop over pairwise coprime (d1, d2, d3, d4), looking for short vectors in the
(u, v)-lattice. The lattice determinant D2 =

∏
i d

2
i gives an expected (u, v) size.

In Table 8 we list points on known rank 7 twists that have maxi(di) ≤ 103 (where d2
i

is the maximal square dividing the relevant expression). The measure u/D indicates
how much enumeration of lattice points would be necessary to find such a point,
while T = max(1, u/D)2 ·maxi(di)4 quantifies the total work needed to find it.

One can see that the (u, v) that are “easily” obtained are already known from
the other experiments; indeed there is quite a large correlation between points of
“small” height (u ≤ 108) and those found by this method. We estimate that searching
the range di ≤ 2500 would take maybe a core-year with optimised code, somewhat
ignoring various issues with taking squarefree parts and exclusion of small di (either
individually or product-wise).

13. Complementary ideas

13.1. Short vector distribution. — Rubin and Silverberg give equivalent condi-
tions for the unboundedness of ranks in quadratic twist families in [48]. This involves
short vectors in the lattices Lα,d,d′ = {(u, v) ∈ Z2 : d2|(u−αv), d′2|v} where α satisfies
d2|f(α) with y2 = f(x) defining the elliptic curve E.

(44)This is cited in [50, Table 2] as appearing in [46], though [46] lists 4132814070 for rank 5.
(45)Admittedly, we did not make so much effort, only applying the explicit formula with S = 24

(eliminating 25 of 475 curves), and searching on 2-covers up to 105.
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d v u u/D T [d1, d2, d3, d4]
797507543735 79873 235280 6.93 2.36E10 [4, 1, 57, 149]

351232 367625 8.42 1.78E11 [5, 224, 3, 13]
2705233 3764480 0.40 2.29E10 [16, 167, 9, 389]

2210857604820494 1492992 4542367 19.1 2.04E14 [1, 864, 11, 25]
17260078859287719 57175 733552 643 1.38E13 [76, 5, 1, 3]

162377 5552384 138 3.51E14 [368, 1, 109, 1]
46521610872080974 717241 7213568 95.3 4.31E11 [16, 1, 57, 83]
55423105368015838 291489400 308455417 2.40 5.74E12 [677, 10, 19, 999]

82449281639107110 376909 383264 4166 4.86E12 [4, 1, 23, 1]
37841 1068704 1429 1.70E11 [4, 1, 11, 17]

6320405 6991648 101 7.42E13 [292, 1, 237, 1]
1421797795 6888910758 0.09 7.71E11 [199, 473, 833, 937]

88770882541545735 19060673 197870608 4.87 4.96E12 [676, 373, 7, 23]

187756280391835974 1441834 3511291 211 1.09E13 [7, 19, 125, 1]
204817995109385574 62936 207689 4154 6.74E12 [1, 2, 25, 1]

10030425 30779392 27.2 6.59E12 [32, 5, 307, 23]
361526994851532510 70699 1069440 2191 6.65E13 [8, 61, 1, 1]
667159490914887399 1577 1098816 19622 1.58E12 [8, 1, 7, 1]

1595984 55443691 86.9 6.68E11 [47, 4, 35, 97]
674252816149274406 22664923 22702950 626 4.74E12 [15, 41, 59, 1]

1500797991496877286 9221704 13454667 151 3.80E13 [9, 202, 1, 49]
1584837449477135854 7545824 7677377 897 7.44E11 [23, 4, 31, 3]

24951070826189778270 34440 145343 72672 8.45E10 [1, 2, 1, 1]
123014221849062598515846 770953 1901416 316903 8.13E12 [2, 1, 1, 3]

Table 8. Values of (d1, d2, d3, d4) for some points on rank 7 twists.

Furthermore, their Remark 5.2 discusses that if an elliptic curve has at least one
quadratic twist with rank exceeding 8, then there is a lack of uniformity in the dis-
tribution of these vectors.(46) This becomes somewhat problematic when one starts
with a curve of rank 9 or more, and then twists it. Granville’s heuristic attempts
to bypass this issue by requiring that the twisting parameter d be in a dyadic-like
interval. Thus for small d the implied constants can presumably be so large that
larger ranks are allowed.

13.2. Using visibility to bound rank. — It was suggested to us by N. Bruin
that we might use visibility (see [12] for instance) to bound the rank for some of the
curves for which we still have not found enough independent points. The idea is to

(46)The cutoff of 8 here appears to be related to their use of a specific statistic to measure non-

uniformity, and thus might be lowered by a sharpened heuristic.
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find l such that Edl is known to have positive rank rl, while one can suitably bound
the 2-Selmer rank (modulo torsion) of Ed over Q(

√
l) as sl. Then one bounds the

rank Ed as ≤ sl − rl, hoping this is less than the desired target.(47) The quadratic
field extension should trivialise an “unknown” 2-cover (or a pair of independent such
covers), that is, one for which it is not known whether it has points over Q.

However, in our case where we have already applied higher Selmer tests, we would
have to take more than one quadratic extension – that is, the X[4] will become X[2] at
each visibility step, and similarly for X[8] becoming X[4]. Recalling that Fisher has
performed an 8-descent pairing on our curves of interest, we would need to make X[8]
visible, and thus need to work (minimally) with a triquadratic extension.

Also, as B. Creutz pointed out to us (see [33, Proposition 4.3]), when there is
full 2-torsion the dimension of the Selmer group over Q(

√
l) increases significantly

depending on the number of primes dividing l. The idea is that various homogeneous
spaces become everywhere locally soluble upon making the field extension.

13.3. Quadratic twists of other curves. — The first part of the above method
generalises naturally to other curves, particularly those that have full 2-torsion. In
general, we can use SQUFOF [54, 23] to factor (u3 + auv2 + bv3) when it is less
than 260, and this is somewhat efficient. However, it is not clear to us how to compute
an upper bound on the 2-Selmer rank as simply as with Monsky’s formula. Another
idea is to investigate curves with Z/2×Z/6 torsion, where one could additionally try
to exploit the 3-isogeny.

Rubinstein notes that one could also change the problem slightly: consider (say)
all curves in Cremona’s database (the maximum rank is 4) – can you find a quadratic
twist of rank 8 (or rank 6 if there is no 2-torsion) of any of these? This would already
say something about Granville’s heuristic.

14. Concluding Remarks

We briefly review what we consider to be the main findings of our work.

– It seems relatively easy (though certainly nontrivial) to find rank 6 quadratic
twists of the congruent number curve. We found 577 in a nearly exhaustive
search up to 250, and an additional 909 more up to 260 (each of the latter has
at least one point of small height).
• Only 352 of the 577 curves up to 250 had a point of “small” height.
• Statistics regarding rank 6 curves are still unclear as to a prediction of a

growth rate (§9.1.3).
• The ratios prediction regarding popular congruence classes of high rank

twists is qualitatively corroborated (§9.1.2).

(47)In effect, one is making the X[2] of Ed visible upon passing to the quadratic field extension.
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– It seems rather difficult to find rank 7 quadratic twists. We found 23 up to 260

(we expect this to be exhaustive, but our methods are statistical), and 4 more
from points of small height.
• Again only 15 of these 27 curves had a point of “small” height.

– We did not find a rank 8 quadratic twist of the congruent number curve.
• Our searches for a rank 8 twist are sufficiently broad (up to 270, using a

Mestre-Nagao heuristic as a filter) for this to cast doubt on some guesses
about growth rates of ranks (§10).

• However, as noted previously, the data point for r = 7 appears to be
abnormally small, which might throw off any mundane curve-fitting anal-
ysis. In particular, a (slower) growth rate like r ∼

√
log d/ log log d is not

completely rejected by the experimental data.
• As another measure, we have searched hundreds of millions of 2-Selmer

survivors for rank 8, while for rank 7 the first curve appeared with the
4388th such survivor (see Table 2).

• Granville gives a heuristic which, when suitably interpreted, could predict
that 7 is the largest rank in the family (§11).

– There are other methods that could be used to try to find high rank twists.
• Foremost of these would seem to be using the rank 2 parametrisation given

by Family II in §3.2. Such a parametrisation could be a way to confound
Granville’s heuristic, in parallel with the examples in §11.5. However,
even if it beats the “probabilistic” estimate on the rank, it might only do
so by 1 or 2 at most.

• The use of different search methods (§3.3) is another path to explore.

15. Electronic availability

The 27 twists of rank 7 and 1486 of (presumed) rank 6 are available for download
from http://magma.maths.usyd.edu.au/~watkins/PTS.r6r7, the format being a
Magma file that takes about 10 seconds to load, and this gives a set of (known)
independent points for each twist in the corresponding arrays RANK6 and RANK7.

Some of the code we used in this project can be downloaded from
http://magma.maths.usyd.edu.au/~watkins/CONGCODE.tar.
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