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Abstract. This is a slightly expanded write-up of my three lectures at the Additive Com-

binatorics school. In the first lecture we introduce some of the basic material in Additive
Combinatorics, and in the next two lectures we prove two of the key background results, the

Freiman-Ruzsa theorem and Roth’s theorem for 3-term arithmetic progressions.
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1. If A + B is small what do A and B look like ?

2. The Geometry of numbers.

3. Structure of a Bohr set.
4. Freiman homomorphisms.

5. The Freiman-Ruzsa theorem.
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Lecture I: Introductory material

I.1. Basic Definitions

Let A and B be subsets of G, an additive group. Typically we work with the integers
Z, or the integers mod N , that is (Z/NZ), though sometimes with other groups like R or
Zk. The sumset of A and B is defined by

A + B := {g ∈ G : There exist a ∈ A, b ∈ B such that g = a + b}.

Typically we write A + B = {a + b : a ∈ A, b ∈ B} with the understanding that elements
are not repeated in A + B. For example, {1, 2, 3}+ {1, 3} = {2, 3, 4, 5, 6}.
The addition of sets, “+”, is commutative if (G, +) is commutative. It is also associative,
and it is distributive over unions, that is, A + (B ∪ C) = (A + B) ∪ (A + C).

Other important definitions include

kA : = A + A + · · ·+ A;

b + A = {b}+ A, a translate of A;

A−B = {a− b : a ∈ A, b ∈ B};
k ⋄A = {ka : a ∈ A}, a dilate of A;

and A ⋄B = {ab : a ∈ A, b ∈ B}.

Having given all this notation we note that we will abuse it by writing NZ instead of N ⋄Z,
for the integers divisible by N .

Warm Up Exercises

1.1. Show that if A− A = {0} then |A| = 1.

1.2. Show that k ⋄A ⊆ kA; when are they equal?

1.3. Show that |A| ≤ |A + B| ≤ |A||B|.
1.4. When do we have |A + B| = |A||B|?

If a ∈ A then A + {a} ⊂ A + A and A − {a} ⊂ A − A, so that |A + A|, |A− A| ≥ |A|.
Also |A + A|, |A− A| ≤ |A× A| ≤ |A|2.
1.5. Improve these upper bounds for |A + A| and for |A− A|.

One of our main objectives is to study the size and structure of sumsets in Z. Above
we have considered finite sets, but there is an interesting history of results on summing
infinite sets: Define A≥m := {n ∈ A : n ≥ m}. A set of integers A is a basis of order h if
h(A∪{0}) ⊇ Z≥m. We now give several well-known examples. Let P be the set of primes.

Lagrange’s theorem: 4{n2 : n ∈ Z} = Z≥0

Goldbach’s conjecture : 2P≥3 = 2 ⋄ Z≥3 or 3(P ∪ {0}) = Z≥2 ∪ {0}
Generalized twin prime conjecture : P≥m − P≥m = 2 ⋄ Z for all m.
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Therefore Lagrange’s theorem states that the squares form a basis of order 4, and Gold-
bach’s conjecture postulates that the primes form a basis of order 3.

I.2. If A + B is small then A and B are...?

Suppose that A and B are finite sets of integers, say A is a1 < a2 < · · · < ar, and B is
b1 < b2 < · · · < bs. Then A + B contains the r + s− 1 distinct elements

a1 + b1 < a1 + b2 < a1 + b3 < · · · < a1 + bs < a2 + bs < · · · < ar + bs,

so that

(1.1) |A + B| ≥ |A|+ |B| − 1.

Can we have equality in (1.1)? That is, what if |A + B| = |A| + |B| − 1 ? We will write
down another list r + s− 1 distinct elements of A + B, namely

a1 + b1 < a2 + b1 < a2 + b2 < · · · < a2 + bs−1 < a2 + bs < · · · < ar + bs.

If |A + B| = r + s − 1, then the terms in each list must be the same and so we have
a1+b2 = a2+b1, and a1+b3 = a2+b2, etc., implying that a2−a1 = b2−b1 = b3−b2 = . . . . In
fact we can deduce that A and B are both arithmetic progressions with the same common
difference; that is there exists a non-zero integer d such that

A = {a + id : 0 ≤ i ≤ I − 1} and B = {b + jd : 0 ≤ j ≤ J − 1}.

Thus A and B are highly structured. However if A is a large subset of {a+id : 0 ≤ i ≤ I−1}
and B is a large subset of {b+jd : 0 ≤ j ≤ J−1}, then we expect that |A+B| = |A|+|B|+∆
for some small ∆, yet A and B may not have much internal structure. The key thing is that
they are both large subsets of arithmetic progressions with the same common difference.

Another interesting case is given by

A = {1, 2, . . . , 10, 101, 102, . . . , 110, 201, 202, . . . , 210}
= 1 + {0, 1, . . . , 9}+ 100 ⋄ {0, 1, 2},

B = 3 + {0, 1, . . . , 7}+ 100 ⋄ {0, 1, . . . , 4},
and A + B = 4 + {0, 1, 2, . . . , 16}+ 100 ⋄ {0, 1, . . . , 6},

so that |A| = 30, |B| = 40 and |A + B| = 119. These are examples of a generalized
arithmetic progression (GAP):

C := {a0 + a1n1 + a2n2 + · · ·+ aknk : 0 ≤ nj ≤ Nj − 1 for 1 ≤ j ≤ k},
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where N1, N2, . . . , Nk are integers ≥ 2. This GAP is said to have dimension k and volume
N1N2 . . .Nk; and is proper if its elements are distinct.

Most questions about the structure of A and B, when A + B is small, are open! We
study the structure of A when A + A = 2A is small (i.e., the case B = A). For a GAP C
we have |2C| < 2k|C|; and, indeed, if A ⊂ C with |A| ≥ δ|C| then

|2A| ≤ |2C| < 2k|C| ≤ (2k/δ)|A|.

What about the converse? If |2A| is a small multiple of |A| then what possible A are
there? A rather daring guess is that the only possible such A are large subsets of GAPs;
and indeed this is the Freiman-Ruzsa theorem which we will prove in our next lecture.

The Freiman-Ruzsa theorem. If |2A| is “small” then A is a “large” subset of a GAP.

Precise quantifiers in an explicit version of this result are complicated and best left till
we study it in more detail.

I.3. Densities

The Schnirelmann density of a set A of integers is given by

σ(A) := inf
n≥1

#{a ∈ A : 1 ≤ a ≤ n}
n

,

so that A(n) ≥ nσ(A) for all n ≥ 1. It is easy to see, by the pigeonhole principle that if
0 ∈ A∩B and σ(A)+ σ(B) ≥ 1 then A + B ⊇ Z≥0. By counting the elements in A +B of
the form ai + bj with ai ≤ ai + bj < ai+1, Schnirelmann proved that if 1 ∈ A and 0 ∈ B
then

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B).

This is more usefully rewritten as (1−σ(A+B)) ≤ (1−σ(A))(1−σ(B)), since then we see
that (1−σ(hA)) ≤ (1−σ(A))h. The last two results thus imply that if 1 ∈ A and σ(A) > 0
then A is a basis of order 2h where the integer h is chosen so that (1 − σ(A))h ≤ 1/2.
(Note that σ(A) > 0 implies that 1 ∈ A; and that some condition like 1 ∈ A is necessary
to avoid A, and hence hA, being a subset of the even integers.)

The lower density d(A) is defined by

d(A) := lim inf
n→∞

#{a ∈ A : 1 ≤ a ≤ n}
n

,

We will prove that if d(A) > 0 then for all ǫ ∈ (0, d(A)) there exists r = rǫ such that
σ(A(r)) ≥ d(A) − ǫ, where A(r) = {a − r : a ∈ A, a > r}. There exists an integer
nǫ such that if n ≥ nǫ then #{a ∈ A : 1 ≤ a ≤ n} ≥ (d(A) − ǫ)n. If there exists
any n ≥ nǫ with #{a ∈ A : 1 ≤ a ≤ n} < d(A)n then there must be an n ≥ nǫ,
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say n = mǫ, with ρǫ := #{a ∈ A : 1 ≤ a ≤ n}/n minimal. Hence if n > mǫ then
#{a ∈ A : mǫ < a ≤ n} ≥ ρǫ(n − mǫ) ≥ (d(A) − ǫ)(n − mǫ). On the other hand if
#{a ∈ A : 1 ≤ a ≤ n} ≥ d(A)n for all n ≥ nǫ then either σ(A) ≥ d(A), or there exists
a maximal rǫ (which is necessarily < nǫ) with #{a ∈ A : 1 ≤ a ≤ rǫ} < d(A)rǫ, and the
result follows.

A straightforward sieve argument implies that at least 1/4 of the even integers can be
written as the sum of two primes; that is d(2P≥3) ≥ 1/8. Using the argument of the
previous paragraph, and Schnirelmann’s theorem, one can prove that the primes are a
basis of order 11 (or less). It can also be shown that the k-th powers of integers form an
additive basis.

For a finite set of integers S define the cube S by

S :=

{

∑

s∈S

ǫss : ǫs ∈ {−1, 0, 1} for all s ∈ S

}

,

which is a GAP of dimension |S| and volume 3|S|.

Theorem. If A is a set of integers with d(A) > 0, then there exists a finite set of integers

S such that A−A + S = Z.

Proof. If A − A 6= Z then there exists m 6∈ A − A, and so A and m + A are disjoint. Let
A1 = A ∪ (m + A), so that d(A1) = 2d(A) and A1 − A1 = A − A + {m}. If this is not Z,
define A2, A3, . . . Therefore |S| ≤ k where k is the largest integer for which 2kd(A) ≤ 1.

Since d(2P≥3) ≥ 1/8, we can deduce that there exists a set S1 of no more than three
integers for which

Z = 2P≥3 − 2P≥3 + S1.

It is interesting to determine how small a set one needs to “complete” a given set in this
manner. Thus above we added S1 to 2P≥3 − 2P≥3 to obtain Z, though we believe that
P≥3 − P≥3 + {0, 1} = Z. For sums of squares we have 4{n2 : n ∈ Z} = Z≥0; and one can
show that 3{n2 : n ∈ Z} + {0, 2} = Z≥0. A challenge is to find “thin” sets B and C for
which 2{n2 : n ∈ Z}+ B = Z≥0, and for which P + C = Z≥0.

I.4. The Dyson transformation

Many of the early papers in “additive number theory” were characterized by compli-
cated, seemingly ad hoc, arguments. However, once Freeman Dyson introduced a simple
map between pairs of sets, researchers found new, cleaner arguments in many of the es-
sential questions: For e ∈ A let Be := {b ∈ B : b + e 6∈ A}, and define the Dyson
transformation of A, B with respect to e to be

δe(A) := A ∪ (e + B) = A ∪ (e + Be), and δe(B) := B \Be.
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Notice that Be ⊆ B and (e+Be)∩A = ∅. There are several other observations to be made
besides:

e + δe(B) ⊆ A ⊆ δe(A), and |δe(A)|+ |δe(B)| = |A|+ |B|;
A ∩ (e + B) = e + δe(B) = δe(A) ∩ (e + δe(B)),

and A ∪ (e + B) =δe(A) = δe(A) ∪ (e + δe(B)),

as well as the non-trivial δe(A) + δe(B) ⊆ A + B.

Using a sequence of Dyson transformations one can easily prove Mann’s “best possible”
improvement of Schnirelmann’s theorem:

Mann’s theorem. If 0 ∈ A ∩B then

σ(A + B) ≥ min{1, σ(A) + σ(B)}.

Note that this result does not extend directly to questions about lower density; that is,
d(A+B) ≥ min{1, d(A)+d(B)} is not true in general: For example, if A = B = {n ≡ 0 or 1
(mod m)} then A + B = {n ≡ 0, 1 or 2 (mod m)}. So, to understand set addition with
respect to lower density, we certainly need to understand set addition mod N . Here the
key result is

The Cauchy-Davenport theorem. If A and B are non-empty subsets of Z/NZ where

0 ∈ B, and (b, N) = 1 for all b ∈ B \ {0}, then

|A + B| ≥ min{N, |A|+ |B| − 1}.

Proof. By induction on |B|: If |B| = 1 then B = {0} so A + B = A which is okay. We
may assume that 1 ≤ |A| ≤ N − 1. Now A + B 6= A else for each b ∈ B, for all a ∈ A
there exists a′ ∈ A such that a + b ≡ a′ (mod N). Running through all a ∈ A we obtain
all a′ ∈ A, and so taking the sum over all a ∈ A we get |A|b ≡ 0 (mod N). By selecting
non-zero b ∈ B we have (b, N) = 1, and so N divides |A|, which is impossible.

So take e ∈ A for which e + b /∈ A. By the induction hypothesis the result holds for the
pair δe(A), δe(B) (which are non-empty since A ⊆ δe(A) and 0 ∈ δe(B)), so that

|A + B| ≥ |δe(A) + δe(B)| ≥ min{N, |δe(A)|+ |δe(B)| − 1} = min{N, |A|+ |B| − 1}.

Corollary. If A, B ⊆ Z/pZ with p prime then |A + B| ≥ min{p, |A|+ |B| − 1}.
There are just three cases in which we get equality (that is, |A + B| = |A| + |B| − 1)

when A + B is a proper subset of Z/pZ:

• Either A or B has just one element (that is, |A| = 1 or |B| = 1); or

• A and B are segments of arithmetic progressions with the same common difference (that
is, A = a + d ⋄ {0, 1, . . . , r − 1}, and B = b + d ⋄ {0, 1, . . . , s− 1} for some r + s ≤ p); or

• A and B are selected maximally so that d 6∈ A + B (that is, A ∪ (d−B) is a partition
of Z/pZ for some integer d).
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I.5. Simple Inequalities for sizes of sumsets

The Freiman-Ruzsa theorem tells us that if |A + A| < C|A| then A is a large subset of
a d-dimensional GAP, G, for some d that can be bounded as a function of C. This implies
that A − A is a large subset of G − G, a GAP that is at most twice as large (in each
direction) as G, and so |A − A| ≤ 2d|G| ≤ 2dC′|A| for some constant C′ which depends
only on C. Similarly kA− ℓA is a large subset of kG− ℓG, also a d-dimensional GAP, and
so |kA− ℓA| ≤ (k + ℓ)dC′|A|.

In this section we derive consequences of this type directly, without using the relatively
deep Freiman-Ruzsa theorem; that is, our objective is to prove that if |A+A| < C|A| then
|kA − ℓA| ≤ Ck,ℓ|A| for some constant Ck,ℓ which depends only on C, k, ℓ. We will see
that there are several easy approaches to this problem. When we prove the Freiman-Ruzsa
theorem during the next lecture, we will use such inequalities in our proof. We start with
the most basic question of this type:

I.5.1. The relationship between A + A and A− A. We will prove a little later that

(1.2)
1

2
≤ log

( |A + A|
|A|

)/

log

( |A−A|
|A|

)

≤ 3;

we are interested in determining the strongest possible form of each of these inequalities.
We give two examples

• For A = {0, 1, 3} we have A + A = {0, 1, 2, 3, 4, 6} and A−A = {−3,−2,−1, 0, 1, 2, 3},
so that |A + A| = 6 < |A−A| = 7.

• For A = {0, 2, 3, 4, 7, 11, 12, 14} we have A + A = [0, 28] ∩ Z \ {1, 20, 27} and A − A =
([−14, 14] ∩ Z) \ {−13,−6, 6, 13}, so that |A− A| = 25 < |A + A| = 26.

These isolated examples can be made into arbitrarily large examples by using the Cartesian
product: The idea simply is to take B = A(k) = A × · · · × A, so in the first case
|B + B| = 6k < |B − B| = 7k. One might object that B is not a subset of the integers
but in fact the bijection B ↔ C defined by (a0, . . . , ak−1) ←→ a0 + a17 + · · ·+ ak−17

k−1

is also a bijection, when correctly interpreted, between the sets B + B and C + C, and
between B −B and C −C. This map is called a Freiman 2-isomorphism (the “2” since it
remains a bijection when we add two elements of our set); we will discuss this in detail in
our next lecture. We thus conclude from our examples that the constant “ 1

2” in (1.2) may

not be increased above log(6/3)
log(7/3) = .81806 . . . ; and that the constant “3” in (1.2) may not

be decreased below log(26/8)
log(25/8)

= 1.03442 . . .

In fact the lower bound 1
2 in (1.2) cannot be increased at all: For given positive integer

d let A = Ad(T ) := {(x1, . . . , xd) ∈ Z≥0 : x1 + · · ·+ xd ≤ T} so that

|A| =
(

T + d

d

)

=
T d

d!
+ Od(T

d−1), |2A| =
(

2T + d

d

)

=
(2T )d

d!
+ Od(T

d−1),
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and, by counting the number of possibilities for the positive, negative and zero coordinates
in A− A separately,

|A−A| =
∑

a+b+c=d

(

d

a, b, c

)(

T

a

)(

T

b

)

=
T d

d!

d
∑

a=0

(

d

a

)2

+Od(T
d−1) =

(

2d

d

)

T d

d!
+Od(T

d−1).

Therefore we have shown that there are examples of |2A| = α|A|, with α arbitrarily large,

for which |A− A| ≫ α2
√

log α
|A|.

I.5.2. Some first bounds. We begin by establishing that for any finite sets A, B, C
inside an additive group G (whether commutative or not) we have

(1.3) |A− C| |B| ≤ |A−B| |B − C|,
by showing that there is an injection φ : (A − C) × B → (A − B) × (B − C): For each
λ ∈ A−C fix aλ ∈ A, cλ ∈ C such that aλ− cλ = λ. Then define φ(λ, b) = (aλ− b, b− cλ).
To see that this is an injection we show how to reconstruct λ and b given aλ−b and b−cλ:
First we have λ = (aλ − b) + (b− cλ), so we obtain aλ, cλ, and thus b.

We now use (1.3) to obtain all sorts of useful inequalities:

— Taking C = A gives |A−A| ≤ |A−B|2/|B|.
— Then taking B = −A gives |A−A|

|A| ≤
(

|A+A|
|A|

)2

, which is the lower bound in (1.2).

— Next taking A = rA, B = −A with C = −sA and then C = sA implies:

|(r + s)A| | − A| ≤ |(r + 1)A| |sA− A|,
|rA− sA| | − A| ≤ |(r + 1)A| |(s + 1)A|.

With the choices r = n− 2, s = 2, and r = 2, s = 1, respectively, we obtain

|nA|
|A| ≤

|(n− 1)A|
|A|

|2A−A|
|A| ≤ |(n− 1)A|

|A|
|3A|
|A|

|2A|
|A| .

We deduce that, for n ≥ 3,

|nA|
|A| ≤

( |3A|
|A|

)n−2 ( |2A|
|A|

)n−3

for all n ≥ 3;

and then that
|rA− sA|
|A| ≤

( |3A|
|A|

)r+s−2 ( |2A|
|A|

)r+s−4

for all r, s ≥ 2.

This is almost what we asked for! We wanted bounds as a function of r, s and |2A|/|A|, and
instead we have very easily obtained bounds in terms of these variables and |3A|/|A|. So the
question becomes whether one can find an easy way to bound |3A|/|A| in terms of |2A|/|A|?
Certainly such bounds can be proved by straightforward combinatorial arguments, but we
know of no proof that is quite so simple as that above. (Taking r = 1, s = 2 in the
inequalities above, we see that we could replace 3A by 2A−A in these last few comments.)
Relationships between these different quantities are explored in detail by Imre Ruzsa in
his article in this volume [R3].



AN INTRODUCTION TO ADDITIVE COMBINATORICS 9

I.5.3. Representation numbers. Denote the number of representations of n as a sum
a + b, a ∈ A, b ∈ B by

rA+B(n) := #{(a, b) : a ∈ A, b ∈ B, n = a + b},

and similarly rkA+ℓB(n), etc. There are several straightforward but useful identities: First,
by counting all ordered pairs (a, b), a ∈ A, b ∈ B we obtain

|A||B| =
∑

x

rA+B(x) =
∑

y

rA−B(y).

The solutions to a + b = a′ + b′ with a, a′ ∈ A, b, b′ ∈ B are the same as the solutions to
a− b′ = a′ − b, which are the same as the solutions to a− a′ = b′ − b, and so

E(A, B) :=
∑

x

rA+B(x)2 =
∑

y

rA−B(y)2 =
∑

z

rA−A(z)rB−B(z).

Therefore we obtain, by the Cauchy-Schwarz inequality, that

(|A||B|)2 =

(

∑

x

rA±B(x)

)2

≤ |A±B|E(A, B).

Also note that

E(A, B) ≤
{

maxx rA+B(x)
∑

x rA+B(x) = |A||B|maxx rA+B(x),

|A + B|maxx rA+B(x)2.

Now we show that

rA+B(x) ≤ |A−B|2
|A + B|

by exhibiting, for a given value of x ∈ A + B, an injection from RA+B(x) × (A + B) →
(A−B)× (A−B), where RA+B(x) is the set of representations of x as a+ b, a ∈ A, b ∈ B.
So fix a representation a + b = x, and for any λ ∈ A + B fix aλ ∈ A, bλ ∈ B such that
aλ + bλ = λ. The map (a, b, {aλ, bλ}) → (a − bλ, aλ − b) is, indeed, an injection, because
we can reconstruct our pre-image by noting that λ = x + (aλ − b)− (a− bλ), from which
we obtain aλ and bλ, then a = (a− bλ) + bλ and b = x− a.

Combining the last three displayed equations we obtain

|A + B| ≤ |A−B|2
maxx rA+B(x)

≤ |A−B|2|A||B|
E(A, B)

≤ |A−B|3
|A||B| .

Taking B = A gives the upper bound in (1.2).
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I.5.4. Disjoint unions. We start with an idea of Ruzsa that we shall see again.

Lemma 1. There exists X ⊂ B with |X | ≤ |A + B|/|A| such that B ⊂ A−A + X.

Proof. Choose X ⊂ B to be as large as possible so that the sets {A + x : x ∈ X} are
disjoint. The union of these sets contains exactly |A||X | elements, all in A + B, which
implies that |A| · |X | ≤ |A + B|.

Now if b ∈ B then (A + b) ∩ (A + x) 6= ∅ for some x ∈ X , else X would not have been
maximal, so b ∈ A− A + x, and we are done.

Take B = A− 2A in Lemma 1 to get 2A− A ⊂ A − A + X where X ⊂ 2A − A with
|X | ≤ |2A− 2A|/|A| (replacing X by −X for convenience). Add A to both sides to get

3A− A ⊂ 2A− A + X ⊂ A− A + 2X

and then, proceeding by induction, we obtain

(1.4) mA − nA ⊂ A−A + (m− 1)X − (n− 1)X for all m, n ≥ 1.

Now, since each |rX | ≤ |X |r, and as |X | ≤ |2A−2A|
|A| , we deduce that

(1.5)
|mA− nA|
|A| ≤ |A− A|

|A|

( |2A− 2A|
|A|

)m+n−2

for all m, n ≥ 1.

Another argument based on something similar to, but more complicated than, the
above lemma (see Lemma 2.17, Proposition 2.18 and Corollary 2.19 of [TV]), leads to
the inequality

|2B − 2B| ≤ |A + B|4|A− A|/|A|4.
Taking B = A in this formula, and then the first inequality in (1.2), we deduce from (1.5)
that

|mA− nA|
|A| ≤

( |2A|
|A|

)6m+6n−10

for all m, n ≥ 1.

Finally, selecting A = (n − 1)A, C = −A, B = A − A in (1.3), and then substituting in
(1.5) we obtain

|nA|
|A| ≤

|A−A|
|A|

( |2A− 2A|
|A|

)n

≤
( |2A|
|A|

)6n+2

for all n ≥ 1.

The strongest version of such an inequality that is known was first proved by Plünnecke
[Pl], whose proof has been streamlined, over the years, by Ruzsa [R1] and others (though
it is still too complicated to give here):
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The Plünnecke-Ruzsa theorem. For any m, n ≥ 0 we have

|mA− nA|
|A| ≤

( |2A|
|A|

)m+n

.

We may rephrase this as: If |2A| ≤ C|A| then |mA− nA| ≤ Cm+n|A|.

This result can be given in the slightly stronger form: If |A+B| ≤ C|A| then |mB−nB| <
Cm+n|A| for all m, n ≥ 0. Taking B = A gives the above result. Taking B = −A implies
that the assumption |A − A| ≤ C|A| yields the same conclusion, and therefore we may
replace the “≤ 3” by “≤ 2” in (1.2).

I.6. The Freiman-Ruzsa theorem in groups,
where the elements have bounded order.

Take the union of (1.4) over all m, n ≥ 1 to obtain 〈A〉 ⊂ A − A + 〈X〉. However
X ⊂ 2A−A ⊂ 〈A〉 and so

〈A〉 = A− A + 〈X〉.

Suppose that |2A| ≤ C|A|. Then |X | ≤ |2A − 2A|/|A| ≤ C4 by the Plünnecke-Ruzsa
theorem (we can get ≤ C6 if we only use the results that are proved above). That is, the
GAP 〈A〉 belongs to a union of translates of the GAP 〈X〉, which has (bounded) dimension
≤ C4. If A ⊂ G, an abelian group in which the maximal order of any element is ≤ r, then
|〈X〉| ≤ r|X|. Therefore

|〈A〉| ≤ |A−A| |〈X〉| ≤ C2|A|r|X| ≤ (C2rC4

)|A|.

I.7. The Balog-Szemeredi-(Gowers) theorem .

In many applications one does not have that A + B is small, but rather that there is
a large subset G ⊂ {(a, b) : a ∈ A, b ∈ B} which contains ≫ |A||B| elements, for which
SG := {a + b : (a, b) ∈ G} is small. One then wishes to conclude something about the
structure of large subsets of A and B. In the case that |A| = |B| there is an important
result of Balog and Szemeredi [BS], strengthened by Gowers [G1] (and subsequently by
several others) with a much easier proof – Antal Balog’s article in these proceedings [Ba]
will discuss all this in detail. Here we simply state a version of this very flexible result, in
order to get the flavour: Suppose that |A| = |B| = n and that there exists G ⊂ {(a, b) :
a ∈ A, b ∈ B} containing ≥ αn2 elements, for which SG := {a + b : (a, b) ∈ G} ≤ n. Then
there exists A′ ⊂ A, B′ ⊂ B with |A′|, |B′| ≥ (α/16)n for which |A′ + B′| ≤ (223/α5) n,
with

|G ∩ {(a′, b′) : a′ ∈ A′, b′ ∈ B′}| ≥ (α2/128)n2.
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I.8. Discrete Fourier transforms

One of the most useful tools in additive combinatorics are Fourier transforms in Z/NZ:
For a function f : Z/NZ→ C we define

f̂(r) =
N−1
∑

s=0

f(s)e
(rs

N

)

,

where e(t) = exp(2iπt). This has inverse

f(s) =
1

N

N−1
∑

r=0

f̂(r)e

(−rs

N

)

.

One has
∑

r

f̂(r)ĝ(r) = N
∑

r

f(r)g(r).

Parseval’s identity is the case f = g, namely
∑

r |f̂(r)|2 = N
∑

r |f(r)|2.
We define the convolution of two functions to be

(f ∗ g)(r) =
∑

t−u=r

f(t)g(u),

so that (̂f ∗ g) = f̂ ĝ, and

N
∑

r

|(f ∗ g)(r)|2 =
∑

r

|f̂(r)|2|ĝ(r)|2.

Taking g = f we obtain

∑

r

|f̂(r)|4 = N
∑

a+b=c+d

f(a)f(b)f(c)f(d).

Let A be a subset of Z/NZ, and then define A(n) to be the characteristic function of
A; that is, A(n) = 1 if n ∈ A, and A(n) = 0 otherwise. Hence

Â(m) =
∑

a∈A

e
(am

N

)

.

Noting that (A ∗B)(n) = rA−B(n) we deduce that

E(A, B) =
∑

n

rA−B(n)2 =
∑

n

|(A ∗B)(n)|2 =
1

N

∑

n

|Â(n)|2|B̂(n)|2.
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We also have
Â(m)B̂(m) =

∑

n

rA+B(n)e
(mn

N

)

,

which can be inverted to give

rA+B(n) =
1

N

∑

m

Â(m)B̂(m) e

(−mn

N

)

;

a special case of which is

rkA−kA(n) =
1

N

∑

m

|Â(m)|2k e

(−mn

N

)

.

I.9. Sum-Product formulas

I learnt to multiply by memorizing the multiplication tables; that is, we wrote down a
table with the rows and columns indexed by the integers between 1 and N and the entries
in the table were the row entry times the column entry.1 Paul Erdős presumably learnt his
multiplication tables rather more rapidly than the other students, and was left wondering:
How many distinct integers are there in the N -by-N multiplication table? Note that if
we take A = {1, 2, . . . , N}, then we are asking how big is A ⋄ A? Or, more specifically,
since the numbers in the N -by-N multiplication table are all ≤ N2, what proportion of
the integers up to N2 actually appear in the table? That is,

Does |A ⋄A|/N2 tend to a limit as N →∞?

Erdős showed that the answer is, yes, and that the limit is 0. His proof comes straight from
“The Book”.2 Erdős’s proof is based on the celebrated result of Hardy and Ramanujan
that “almost all” positive integers n ≤ N have ∼ log log N (not necessarily distinct) prime
factors (here “almost all” means for all but o(N) values of n ≤ N): Hardy and Ramanujan’s
result implies that “almost all” products ab with a, b ≤ N have ∼ 2 log log N prime factors,
whereas “almost all” integers ≤ N2 have ∼ log log(N2) ∼ log log N prime factors! The
result follows from comparing these two statements.

One can show that |A ⋄ A| is large whenever A is an arithmetic progression or, more
generally, when A is a GAP of not-too-large dimension. This led Erdős and Szemerédi to
the conjecture that for any ǫ > 0, there exists cǫ > 0 such that

|A + A|+ |A ⋄A| ≥ cǫ|A|2−ǫ.

Even more, Solymosi conjectured that if |A| = |B| = |C| then

(1.6) |A + B|+ |A ⋄ C| ≥ cǫ|A|2−ǫ;

and proved this for ǫ = 8/11 [S1]. We shall prove (1.6) for ǫ = 3/4. We begin by stating
the

1In my primary school we took n = 12 which was the basic multiple needed for understanding U.K.

currency at that time.
2Erdős claimed that the Supreme Being kept a book of all the best proofs, and only occasionally would

allow any mortal to glimpse at “The Book”.
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Szemerédi-Trotter theorem. We are given a set C of m curves in R2 such that

• Each pair of curves meet in ≤ b1 points;

• Any pair of points lie on ≤ b2 curves.

For any given set P of n points, there are ≤ m + 4b2n + 4b1b
1/3
2 (mn)2/3 pairs (π, γ) with

point π ∈ P lying on curve γ ∈ C.
Székely provided a gorgeous proof of this result, straight from The Book, via geometric

and random graph theory. From this Elekes elegantly deduced that if A, B, C ⊂ Z then

(1.7) |A + B|+ |A ⋄ C| ≥ 2

3
(|B||C|)1/4(|A| − 1)3/4.

Proof. Let P be the set of points (A + B) × (A ⋄ C); and C the set of lines y = c(x − b)
where b ∈ B and c ∈ C. In this case we have b1 = b2 = 1 with

m = |B||C| and n = |A + B| |A ⋄ C|.

For fixed b ∈ B and c ∈ C, all of the points {(a + b, ac) : a ∈ A} in P lie on the line
y = c(x− b), so that

#{(π, γ) : π ∈ P on γ ∈ C} ≥ |A|m.

Substituting this into the Szemerédi-Trotter theorem we obtain

(|A| − 1)m ≤ 4n + 4(mn)2/3.

If m > 64n1/2 then (|A| − 1)m ≤ 4n + 4(mn)2/3 ≤ (17/4)(mn)2/3 which yields n2 ≥
(|A| − 1)3m/77; and if m ≤ 64n1/2 then (|A| − 1)m ≤ 4n + 4(mn)2/3 ≤ 68n, which
multiplied by the trivial n ≥ |A|2 yields the same. The result follows as 2/(77)1/4 > 2/3.

Solymosi has proved (1.7) with several different counting arguments which do not involve
the Szemerédi-Trotter theorem. Here we sketch one: Consider the set of distinct points
{(a + b, ac) : a ∈ A, b ∈ B, c ∈ C} in R2. We will suppose that we can partition R2 into a
grid, with |A|/3 + O(1) lines in each direction (that is lines of the form x = r and of the
form y = s), in which each box contains roughly equal numbers of points.3 Now for each
pair b ∈ B, c ∈ C we will count the number of pairs of points (b + ai, cai), (b + ai+1, cai+1)
which belong to the same box where A is the set a1 < a2 < · · · < an. Since b+ai < b+ai+1

and |c|ai < |c|ai+1 we see that the set of points {(b+a, ca) : a ∈ A} can lie in no more than
2|A|/3 + O(1) boxes. But then the number of pairs of points (b + ai, cai), (b + ai+1, cai+1)
which belong to the same box is ≥ |A|/3 + O(1); so the total number of such pairs is
& |A||B||C|/3. Now for any two given points there is at most one triple b, c, i giving those

3This is not quite as easy as it sounds!
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two points else, taking the differences of x and y co-ordinates we have ai+1−ai = aj+1−aj

and ai+1/ai = aj+1/aj which implies that i = j and hence b = b′, c = c′. Therefore
the total number of such pairs is no more than the total number of pairs in our boxes.

There are ∼ (|A|/3)2 boxes with ∼ |A+B| |A⋄C|
(|A|/3)2 points in each box; and so with a total of

∼ |A+B|2 |A⋄C|2
2(|A|/3)2

pairs of points. Combining these remarks we deduce that

|A + B|2|A ⋄ C|2 &
2

27
|A|3 |B| |C|;

which implies the slight improvement |A + B|+ |A ⋄C| & (|B||C|)1/4|A|3/4 over (1.7).

Sum-product inequalities have also been proved over finite fields (by Bourgain, Katz,
Tao [BK], Konyagin, Chang, Glibichuk, . . . ): This was the basis for proving spectacularly
strong bounds on exponential sums by Bourgain [B2], Bourgain, Glibichuk and Konyagin
[BGK], Bourgain and Chang [BC] and others — see Kurlberg’s article herein for a dis-
cussion of this proof [Ku]. These methods have been developed for non-abelian groups,
in particular SL(2, Zp) by Helfgott [He], and then extended by Bourgain and Gamburd,
Gowers, . . . See Mei-Chu Chang’s article herein for a discussion of these directions [C2]
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Lecture II: The Freiman-Ruzsa theorem

II.1. If A + B is small what do A and B look like ?

We have already seen |A + B| ≥ |A|+ |B| − 1 and that if |A + B| = |A|+ |B| − 1 then
there exists an integer d ≥ 1 such that

A = {a + id : 0 ≤ i ≤ I − 1} and B = {b + jd : 0 ≤ j ≤ J − 1}.

In other words A and B are segments of arithmetic progressions, both with the same
common difference. Now if A′ is a subset of A, and B′ is a subset of B then A′ + B′ is a
large subset of A+B; so if A and B are segments of arithmetic progressions with the same
common difference, then A′ and B′ can be chosen as large subsets with little particular
structure and yet A′ +B′ is relatively small. This construction generalizes to large subsets
of generalized arithmetic progressions: A generalized arithmetic progression (GAP) is a
set of integers of the form

C := {a0 + a1n1 + a2n2 + · · ·+ aknk : 0 ≤ nj ≤ Nj − 1 for 1 ≤ j ≤ k}

where N1, N2, . . . , Nk are given integers ≥ 2. We say that this GAP has dimension k and
volume N1N2 . . .Nk. It is called proper if the elements are distinct; that is if there are
N1N2 . . .Nk distinct elements in the GAP. Our key observation is that |2C| < 2k|C| for a
GAP C of dimension k; so that if A, B ⊂ C with |A|, |B| ≥ δ|C| then

|A + B| ≤ |2C| < 2k|C| ≤ (2k−1δ−1)(|A|+ |B|).

What about the converse? If |A + B| is a small multiple of |A| + |B|, what possibilities
are there? Is it true that A and B are both large subsets of translates of the same low
dimensional GAP? This question still remains open; we will restrict our attention to the
case that B = A. In other words, if |2A| is a small multiple of |A| then is A necessarily a
large subset of a low dimensional GAP? This question is answered by the wonderful

Freiman-Ruzsa theorem. If |2A| is “small” then A is a “large” subset of a GAP.

This statement is a bit vague but, in essence, it is everything we asked for. The details
are complicated and researchers have not yet found the best possible version so we leave
all that until a little later.

This theorem was first announced by Freiman and gained broad distribution in his book
[Fr]. Just to dare guess at such a classification result is an extraordinary achievement, and
all proofs to date require much ingenuity. The proof in Freiman’s book is deep, and
is difficult to follow in places. Because of this, Freiman’s result did not quickly gain
the prominence it deserves in combinatorial number theory. However in 1994, Ruzsa [R2]
came up with his own, much shorter and easier-to-follow proof, which caught many people’s
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imagination. It is Ruzsa’s paper that heralded the outpouring of research into this exciting
area. It is for these reasons that I feel it is fair to give both Freiman and Ruzsa credit
for their extraordinary achievements by naming the theorem after them both4. The proof
I give here is more-or-less that of Ruzsa, though incorporating some remarks from Ben
Green’s notes [G3].

II.2. The Geometry of Numbers

Given linearly independent vectors x1,x2, . . . ,xk ∈ Rk, define a lattice

Λ := (x1 ⋄ Z) + (x2 ⋄ Z) + · · ·+ (xk ⋄ Z).

We define det(Λ) to be the volume of

F := {a1x1 + a2x2 + · · ·+ akxk : 0 ≤ ai < 1 for all i},

the connection between Λ and F stemming from the fact that F + Λ = Rk.

Blichtfeld’s Lemma. If L ⊂ Rk is measurable with vol(L) > det(Λ) then L−L contains

a non-zero point of Λ.

Suppose that K is a centrally symmetric and convex subset of Rk, so that

K =
1

2
⋄K − 1

2
⋄K.

Since vol( 1
2
⋄K) = 1

2k vol(K), Blichfeldt’s Lemma with L = 1
2
⋄K implies:

Minkowski I. If vol(K) > 2kdet(Λ) then K contains a non-zero point of Λ.

Suppose we are given a lattice Λ in Rk, as well as a closed, convex body K ⊂ Rk. The
successive minima λ1, λ2, . . . , λk of K with respect to Λ are the smallest values λj such
that λj ⋄K contains j linearly independent elements of Λ.

Minkowski II. Suppose that K is a centrally symmetric, closed, convex subset of Rk

and Λ a lattice of rank k. With the definitions as above, there exist linearly independent

vectors b1, . . . ,bk ∈ Λ where bj lies on the boundary of λj⋄K for j = 1, 2, . . . , k. Moreover,

λ1 . . . λkvol(K) ≤ 2kdet(Λ).

Let ‖t‖ be the distance from t to the nearest integer (that is ‖t‖ := minm∈Z |t −m|),
and then ‖(x1, . . . , xk)‖ := maxi ‖xi‖. For given r1, . . . , rk let r := (r1, . . . , rk). When
r1, . . . , rk ∈ Z/NZ \ {0} and δ > 0, we define the Bohr neighbourhood to be

B(r1, . . . , rk; δ) := {s ∈ Z/NZ : ‖rs/N‖ ≤ δ};

in other words s ∈ B(r1, . . . , rk; δ) if the least residue, in absolute value, of each ris
(mod N) belongs to the interval [−δN, δN ].

4Though some authors give credit only to Freiman.
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II.3. Structure of a Bohr set

Theorem 1. Suppose that N is prime with r1, . . . , rk ∈ Z/NZ\{0}, and that 0 < δ < 1/2.
Then B(r1, . . . , rk; δ) contains a k-dimensional GAP of volume ≥ (δ/k)kN .

Proof. Let Λ be the lattice generated by r and NZk so that det(Λ) = Nk−1. Let K =
{(t1, t2, . . . , tk) : −1 ≤ ti ≤ 1}, and then select λ1, λ2, . . . , λk and b1, . . . ,bk ∈ Λ as in
Minkowski II, so that we may write bi = sir + NZk for some si (mod N), for each i.
Therefore

‖sirj/N‖ = ‖(bi)j/N‖ ≤ ‖bi/N‖ = ‖λi/N‖ ≤ λi/N.

Let P := {∑k
i=1 aisi : |ai| ≤ δN/kλi}, which is a k-dimensional GAP. If s =

∑k
i=1 aisi ∈ P

then, for each j,

∥

∥

∥

srj

N

∥

∥

∥
≤

k
∑

i=1

|ai|
∥

∥

∥

sirj

N

∥

∥

∥
≤

k
∑

i=1

δN

kλi
· λi

N
= δ,

so s ∈ B(r1, . . . , rk; δ); that is P ⊂ B(r1, . . . , rk; δ).

Using Minkowski II, and since there are at least t integers in the interval [−t, t] for all
t ≥ 0, we have

Vol(P ) >
k
∏

i=1

δN

kλi
≥
(

δN

k

)k
vol(K)

2kdet(Λ)
=

(

δ

k

)k

N,

as vol(K) = 2k and det(Λ) = Nk−1.

Remark. Note that if δ < 1/2 then P is proper.

Bogolyubov’s Theorem. Let A ⊂ Z/NZ with |A| = αN . Then 2A − 2A contains a

GAP of dimension ≤ α−2 and volume ≥ (α2/4)α−2

N .

Proof. Let R be the set of “large” Fourier coefficients, that is R := {r (mod N) : |Â(r)| ≥
α3/2N}. By Parseval’s identity we have

|A|N =
∑

r

|Â(r)|2 ≥
∑

r∈R

|Â(r)|2 ≥ |R|α3N2

so that |R| ≤ α−2. We also have

∑

r 6∈R

|Â(r)|4 ≤ max
r 6∈R
|Â(r)|2

∑

r

|Â(r)|2 < α3N2 · |A|N = |A|4 = |Â(0)|4.
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If n ∈ B(R; 1/4) then ‖rn/N‖ ≤ 1/4, and hence cos(2πrn/N) ≥ 0 for all r ∈ R. Using

that cos(2πrn/N) ≥ −1 for all r 6∈ R, that |Â(−r)| = |Â(r)|, and that 0 ∈ R, we obtain

r2A−2A(n) :=
1

N

∑

r (mod N)

|Â(r)|4 e
(rn

N

)

=
1

N

∑

r (mod N)

|Â(r)|4 cos
(

2π
rn

N

)

≥ 1

N



|Â(0)|4 −
∑

r 6∈R

|Â(r)|4


 > 0.

Therefore 2A − 2A contains B(R; 1/4), and hence contains the required arithmetic pro-
gression by Theorem 1.

II.4. Freiman homomorphisms

Suppose that A and B are both finite subsets of some ring like Z/sZ or Z (perhaps
different).

The map φ : A→ B is a (Freiman) k-homomorphism if

φ(x1) + · · ·+ φ(xk) = φ(y1) + · · ·+ φ(yk)

whenever xi, yi ∈ A satisfy

x1 + x2 + · · ·+ xk = y1 + y2 + · · ·+ yk.

φ is a (Freiman) k-isomorphism if φ is invertible and φ and φ−1 are Freiman k-homomorphisms.
(Henceforth we drop the adjective “Freiman”.)

Examples: The reduction ρp : Z→ Z/pZ is a k-homomorphism for all k. If
A = {a1 < · · · < an < a1 + p/k} then ρp

∣

∣

A
is a k-isomorphism.

If (q, p) = 1 then µq,p : Z/pZ→ Z/pZ, where µq,p(x) ≡ qx (mod p), is a k-isomorphism
for all k.

The heart of our proof comes in the following remarkable lemma of Ruzsa which gives
a Freiman isomorphism between a large subset of our given set A, and some subset of the
integers mod N . This allows us to work inside the integers mod N , where there are more
convenient tools.

Ruzsa’s Lemma. For any set of integers A and any prime N > 2|kA− kA|, there exists

a subset A′ of A, with |A′| ≥ |A|/k, which is k-isomorphic to a subset of Z/NZ.

Proof. Select a prime p > k(maxA−min A), and any q with (q, p) = 1. Note that ρp

∣

∣

A
is

a k-isomorphism. By the pigeonhole principle, there exist A′ ⊂ A with |A′| ≥ |A|/k and

µq,p ◦ ρp

∣

∣

A′
⊂
{

x ∈ Z/pZ : There exists n ∈
[

j − 1

k
p,

j

k
p

)

with n ≡ x (mod p)

}
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for some j. Therefore, taking ρ−1
p here to give a residue in [0, p), we have that

Ψ := ρ−1
p ◦ µq,p ◦ ρp

∣

∣

A′

is a k-isomorphism such that

r :=
∑k

i=1 Ψ(ai)−
∑k

i=1 Ψ(a′
i) ∈ (−p, p),

with r ≡ q(
∑k

i=1 ai −
∑k

i=1 a′
i) (mod p)

for all a1, a2, . . . , ak, a
′
1, a

′
2, . . . , a

′
k ∈ A′. (The reader should verify that this is indeed a

k-isomorphism.)
Now define

Φ(q) := ρN ◦Ψ = ρN ◦ ρ−1
p ◦ µq,p ◦ ρp,

which is a k-homomorphism; so the question becomes: Is Φ(q)
∣

∣

A′
a k-isomorphism?

If not there exist integers a1, . . . , ak, a′
1, . . . , a

′
k ∈ A′ for which r 6= 0 but r ≡ 0 (mod N).

In this case define b :=
∑k

i=1 ai −
∑k

i=1 a′
i ∈ kA − kA, so that qb ≡ r (mod p) and b 6≡ 0

(mod p). Hence q is of the form r/b (mod p) where r ∈ (−p, p) with r 6= 0 and N |r, and
where b ∈ kA− kA with b 6≡ 0 (mod p): The number of such q is therefore

≤ #{r ∈ (−p, p) : r 6= 0, N |r} × #{b ∈ kA− kA : b 6≡ 0 (mod p)}

≤ 2(p− 1)

N
|kA− kA| < p− 1.

Therefore there must exist values of q, 1 ≤ q ≤ p− 1 for which Φ(q)
∣

∣

A′
is a k-isomorphism.

II.5. The Freiman-Ruzsa Theorem

We recall the following result from our previous lecture:

The Plünneke-Ruzsa theorem. If A and B are finite sets of integers for which |A +
B| ≤ C|A| then |kB − ℓB| ≤ Ck+ℓ|A|.

We are now ready to state and prove our main result:

The Freiman-Ruzsa Theorem. If A ⊂ Z/NZ with |A+A| ≤ C|A| then A is contained

in a GAP of dimension ≤ d(C) and volume ≤ ν(C)|A|.
Here d(C) and ν(C) are constants which depend only on the constant C. Following the
works of Bilu [Bi] and Chang [C1] we know that we can take

d(C) = ⌊C − 1⌋, and ν(C) = eO(C2(log C)3).

Proof. By the Plünneke-Ruzsa theorem with k = ℓ = 8 we have |8A − 8A| ≤ C16|A|.
Therefore, by Ruzsa’s Lemma, there exists A′ ⊂ A with |A′| ≥ |A|/8, which is 8-isomorphic
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to some B ⊂ Z/NZ where N is prime with 2C16|A| < N ≤ 4C16|A| (such a prime may be
selected by Bertrand’s Postulate). So |B| = αN with α ≥ 1/(32C16).

By Bogolyubov’s Theorem, 2B − 2B contains a GAP of dimension ≤ α−2 and volume

γ|A|, with 1 ≥ γ ≥ (α2/8)α−2

. Now B is 8-isomorphic to A′ so 2B − 2B is 2-isomorphic
to 2A′ − 2A′. Since any set which is 2-isomorphic to a d-dimensional GAP is itself a d-
dimensional GAP, hence 2A′− 2A′, and thus 2A− 2A, contains a GAP Q of dimension at
most α−2 and volume γ|A|.

Let S be a maximal subset of A for which the sets s + Q, s ∈ S are disjoint, so that
|S + Q| = |S||Q|. Since S is maximal, if a ∈ A there exists s ∈ S and q1, q2 ∈ Q such that
a + q1 = s + q2, and therefore

A ⊂ S + Q−Q ⊂ Q−Q +
∑

s∈S

{0, s},

a GAP, of dimension ≤ |S|+ α−2 and volume ≤ 2|S|+α−2

γ|A|. Now

S + Q ⊂ A + (2A− 2A) = 3A− 2A

so that

|S| = |S + Q|
|Q| ≤ |3A− 2A|

γ|A| ≤ C5

γ

by the Plünneke-Ruzsa theorem. Tracing through the above proof, we find that the result

follows with volume ν(C) = 2d(C) where d(C) = CC48

.

These bounds can be significantly improved by the following argument of Chang: The
big bounds come as a consequence of the enormous size of S. We will improve this by
replacing S and Q by S′ and Q′ where S′ is significantly smaller than S, while Q′ is a little
bigger than Q: Let m be the smallest integer ≥ 2C. Let S0 = S and Q0 = Q. For any given
j ≥ 0, if |Sj | ≤ m then we stop the algorithm and let r = j. Otherwise we select any subset
Tj of Sj of size m and let Qj+1 = Tj + Qj . Now we select Sj+1 to be a maximal subset of
A for which the sets s + Qj+1, s ∈ Sj+1 are disjoint, so that |Sj+1 + Qj+1| = |Sj+1||Qj+1|.
Note that this also implies that |Qj+1| = |Tj + Qj| = |Tj ||Qj| = m|Qj | for all j, so that
|Qr| = mr|Q|. On the other hand Qj+1 = Tj + Qj ⊂ Sj + Qj ⊂ A + Qj for each j, so that
Qr ⊂ rA + Q ⊂ (r + 2)A− 2A, which implies that |Qr| ≤ Cr+4|A| by the Plünneke-Ruzsa
theorem. Therefore 2r ≤ (m/C)r ≤ C4|A|/|Q| = C4/γ by the last two equations.

Now A ⊂ Sr + Qr −Qr ⊂ Sr +
∑r−1

j=0(Tj − Tj) + (Q−Q), which is a GAP of dimension

≤ m(r + 1) + α−2, and volume ≤ 3m(r+1)+α−2

γ|A|. Tracing through, we find that r ≪
C32 log C so that we can take d(C) = C33 log C and ν(C) = CO(C33).
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Lecture III: Uniform distribution, Roth’s theorem and beyond

III.1. Uniform distribution mod one

We begin by discussing Hermann Weyl’s famous criterion for recognizing uniform distri-
bution mod one: Let {t} be the fractional part of t, and e(t) = e2iπt so that e(t) = e({t}).
A sequence of real numbers a1, a2, . . . is uniformly distributed mod one if, for all 0 ≤ α <
β ≤ 1 we have

#{n ≤ N : α < {an} ≤ β} ∼ (β − α)N as N →∞.

To determine whether a sequence of real numbers is uniformly distributed we have the
following extraordinary, and widely applicable, criterion:

Weyl’s criterion. A sequence of real numbers a1, a2, . . . is uniformly distributed mod one

if and only if for every integer b 6= 0 we have

(3.1)

∣

∣

∣

∣

∣

∣

∑

n≤N

e(ban)

∣

∣

∣

∣

∣

∣

= ob(N) as N →∞.

In other words lim supN→∞
1
N
|∑n≤N e(ban)| = 0.

Note that if a1, a2, . . . is uniformly distributed mod one then ka1, ka2, . . . is uniformly
distributed mod one for all non-zero integers k.

An interesting example is where an = f(n) for some polynomial f(t) ∈ R[t]. It can
be shown, using Weyl’s criterion, that the sequence a1, a2, . . . is uniformly distributed
mod one if and only if one or more of the coefficients of f(t) − f(0) is irrational. Note
that if all the coefficients of f are rational then there exists an integer b > 0 such that
b(f(t)− f(0)) ∈ Z[t]; but then each e(bf(n)) = e(bf(0)), and so (3.1) is not satisfied. If f
is linear, that is f = γn + δ with γ irrational then

∑

n≤N

e(ban) = e(bδ)
∑

n≤N

e(bγn) = e(b(γ + δ)) · e(bγN)− 1

e(bγ)− 1
,

the sum of a geometric progression, since bγ is not an integer. Therefore

∣

∣

∣

∣

∣

∣

∑

n≤N

e(ban)

∣

∣

∣

∣

∣

∣

≤ 2

|e(bγ)− 1| ≍
1

‖bγ‖ ≪b 1 = ob(N)

as required, since |e(t) − 1| ≍ ‖t‖, where ‖t‖ denotes the distance from t to the nearest
integer.
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III.2. Uniform distribution mod N .

For a given set, A, of residues mod N , define

Â(b) :=
∑

n∈A

e

(

bn

N

)

.

Let (t)N denote the least non-negative residue of t (mod N) (so that (t)N/N = {t/N}).
The idea of uniform distribution mod N is surely something like: For all 0 ≤ α < β ≤ 1
and all m 6≡ 0 (mod N), we have

(3.2) #{a ∈ A : αN < (ma)N ≤ βN} ∼ (β − α)|A|.
One can only make sense of such a definition if |A| → ∞ (since this is an asymptotic for-
mula) but we are often interested in smaller sets A, indeed that are a subset of {1, 2, . . . , N};
so we will work with something motivated by, but different from, (3.2). Let us see how far
we can go in proving an analogy to Weyl’s criterion.

For given subset A of the residues mod N define

Error(A) := max
0≤x<x+y≤N
m 6≡0 (mod N)

∣

∣

∣

∣

# {a ∈ A : x < (ma)N ≤ x + y}
|A| − y

N

∣

∣

∣

∣

.

Theorem 1. Suppose that N is prime. Fix δ > 0.
(i) If Error(A) ≤ δ2|A| then |Â(m)| ≪ δ|A| for any m 6≡ 0 (mod N).

(ii) If |Â(m)| ≤ δ2|A| for all m 6≡ 0 (mod N), and |A| ≥ N/ec/δ then Error(A) ≪ δ|A|,
for some absolute constant c > 0.

Proof. For given integer k ≥ 1, if (ma)N ∈ (x, x+N/k] then e(ma/N) = e(x/N)+O(1/k).
Therefore

Â(m) =

k−1
∑

j=0

∑

a∈A
jN
k

<(ma)N≤ (j+1)N

k

e(ma/N) =

k−1
∑

j=0

∑

a∈A
jN
k

<(ma)N≤ (j+1)N

k

(e(j/k) + O(1/k))

=

k−1
∑

j=0

|A|
(

1

k
+ O(Error(A))

)

e(j/k) + O

( |A|
k

)

≪ |A|(k Error(A) + 1/k).

The result follows by taking k ≍ 1/δ.
In the other direction we have, for integers x, y with 0 ≤ x < x + y ≤ N

∑

a∈A
x<(ma)N≤x+y

1 =

y
∑

j=1

∑

a∈A

1

N

∑

r (mod N)

e

(

r

(

ma− x− j

N

))

=
y

N
|A|+ 1

N

∑

r (mod N)
r 6=0

Â(rm)e

(−rx

N

) y
∑

j=1

e

(−rj

N

)

.
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If r runs through the non-zero integers in (−N/2, N/2] then
∣

∣

∣

∣

∣

∣

e

(−rx

N

) y
∑

j=1

e

(−rj

N

)

∣

∣

∣

∣

∣

∣

≪ N

|r| ,

and so the second term above is, as |Â(−rm)| = |Â(rm)|,

≪
∑

r 6=0

|Â(rm)|
|r| ≪

∑

1≤r≤R

|Â(rm)|
r

+
∑

R<r≤N/2

|Â(rm)|
r

≤ (log R + 1) max
s 6=0
|Â(s)|+





∑

r (mod N)

|Â(rm)|2




1/2
(

∑

r>R

1

r2

)1/2

≪ (log R)δ2|A|+ (|A|N/R)
1/2 ≪ δ|A|

for R ≈ N/(δ2|A|).
To obtain an analogy to Weyl’s criterion we think of an infinite sequence of pairs (A, N)

with N prime and N →∞, where |A| ≫ N . More precisely we have

Corollary. For each prime N let AN be a subset of the residues mod N with |AN | ≫ N .

Then Error(AN ) = o(1) if and only if |ÂN (m)| = o(N) for all m 6≡ 0 (mod N).

One can therefore formulate an analogy to Weyl’s criterion along the lines: The Fourier
transforms of A are all small if and only if A and all of its dilates are uniformly distributed.
(A dilate of A is the set {ma : a ∈ A} for some m 6≡ 0 (mod N).) This idea is central
to our recent understanding, in additive combinatorics, for proving that large sets contain
3-term arithmetic progressions; and finding appropriate analogies to this are essential to
our understanding when considering k-term arithmetic progressions for k ≥ 3. More on
that later.

To give one example of how such a notion can be used, we ask whether a given set A of
residues mod N contains a non-trivial 3-term arithmetic progression? In other words we
wish to find solutions to a + b = 2c with a, b, c ∈ A where a 6= b.

Theorem 2. If A is a subset of the residues (mod N) where N is odd, for which

|Â(m)| < |A|2/N − 1 whenever m 6≡ 0 (mod N) then A contains non-trivial 3-term arith-

metic progressions.

Proof. Since 1
N

∑

r e(rt/N) = 0 unless t is divisible by N , whence it equals 1, we have that
the number of 3-term arithmetic progressions in A is

∑

a,b,c∈A

1

N

∑

r

e

(

r(a + b− 2c)

N

)

=
1

N

∑

r

Â(r)2Â(−2r).
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The r = 0 term gives |A|3/N . We regard the remaining terms as error terms, and bound
them by their absolute values, giving a contribution (taking m ≡ −2r (mod N))

≤ 1

N

∑

r

|Â(r)|2 ·max
m 6=0
|Â(m)| = |A|max

m 6=0
|Â(m)|.

There are |A| trivial 3-term arithmetic progressions (of the form a, a, a) so we have estab-
lished that A has non-trivial 3-term arithmetic progressions when

|A|3/N − |A|max
m 6=0
|Â(m)| > |A|,

yielding the result.

Rather more generally we can ask for solutions to

(3.3) ia + jb + kc ≡ ℓ (mod N)

where (ijk, N) = 1 with a ∈ A, b ∈ B, c ∈ C and A, B, C ⊂ Z/NZ. We count the above
set as

∑

a∈A,b∈B
c∈C

1

N

∑

r

e

(

r(ia + jb + kc−m)

N

)

=
1

N

∑

r

e

(−rℓ

N

)

Â(ir)B̂(jr)Ĉ(kr).

The r = 0 term contributes 1
N Â(0)B̂(0)Ĉ(0) = |A||B||C|

N . The total contribution of the
other terms can be bounded above by

1

N

∑

r 6=0

|Â(ir)| |B̂(jr)| |Ĉ(kr)| ≤ 1

N
max
m 6=0
|Â(m)|

∑

r

|B̂(jr)||Ĉ(kr)|

≤ 1

N
max
m 6=0
|Â(m)|

(

∑

t

|B̂(t)|2
)

1
2
(

∑

u

|Ĉ(u)|2
)

1
2

=
1

N
max
m 6=0
|Â(m)|(N |B|N |C|)1/2 = (|B||C|)1/2 max

m 6=0
|Â(m)|

using the Cauchy-Schwarz inequality. Therefore there are ≥ |A||B||C|/2N solutions to
(3.3) provided

(3.4) |Â(m)| ≤ (|B||C|)1/2

2N
|A| for every m 6≡ 0 (mod N).
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III.3. Roth’s Theorem.

In 1953, Roth [Ro] proved that for any δ > 0 if N is sufficiently large then any subset
A of {1, . . . , N} with more than δN elements contains a non-trivial 3-term arithmetic
progression. We shall prove Roth’s theorem in this section.

In 1975 Szemerédi [S2] generalized this to obtain non-trivial k-term arithmetic progres-
sions. This was reproved by Furstenberg [2] in 1977, and there have been recent proofs by
Gowers [G1, G2], Tao, and many others. See the article herein by Tao [Ta] for an inspiring
discussion of these proofs; and Kra’s article [Kr] for developments of Furstenberg’s ideas.

In Roth’s proof, as we will see below, one can take δ ≈ 1/ log log N . This was improved
(but remained unpublished until this volume) by Szemerédi [S4] to δ ≈ 1/ exp(

√
c log log N).

In the late eighties, both Heath-Brown [HB] and Szemerédi [S3] showed one can take
δ ≈ 1/(logN)c for some small c > 0. The best result known, due to Bourgain [Bo1], is
that one can take

δ ≈
√

log log N

log N
.

To start our proof of Roth’s theorem we note that the result is easy for δ > 2/3 since
then A contains a subset of the form {a, a + 1, a + 2}. For smaller δ we shall either prove
directly that it has 3-term arithmetic progressions by the methods of the previous section,
or that there is a large arithmetic progression of length N1 which contains δ1N1 terms
of A with δ1 > δ(1 + cδ) for some c > 0. This can be used to construct a subset A1 of
the first N1 integers, of size δ1N1, which must have a 3-term arithmetic progression by an
appropriate induction hypothesis (as δ1 is significantly larger than δ), so that A also does.

Replace N by the smallest prime ≥ N which can be done with negligible change in our
hypothesis. Let us assume that A is a subset of the integers up to N , containing at least
δN elements, but which has no three term arithmetic progression. We will suppose that
we have proved Roth’s theorem for any constant δ′ > δ(1 + cδ).

• If #{a ∈ A : 0 < a < N
3
} ≥ (1 + cδ)|A|/3 then A1 := {a ∈ A : 0 < a ≤ N

3
}.

• If #{a ∈ A : 2N
3 < a < N} ≥ (1 + cδ)|A|/3 then A1 := {N − a : a ∈ A, 2N

3 < a < N}.
In these cases N1 = [N/3], and the result follows from our hypothesis. Otherwise we let
B := {a ∈ A : N

3 < a < 2N
3 }, so that |B| > (1 − 2cδ)|A|/3. There are no solutions to

a + b ≡ 2d (mod N) with a ∈ A and b, d ∈ B ⊂ A, all distinct. For if b, d ∈ B then
0 < 2d − b < N and so a + b = 2d, hence a = b = d by our assumption that A has no
non-trivial 3-term arithmetic progressions.

This implies that there must exist m 6≡ 0 (mod N) such that |Â(m)| > δ(1− 2cδ)|A|/6
else we have many non-trivial solutions to (3.3) (with i = j = 1, k = −2, ℓ = 0) by
(3.4). But then A is not uniformly distributed mod N ; in particular, Error(A) ≫ δ2|A|
by Theorem 1(i). In other words there is some dilate of A and some long interval which
does not contain the expected number of elements of the dilate A; in fact it is out by a
constant factor. However we need slightly more than that: We need an interval that has
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too many elements of A by a constant factor and so we make one more observation: Select
an integer ℓ≫ 1/δ, and define

Aj :=

{

a ∈ A : (ma)N ∈
(

jN

ℓ
,
(j + 1)N

ℓ

]}

for 0 ≤ j ≤ ℓ−1, so that if a is counted by Aj then e(ma/N) = e(j/ℓ)+O(1/ℓ). Therefore

Â(m) =
ℓ−1
∑

j=0

(

#Aj −
|A|
ℓ

)

e

(

j

ℓ

)

+ O

( |A|
ℓ

)

,

implying that

ℓ−1
∑

j=0

∣

∣

∣

∣

#Aj −
|A|
ℓ

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

ℓ−1
∑

j=0

(

#Aj −
|A|
ℓ

)

e

(

j

ℓ

)

∣

∣

∣

∣

∣

∣

≥ Â(m)−O

( |A|
ℓ

)

≫ δ|A|.

Adding this to
∑

j(#Aj − |A|
ℓ ) = 0, we find that there exists j for which

(

#Aj −
|A|
ℓ

)

≫ δ
|A|
ℓ

.

What we would like to do now is to define A′ := {i : [jN/ℓ] + i ∈ Aj}, a subset of
{1, 2, . . . , N ′} where N ′ = [N/ℓ], with |A′| ≥ (1 + cδ)δN ′ and then assert that A′ contains
no non-trivial 3-term arithmetic progressions. To prove this last remark, we proceed by
noting that if u, v, w ∈ A′ for which u + w = 2v then there exist a, b, c ∈ A such that
ma ≡ [jN/ℓ]+u (mod N), mb ≡ [jN/ℓ]+v (mod N), mc ≡ [jN/ℓ]+w (mod N) so that
m(a + c − 2b) ≡ u + w − 2v ≡ 0 (mod N), and therefore a + c ≡ 2b (mod N). However
there is no guarantee that this implies that a + c = 2b (as above), since there may be
“wraparound” (that is, a + c might equal 2b ± N or 2b ± 2N or ...), and so we need to
refine our construction to be able to make this final step.

The trick is to use the well-known result that if RS = N where R and S are real numbers
> 1 then there exist integers r and s, with 0 < r < R and 0 < s < S, such that ±m ≡ s/r
(mod N). (Proof: There are more than N integers of the form j + im with 0 ≤ i < R and
0 ≤ j < S, so two must be congruent mod N . Thus their difference s± rm ≡ 0 (mod N).)

For convenience we will assume m ≡ s/r (mod N) where R =
√

N/δ3, S =
√

Nδ3, with
x = [jN/ℓ] and y = [N/ℓ] and ℓ ≍ 1/δ, so that

# {a ∈ A : x < (ma)N ≤ x + y} ≥ (1 + cδ)δy.
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We begin by partitioning this set depending only on the value of (ma)N (mod s): For
1 ≤ i ≤ s let αi = ((x + i)/m)N , and then define

Ai :=

{

a ∈ A : a ≡ αi + jr (mod N) and 0 ≤ j ≤
[

y − i

s

]}

.

Note that ma ≡ m(αi + jr) ≡ x+(i+ js) so that x < (ma)N ≤ x+y for a ∈ A. Therefore
there exists some value of i for which #Ai ≥ (1 + cδ)δy/s. Even within Ai we still have
the possibility of the “wraparound problem”; so we deal with this by partitioning Ai:

Let K = [(αi + ry/s)/N ] so that αi ≤ αi + jr ≤ αi + ry/s < (K + 1)N . For each
0 ≤ k ≤ K define

Ai,k := {a ∈ Ai : kN < αi + jr ≤ (k + 1)N}.

Let αi,0 = αi − r, and let αi,k be the largest integer ≤ kN which is ≡ αi (mod r) for
1 ≤ k ≤ K. Then Ai,k = {a ∈ Ai : a = αi,k + jr, 1 ≤ j ≤ Jk + O(1)} where
J0 = N/r − αi/r, Jk = N/r for 1 ≤ k ≤ K − 1, and JK = y/s − KN/r + αi/r. We let
T be the set of indices k, 1 ≤ k ≤ K − 1 together with k = 0 provided J0 > cδ2y/4s, and
with k = K provided JK > cδ2y/4s. Note that

∑

k∈T

#Ai,k ≥ #Ai − cδ2y/2s ≥ (1 + cδ/2)δy/s ≥ (1 + cδ/2)δ
∑

k∈T

Jk.

Thus there exists k ∈ K such that #Ai,k ≥ (1+ cδ/2)δJk. Now define N ′ = [Jk] and A′ =
{j : 1 ≤ j ≤ N ′, αi,k + jr − kN ∈ A}, a subset of {1, 2, . . . , N ′}, so that #A′ = #Ai,k ≥
(1 + cδ/2)δN ′. We claim that A′ does not contain any non-trivial 3-term arithmetic
progressions; else if u + v = 2w with u, v, w ∈ A′ then a = αi,k + ur− kN, b = αi,k + vr−
kN, c = αi,k +wr−kN ∈ A and a+b = 2c, contradicting the fact that A does not contain
any non-trivial 3-term arithmetic progressions. Note that N ′ ≥ min{N/r, cδ2y/4s} ≫
min{N/R, δ2N/ℓS} ≫

√
δ3N .

We have obtained the induction hypothesis that we wanted. If we iterate we find that
we increase the constant δ = 2−n to 2δ = 2−(n−1) in ≍ 1/δ iterations by which time the

size of our set is roughly 2−3n times N to the power (1/2)2
n+O(1)

. Thus when we get all

the way up to δ = 1 the size of our set is N to the power (1/2)2
n+O(1)

. To ensure that

this is not negligible we must have 22n+O(1)

= o(log N); that is 2n ≪ log log N and so
δ = 2−n ≫ 1/ log log N .

In the other direction we have

Behrend’s Theorem. There exists a subset A ⊂ {1, . . . , N} with #A ≥ N
exp(c

√
log N)

,

such that A has no non-trivial 3-term arithmetic progression.
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Proof. Let T := {(x0, . . . , xn−1) ∈ Zn : 0 ≤ xi < d} and Tk := {x ∈ T : |x|2 = k}. We
have |T | = dn, and |x|2 < nd2 for every x ∈ T , so there exists a positive integer k for
which Tk has ≥ dn−2/n elements. Let

A := {x0 + x1(2d) + · · ·+ xn−1(2d)n−1 : x ∈ Tk}.

If a + b = 2c with a, b, c ∈ A then a0 + b0 ≡ 2c0 (mod 2d) and −2d < a0 + b0 − 2c0 < 2d
so that a0 + b0 = 2c0; similarly one proves that a1 + b1 = 2c1, and indeed ai + bi = 2ci for
each i ≥ 0. But then a+b=2c, that is a,b,c ∈ Tk are collinear, which is impossible as Tk

is a sphere! Therefore A contains no non-trivial 3-term arithmetic progressions.
The elements of A are all ≤ (d− 1)(1 + 2d + · · ·+ (2d)n−1) < N := 2n−1dn. The result

follows by taking n ≈ √log N and d = [(2N)1/N/2].

For each integer N ≥ 1, define R(N) to be the size of the largest subset A of {1, . . . , N}
which does not contain any non-trivial 3-term arithmetic progressions. We know, after
Behrend and Bourgain, that

N

√

log log N

log N
≫ R(N)≫ N

exp(c
√

log N)
;

the question is whether R(N) is really near to one of these bounds, or somewhere in-
between. There does not seem to be any convincing heuristic to predict the truth; at the
school we asked the lecturers to all venture a guess – it seemed that people’s intuitions
varied substantially! It would be most exciting if one could prove that R(N) ≤ (1 −
ǫ)N/ logN for sufficiently large N since this would give an “automatic proof” that there
are infinitely many three term arithmetic progressions of primes.

Finally we prove the following slight strengthening of Roth’s theorem

Varnavides’ Theorem. Fix 1 ≥ δ > 0. There exist constants C(δ) > 0 and N(δ) such

that if N ≥ N(δ) and A ⊂ {1, . . . , N} with #A ≥ δN , then A has at least C(δ)N2 3-term

arithmetic progressions.

Proof. By Roth’s theorem we know that there exists an integer M such that any set of
δM/2 integers from an arithmetic progression of length M contains a non-trivial three
term arithmetic progression. We will apply this result to the subset of A lying in each
arithmetic progression of length M taken from the integers in {1, . . . , N}. Let P(b, d) be
the arithmetic progression b, b + d, . . . , b + (M − 1)d, for 1 ≤ b ≤ N − (M − 1)d, and
let A(b, d) be the number of elements of A in P(b, d). Since every element of A from the
interval ((M−1)d, N−(M −1)d] is counted in exactly M of these arithmetic progressions,
we deduce that

∑

1≤b≤N−(M−1)d A(b, d) ≥ M(δN − 2(M − 1)d). Since each A(b, d) ≤ M ,

we can deduce that there are ≥ δN/2 values of b for which A(b, d) ≥ δM/2, provided
N ≥ 6(M − 1)d/δ2. Now, each of these contains a non-trivial three term arithmetic
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progression, making for a total of ≥ δ3N2/12(M − 1) non-trivial three term arithmetic
progressions, when we consider all d ≤ δ2N/6(M − 1), though many of these may have
been counted more than once. Now if a, a + D, a + 2D is counted in some A(b, d) then d
divides D and 2D/d ≤ M − 1; and it is counted in A(b, d) for no more than M − 2D/d
values of b. Writing D/d = h, we find that a, a + D, a + 2D has been counted no more
than ≤∑1≤h≤M/2(M − 2h) ≤ (M/2)2 times. Therefore A contains ≥ δ3N2/3M3 distinct

non-trivial three term arithmetic progressions.

By Bourgain’s result we may take M = (1/δ)c/2δ2

for some constant c > 0, and therefore

C(δ) ≥ δc/δ2

in Varnavides’ theorem. A small modification of the proof of Behrend’s

theorem implies that C(δ) ≤ δc′ log(1/δ), for some constant c′ > 0.

III.4. Large Fourier coefficients

We saw in the previous section that proving Roth’s theorem is difficult only in the case
that there are large Fourier coefficients, Â(m), with m 6≡ 0 (mod N). It is worth noting a
few other results which reflect consequences of having large Fourier coefficients:

An easy one to prove is that for any η > 0 there exists δ > 0 such that

rA−A(n) > (1− η)|A| if and only if
∑

m:|(mn)N |≤ǫN

|Â(m)|2 ≥ (1− δ)
∑

m

|Â(m)|2.

(See Lecture I for further discussion of rA−A(n), the number of representations of n as
a− a′ with a, a′ ∈ A.)

A manifestation of the uncertainty principle (which roughly states that a non-trivial
function and its Fourier transforms cannot all be too small) is given by: If A ⊂ Z/NZ

has no elements in (x − L, x + L) then there exists m, 0 < m < (N/L)2 such that

|Â(m)| ≥ (L/2N)|A|.
In many proofs it is important to know how often |Â(m)| can be large? Let R := {r

(mod N) : |Â(r)| > ρ|A|}. From Parseval’s identity we see that

|A|N =
∑

m

|Â(m)|2 ≥
∑

m∈R

ρ2|A|2,

so that |R| ≤ ρ−2N/|A|. Note that if r, s ∈ R then this says that the numbers (ra)N , a ∈ A
and (sa)N , a ∈ A have a bias towards being close to certain values x and y respectively.
In that case we might expect that the numbers ((r + s)a)N , a ∈ A have a bias towards
(x+y)N so that r+s ∈ R. Therefore we might expect that R has some lattice structure, an
intuition that is verified by Chang’s result [C1] that R is contained in a cube of dimension
≤ 2ρ−2 log(N/|A|) (cubes, that is sets of numbers {∑s∈S ǫss : ǫs ∈ {−1, 0, 1}} for given
S, were discussed in the previous two lectures.)
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III.5. Four term arithmetic progressions

One can prove (using the proof of Theorem 2) that if A≫ N and Â(m) = o(N) for all
m 6≡ 0 mod N then A has ∼ |A|3/N 3-term arithmetic progressions. This leads one to
ask: What about 4-term arithmetic progressions?
Does Â(m) = o(N) imply that A has ∼ |A|4/N2 4-term arithmetic progressions (that is,
the expected number)? As an example consider the set

Aδ :=

{

n (mod N) :

∥

∥

∥

∥

n2

N

∥

∥

∥

∥

<
δ

2

}

for N prime. For J = δN/2 we have

Âδ(m) =
∑

n (mod N)

e
(mn

N

)

∑

−J<j<J

1

N

∑

r (mod N)

e

(

r
(j − n2)

N

)

so that |Âδ(m)| ≤ 1

N

∑

r (mod N)

∑

−J<j<J

e

(

rj

N

)

∑

n (mod N)

e

(

mn− rn2

N

)

.

Now
∑

n e(mn
N ) = 0 if m 6= 0, and = N if m = 0; and if r 6= 0 then

∑

n e(mn−rn2

N ) is

a Gauss sum and so has absolute value
√

N . Moreover |∑−J≤j≤J e( rj
N )| ≪ N/|r| for

1 ≤ |r| ≤ N/2. Inputting all this into the equation above we obtain |Âδ(m)| ≪
√

N log N

for each m 6≡ 0 (mod N) and #Aδ = |Âδ(0)| = δN + O(
√

N log N). It follows from the
proof of Theorem 2 that Aδ has ∼ δ3N2 3-term arithmetic progressions a, a + d, a + 2d.
Now

(a + 3d)2 = 3(a + 2d)2 − 3(a + d)2 + a2

so if a, a + d, a + 2d ∈ Aδ then ‖ (a+3d)2

N
‖ < 7δ

2
, and hence a, a + d, a + 2d, a + 3d ∈ A7δ.

But this implies that A7δ has ≥ {1 + o(1)}δ3N2 4-term arithmetic progressions far more
than the expected, ∼ (7δ)4N2, once δ is sufficiently small.

Thus we have shown, from this example, that in order to prove that a set of residues of
positive density has the expected number of 4-term arithmetic progressions it is insufficient
to simply assume that all of the Fourier transforms are small. What else we need to assume
is at the heart of the subject of additive combinatorics – see Ben Green’s article in these
proceedings [G4].
Acknowledgements: Thanks to Jason Lucier for his careful reading of these notes.
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[W] H. Weyl, Über ein Problem aus dem Gebeit der diophantischen Approximationen, Nachr. Ges. Wiss.
Göttingen (math.-phys. Kl.) (1914), 234–244.


