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Abstract. For a class of Lucas sequences {xn}, we show that if n is a positive integer then
xn has a primitive prime factor which divides xn to an odd power, except perhaps when

n = 1, 2, 3 or 6. This has several desirable consequences.

1. Introduction

1a. Repunits and primitive prime factors. The numbers 11, 111 and 1111111111 are
known as repunits, that is all of their digits are 1 (in base 10). Repunits cannot be squares
(since they are ≡ 3 (mod 4)), so one might ask whether a product of distinct repunits can
ever be a square? We will prove that this cannot happen. A more interesting example is
the set of repunits in base 2, the integers of the form 2n−1. In this case there is one easily
found product of distinct repunits that is a square, namely (23 − 1)(26 − 1) = 212 (which
is 111 · 111111 = 10101 · 10101 in base 2); this turns out to be the only example.

For a given sequence of integers {xn}n≥0, we define a characteristic prime factor of
xn to be a prime p which divides xn but p - xm for 1 ≤ m ≤ n− 1. The Bang-Zsigmondy
theorem (1892) states that if r > s ≥ 1 and (r, s) = 1 then the numbers

xn =
rn − sn

r − s

have a characteristic prime factor for each n > 1 except for the case 26−1
2−1 . A primitive

prime factor of xn is a characteristic prime factor of xn that does not divide r − s.
For various Diophantine applications it would be of interest to determine whether there

is a characteristic prime factor p of xn for which p2 does not divide xn. As an example
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of such an application, note that if xn1 . . . xnk
is a square where 1 < n1 < n2 < · · · < nk

and k ≥ 1 then a characteristic prime factor p of xnk
divides only xnk

in this product and
hence must divide xnk

to an even power. Thus if p divides xnk
to only the first power

then xn1 . . . xnk
cannot be a square. Unfortunately we are unable to prove anything about

characteristic prime factors dividing xn only to the first power, but we are able to show
that there is a characteristic prime factor that divides xn to an odd power, which is just
as good for this particular application.

Theorem 1. If r and s are pairwise coprime integers for which 2 divides rs but not 4,
then (rn − sn)/(r − s) has a characteristic prime factor which divides it to an odd power,
for each n > 1 except perhaps for n = 2 and n = 6. The case n = 2 is exceptional if and
only if r+ s is a square. The case n = 6 is exceptional if and only if r2− rs+ s2 is 3 times
a square.

In particular 2n−1 has a characteristic prime factor which divides it to an odd power,
for all n > 1 except n = 6. Also (10n−1)/9 has a characteristic prime factor which divides
it to an odd power for all n > 1. One can take these all to be primitive prime factors.

Corollary 1. Let xn = (rn − sn)/(r− s) where r and s are pairwise coprime integers for
which 2 divides rs but not 4. If xn1xn2 . . . xnk

is a square where 1 < n1 < n2 < · · · < nk

and k ≥ 1, then either x2 = r + s is a square, or x3x6 = x2
3(r

3 + s3) is a square.

The infinitely many examples of this last case include 23 + 1 = 32, leading to the

solution (23 − 1)(26 − 1) = 212, and 743 − 473 = 5492 leading to 743−(−47)3

121 · 746−(−47)6

121 =

23096432. Since 23 + 1 = 32 is the only non-trivial solution in integers to r3 + 1 = t2, we
have proved that the only example of a product of repunits which equals a square, in any
base b with b ≡ 2 (mod 4), is the one base 2 example (23 − 1)(26 − 1) = 212 given already.

1b. Certain Lucas sequences. The numbers xn = (rn−sn)/(r−s) satisfy x0 = 0, x1 =
1 and the second order linear recurrence xn+2 = (r+ s)xn+1 − rsxn for each n ≥ 0. These
are examples of a Lucas sequence, where {xn}n≥0 is a Lucas sequence if x0 = 0, x1 = 1
and

(1) xn+2 = bxn+1 + cxn for all n ≥ 0,

for given non-zero, coprime integers b, c. The discriminant of the Lucas sequence is

∆ := b2 + 4c.

Carmichael showed in 1913 that if ∆ > 0 then xn has a characteristic prime factor for each
n ̸= 1, 2 or 6 except for F12 = 144 where Fn is the Fibonacci sequence (b = c = 1), and for
F ′
12 where F ′

n = (−1)n−1Fn (b = −1, c = 1). Schinzel [7], defined a primitive prime factor
of xn to be a characteristic prime factor of xn that does not divide the discriminant ∆.

We have been able to show the analogy to Theorem 1 for a class of Lucas sequences:
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Theorem 2. Let b and c be pairwise coprime integers with c ≡ 2 (mod 4) and ∆ =
b2 + 4c > 0. Let {xn}n≥0 be the Lucas sequence satisfying (1). If n ̸= 1, 2 or 6 then xn

has a characteristic prime factor which (exactly) divides xn to an odd power.

In fact x2 does not have such a prime factor if and only if x2 = b is a square; and
x6 does not have such a prime factor if and only if x6/(x3x2) = b2 + 3c equals 3 times a
square.

Theorem 1 is a special case of Theorem 2 since there we have c = −rs ≡ 2 (mod 4),
(b, c) = (r + s, rs) = 1 and ∆ = (r − s)2 > 0.

Corollary 2. Let the Lucas sequence {xn}n≥0 be as in Theorem 2. If xn1xn2 . . . xnk
is a

square where 1 < n1 < n2 < · · · < nk and k ≥ 1 then the product is either x2 = b or x3x6.

In fact x3x6 is a square if and only if b and b2 + 3c are both 3 times a square; that
is, there exist odd integers B and C with (C, 3B) = 1 and 4C2 > 3B4, for which b = 3B2

and c = C2 − 3B4.
With a little more work we can improve Theorem 2 to account of the notion of primitive

prime factors:

Theorem 3. Let b and c be pairwise coprime integers with c ≡ 2 (mod 4) and ∆ =
b2 + 4c > 0. Let {xn}n≥0 be the Lucas sequence satisfying (1). If n ̸= 1, 2, 3 or 6 then xn

has a primitive prime factor which (exactly) divides xn to an odd power.

The exceptions for n = 1, 2 and 6 are as above in Theorem 2. In fact x3 does not have
such a prime factor if and only if x3 = b2 + c equals 3 times a square;

1c. Fermat’s last theorem and Catalan’s conjecture; and a new observa-
tion. Before Wiles’ work, one studied Fermat’s last theorem by considering the equation
xp + yp = zp for prime exponent p where (x, y, z) = 1, and split into two cases depending
on whether p divides xyz. In the “first case”, in which p - xyz, one can factor zp − yp

into two coprime factors (z − y) and (zp − yp)/(z − y) which must both equal the pth
power of an integer. Thus if the pth term of the Lucas sequence xp = (zp − yp)/(z − y)
is never a pth power for odd primes p then the first case of Fermat’s last theorem follows,
an approach that has not yet succeeded. However Terjanian [9] did develop these ideas to
prove that the first case of Fermat’s last theorem is true for even exponents, showing that
if x2p+y2p = z2p in coprime integers x, y, z where p is an odd prime then 2p divides either
x or y:

In any solution, x or y is even, else 2 divides (xp)2 + (yp)2 = z2p but not 4, which
is impossible. So we may assume that x is even, but not divisible by p, and y and z are
odd so that we have a solution r = z2, s = y2, t = xp to rp − sp = t2 with r ≡ s ≡ 1
(mod 4) and (t, 2p) = 2. Let xn = (rn − sn)/(r − s) for all n ≥ 1, so that xp(r − s) = t2

and (xp, r − s) = (p, r − s)|(p, t) = 1, which implies that xp is a square. Terjanian’s key
observation is that the Jacobi symbols

(2)

(
xm

xn

)
=

(m
n

)
for all odd, positive integers m and n.
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Thus by selecting m to be an odd quadratic non-residue mod p, we have (xm/xp) = −1
and therefore xp cannot be a square. This contradiction implies that p must divide t, and
hence Terjanian’s result.

A similar method was used earlier by Chao Ko [2] in his proof that x2 − 1 = yp with
p > 3 prime has no non-trivial solutions (a first step on the route to proving Catalan’s
conjecture). Rotkiewicz [4] showed, by these means, that if xp + yp = z2 with (x, y) = 1
then either 2p divides z or (2p, z) = 1, which implies both Terjanian’s and Chao Ko’s
results. Rotkiewicz’s key lemma in [4], and then his Theorem 2 in [5], extend (2): Assume
that ∆ and b are positive with (b, c) = 1. If b is even and c ≡ −1 (mod 4) then (2) holds.
If 4 divides c, or if b is even and c ≡ 1 (mod 4) then (xm/xn) = 1 for all odd, positive
integers m,n. In the most interesting case, when 2, but not 4, divides c, we have

(3)

(
xm

xn

)
= (−1)Λ(m/n) for all odd, coprime, positive integers m and n > 1,

where Λ(m/n) is the length of the continued fraction for m/n; more precisely, we have
a unique representation m/n = [a0, a1, . . . , aΛ(m/n)−1] where each ai is an integer, with
a0 ≥ 0, ai ≥ 1 for each i ≥ 1, and aΛ(m/n)−1 ≥ 2.

Note that we have not given an explicit evaluation of (xm/xn) when b and c are
both odd, the most interesting case being b = c = 1 which yields the Fibonacci numbers.
Rotkiewicz [6] does give a complicated formula for determining (Fm/Fn) in terms of a
special continued fraction type expansion for m/n; it remains to find a simple way to
evaluate this formula.

To apply (3) we show that one can replace Λ(m/n) (mod 2) by the much simpler
[2u/n] (mod 2), where u is any integer ≡ 1/m (mod n) (and that this formula holds for
all coprime positive integers m,n). Our proof of this, and the more general (4), is direct
(see Theorem 4 and Corollary 6 below), though Vardi explained, in email correspondence,
how to use the theory of continued fractions to show that Λ(m/n) ≡ [2u/n] (mod 2) (see
the end of section 5).

It is much more difficult to prove that Lucas sequences with negative discriminant
have primitive prime factors. Nonetheless, in 1974 Schinzel [8] succeeded in showing that
xn has a primitive prime factor once n > n0, for some sufficiently large n0, if ∆ ̸= 0, other
than in the periodic case b = ±1, c = −1. Determining the smallest possible value of n0

has required great efforts culminating in the beautiful work of Bilu, Hanrot and Voutier
[1] who proved that n0 = 30 is best possible. One can easily deduce from Siegel’s theorem
that if ϕ(n) > 2 then there are only finitely many Lucas sequences for which xn does not
have a primitive prime factor, and these exceptional cases are all explicitly given in [1].
They show that such examples occur only for n = 5, 7, 8, 10, 12, 13, 18, 30: if b = 1, c = −2
then x5, x8, x12, x13, x18, x30 have no primitive prime factors; if b = 1, c = −5 then
x7 = 1; if b = 2, c = −3 then x10 has no primitive prime factors; there are a handful of
other examples besides, all with n ≤ 12.

1d. Sketches of some proofs. In this subsection we sketch the proof of a special case
of Theorem 2 (the details will be proved in the next four sections). The reason we focus
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now on a special case is that this is already sufficiently complicated, and extending the
proof to all cases involves some additional (and not particularly interesting) technicalities,
which will be given in section 6.

Theorem 2’. Let b and c be integers for which b ≡ 3 (mod 4), c ≡ 2 (mod 4), the Jacobi
symbol (c/b) = 1 and ∆ = b2 + 4c > 0. If {xn}n≥0 is the Lucas sequence satisfying (1)
then xn has a characteristic prime factor which (exactly) divides xn to an odd power for
all n > 1 except perhaps when n = 6. This last case occurs if and only if x6/(3x2x3) is a
square.

Sketch of the proof of Theorem 2’. Let xn = ynzn where yn is divisible only by character-
istic prime factors of xn, and zn is divisible only by non-characteristic prime factors of xn.
If every characteristic prime factor divides xn to an even power then yn is a square: it is
our goal to show that this is impossible.

A complex number ξ is a primitive nth root of unity if ξn = 1 but ξm ̸= 1 for
all 1 ≤ m < n. Let ϕn(t) ∈ Z[t] be the nth cyclotomic polynomial, that is the monic
polynomial whose roots are the primitive nth roots of unity. Evidently xn−1 =

∏
d|n ϕd(x)

so, by Mobius inversion, we have

ϕn(x) =
∏
d|n

(xd − 1)µ(n/d).

Homogenizing, we have xn = (rn − sn)/(r − s) =
∏

d|n, d>1 ϕd(r, s) where ϕn(r, s) :=

sϕ(n)ϕn(r/s) ∈ Z[r, s]. Indeed for any Lucas sequence {xn} the numbers ϕn, defined by

ϕn :=
∏
d|n

x
µ(n/d)
d ,

are integers. Most importantly, this definition yields that p is a characteristic prime factor
of ϕn if and only if p is a characteristic prime factor of xn; moreover p divides both ϕn and
xn to the same power. Therefore yn divides ϕn, which divides xn. In fact yn and ϕn are
very close to each other multiplicatively (as we show in Corollaries 3 and 4 below): either
ϕn = yn, or ϕn = pyn where p is some prime dividing n, in this case, n = pem where p is
a characteristic prime factor of ϕm. So if we can show that

(i) ϕn is not a square, and
(ii) pϕn is not a square when n is of the form n = pem where p is an odd prime,

e ≥ 0, m > 1 and m divides p− 1, p or p+ 1
then we can deduce that yn is not a square. To prove this we modify the approach of
Terjanian described above: We will show that there exist integers k and ℓ for which(

xk

ϕn

)
=

(
xℓ

pϕn

)
= −1,

where
(
.
.

)
is the Jacobi symbol.
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Our first step then is to evaluate the Jacobi symbol (xk/xm) for all positive integers
m and k. In fact this equals 0 if and only if (k,m) > 1. Otherwise, we will show that for
any coprime positive integers k and m > 2 we have

(4)

(
xk

xm

)
= (−1)[2u/m]

for any integer u which is ≡ 1/k (mod m), as discussed above. (Lenstra’s observation that
(4) holds when xm = 2m − 1, which he shared with me in an email, is really the starting
point for the proofs of our main results).

From this we deduce that

(5)

(
xk

ϕm

)
= (−1)N(m,u)

for all m ≥ 1, where, for r(m) =
∏

p|m p and the Mobius function µ(m), we have

N(m,u) := µ2(m) + #{i : 1 ≤ i < 2ur(m)/m and (i,m) = 1}.

Now if ϕm is a square then by (5), we have that N(m,u) is even whenever (u,m) = 1. In
Proposition 4.1 we show that this is false unless m = 1, 2 or 6: our proof of this elementary
fact is more complicated than one might wish.

In Lemma 5.2 we show, using (5), that if pϕm is a square where m = pen, n > 1 and
n divides p− 1, p or p+1 then N(m,u′)−N(m,u) is even whenever u ≡ u′ (mod n) with
(uu′,m) = 1. In Propositions 5.3 and 5.5 we show that this is false unless m = 6: again
our proof of this elementary fact is more complicated than one might wish.

Since xd ≡ 3 (mod 4) for all d ≥ 2 (as may be proved by induction), and since any
squarefree integer m has exactly 2ℓ − 1 divisors d > 1, where ℓ is the number of prime
factors of m, therefore ϕm ≡

∏
d|m xd ≡ x13 ≡ 3 (mod 4), and so cannot be a square.

Hence neither ϕ2 nor ϕ6 is a square (despite the fact that (xk/ϕ6) = 1 for all k coprime
to 6, since N(6, u) is even whenever (u, 6) = 1). Therefore the only possibility left is that
3ϕ6 is a square, as claimed.

Proof of Corollary 2. If p is a characteristic prime factor of xnk
, which divides xnk

to an
odd power then p does not divide xni for any i < k and so divides

∏
1≤i≤k xni to an odd

power, contradicting the fact that this is a square. Therefore nk = 2 or 6 by Theorem 2.
Since a similar argument may be made for any xni where ni does does not divide nj with
j > i we deduce, from Theorem 1, that every ni must divide 6.

Therefore either k = 1 and x2 = b is a square, or we can rewrite
∏

1≤i≤k xni

as a product of
∏

1≤j≤ℓ ϕmj times a square, where 1 < m1 < · · · < mℓ = 6 and

{m1, . . . ,mℓ−1} ⊂ {2, 3}. However ϕ3 is divisible by some characteristic odd prime factor
p to an odd power, which does not divide ϕ6 (as all xn, n ≥ 1 are odd), and so ϕ3 cannot
be in our product. Now ϕ6 is not a square since ϕ6 = b2+3c ≡ 3 (mod 4). Therefore both
ϕ2 and ϕ6 are 3 times a square, which is equivalent to x3x6 being a square.

Theorem 1 follows from Theorem 2, and Corollary 1 follows from Corollary 2.
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2. Elementary properties of Lucas sequences

2a. Lucas sequences in general. If yn+2 = −byn+1+cyn for all n ≥ 0 with y0 = 0, y1 =
1 then yn = (−1)n−1xn for all n ≥ 0. Therefore the prime factors, and characteristic prime
factors, of xn and yn are the same and divide each to the same power, and so we may
assume, without loss of generality, that b > 0.

Let α and β be the roots of T 2 − bT − c. Then

xn =
αn − βn

α− β
for all n ≥ 0

(as may be proved by induction). We note that α + β = b and αβ = −c, so that
(α, β)|(b, c) = 1 and thus (α, β) = 1. Moreover ∆ = (α− β)2 = b2 + 4c.

In this subsection we prove some standard facts about Lucas sequences that can be
found in many places (see, e.g. [3]).

Lemma 1. We establish various properties of the sequence {xn}:
(i) We have (xn, c) = 1 for all n ≥ 1.
(ii) We have (xn, xn+1) = 1 for all n ≥ 0.
(iii) We have xd+j ≡ xd+1xj (mod xd) for all d ≥ 1 and j ≥ 0. Therefore if k − ℓ = jd.

then xk ≡ xℓx
j
d+1 (mod xd).

(iv) Suppose d is the minimum integer ≥ 1 for which xd is divisible by given integer r.
Then r|xk if and only if d|k.
(v) For any two positive integers k and m we have (xk, xm) = x(k,m).

Proof. (i) If not, select n minimal so that there exists a prime p with p|(xn, c). Then
bxn−1 = xn − cxn−2 ≡ 0 (mod p) and so p|xn−1 since (p, b)|(c, b) = 1, contradicting
minimality.

(ii) We proceed by induction using that (xn+1, xn+2)|xn+2 − bxn+1 = cxn, and thus
divides xn, since (xn+1, c) = 1 by (i). Therefore (xn+1, xn+2)|(xn, xn+1) = 1.

(iii) We proceed by induction on j: it is trivially true for j = 0 and j = 1. For larger
j we have xd+j = bxd+j−1 + cxd+j−2 ≡ xd+1(bxj−1 + cxj−2) = xd+1xj (mod xd).

(iv) Since (xd+1, xd) = 1 we see that (xd, xd+j) = (xd, xj) by (iii). So if j is the
least positive residue of k (mod d) we find that (r, xk) = (r, xj). Now 0 ≤ j ≤ d − 1 and
(r, xj) = r if and only if j = 0, and hence d|k, so the result follows by the definition of d.

(v) Let g = (k,m) so (iv) implies that xg|(xk, xm) = r, say. Let d be the minimum
integer ≥ 1 for which xd is divisible by r. Then d|(k,m) = g by (iv), and thus r|xg by (iv),
and the result is proved.

Proposition 1. There exists an integer n ≥ 1 for which prime p divides xn if and only
if p does not divide c. In this case let q = p if p is odd, and q = 4 if p = 2. Select rp
to be the minimal integer ≥ 1 for which q|xrp . Define ep ≥ 1 so that pep |xrp but pep+1

does not. Then q|xn if and only if rp|n, in which case, writing n = rpp
km where p ̸ |m for

some integer k, we have that pep+k divides xn but pep+k+1 does not. Finally, if p is an
odd prime for which p|∆ then p|xp, and p2 - xp if p > 3.
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Proof. Since p|xn for some n ≥ 1 we have (p, αβ)|(xn, c) = 1 by Lemma 1(i) so that p is
coprime to both α and β. On the other hand if (p, αβ) = 1 then α, β are in the group of
units mod p, and therefore there exists an integer n for which αn ≡ 1 ≡ βn (mod p) so
that p|αn − βn. Hence p|xn if (p, α − β) = 1. Now (p, α − β) > 1 if and only if p|∆. In
this case one easily shows, by induction, that xn ≡ n(b/2)n−1 (mod p) if p > 2, and hence
p|xp. Finally 2|∆ if and only if 2|b, whence c is odd (as (b, c) = 1) and so xn ≡ n (mod 2);
in particular 2|x2.

Let us write βd = αd + (βd − αd), so that

βkd = (αd + (βd − αd))k = αkd + kα(k−1)d(βd − αd) +

(
k

2

)
α(k−2)d(βd − αd)2 + . . . ,

and therefore, since xd divides xkd,

xkd/xd ≡ kα(k−1)d +

(
k

2

)
α(k−2)d(β − α)xd (mod x2

d).

We see that if p|xd then p|xkd/xd if and only if p|k, as (p, α) = 1 (since α|c and (p, c) = 1
by Lemma 1(i)). We also deduce that xpd/xd ≡ pα(p−1)d (mod p2), and so p2 - xpd/xd,
unless p = 2 and xd ≡ 2 (mod 4). The result then follows from Lemma 1(iv).

Finally, if odd prime p|∆ = (α− β)2 then

xp =
βp − αp

β − α
= pαp−1 +

(
p

2

)
αp−2(β − α) + . . . ≡ 0 (mod p).

Therefore np|p by Lemma 1(iv) and np ̸= 1 (as x1 = 1), and so np = p. Adding the two
such identities with the roles of α and β exchanged, yields

2xp

p
=

∑
1≤j≤p
j odd

1

p

(
p

j

)
∆

j−1
2 (αp−j + βp−j)−

∑
1≤j≤p
j even

1

p

(
p

j

)
∆

j
2xp−j .

This is ≡ αp−1+βp−1 (mod p) plus 2
3∆ if p = 3. Now if p > 3 the first term = x2p−2/xp−1

and so is not divisible by p. One can verify that 9|x3 if and only if 9|b2 + c.

Corollary 3. Each ϕn is an integer. When p is a characteristic prime factor of ϕn define
np = n. Then p divides both xnp and ϕnp to the same power. Otherwise if prime p|ϕn

where n ̸= np then n/np is a power of p, and p2 ̸ |ϕn with one possible exception: if p = 2
with b odd and c ≡ 1 (mod 4) then n2 = 3 and 22|ϕ6. If p is an odd prime for which p2|∆
then p|ϕp but p2 - ϕp.

Proof. Note first that np = rp when p ̸= 2. We use the formula ϕn =
∏

d|n x
µ(n/d)
d . If

np = n then xn is the only term on the left that is divisible by p, and so p divides both xnp

and ϕnp
to the same power. To determine the power of p dividing ϕn we will determine the

power of p dividing each xd. To do this we begin by studying those d for which q divides
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xd (in the notation of Proposition 1), and then we return, at the end, to those xd divisible
by 2 but not 4:

By Proposition 1, q divides xd if and only if d = rpp
ℓq with 0 ≤ ℓ ≤ k and q|m, and

so the power of p dividing these terms in our product is

∑
0≤ℓ≤k

µ(pk−ℓ)(ep + ℓ)
∑
q|m

µ(m/q) =


1 if m = 1 and k ≥ 1

0 if m ≥ 2

ep if m = 1 and k = 0 (i.e. n = rp).

Hence if p is odd, or p = 2 with n2 = r2, then p|ϕn with n > np if and only if n/np is a
power of p, and then p2 - ϕn.

Other xd divisible by p occur only in the case that p = 2 and r2 = 2n2, and these are
the terms xd in the product for which n2|d but r2 does not. Such xd are divisible by 2 but
not 4. Hence the total power of 2 dividing the product of these terms is

∑
d|n

n2|d, 2n2-d

µ(n/d) =


1 if n = n2

−1 if n = 2n2

0 otherwise

We deduce that 2|ϕn with n > n2 if and only if n/n2 is a power of 2. Moreover 4 - ϕn,
except in the special case that n = r2 = 2n2 and e2 ≥ 3. We now study this special case:
We must have c odd, else c is even, so that b is odd, and xn is odd for all n ≥ 1. We must
also have b odd, else xn ≡ n (mod 2), so n2 = 2, that is x2 = b is divisible by 2 but not
4. But then r2 = 4 and so ϕ4 = b2 + 2c ≡ 2 (mod 4), a contradiction. In this case n2 = 3
and we want r2 = 6. But then ϕ3 = b2 + c ≡ 2 (mod 4), so that c ≡ 2− b2 ≡ 1 (mod 4),
and ϕ6 = b2 + 3c ≡ 1 + 3 ≡ 0 (mod 4).

The last statement follows from the last of Proposition 1 since ϕp = xp (and working
through the possibilities when p = 3).

Since ϕn is usually significantly smaller than xn and since we have a very precise
description of the non-characteristic prime factors of ϕn, it is easier to study characteristic
prime factors of xn by studying the factors of ϕn

Lemma 3. Suppose that p is a prime that does not divide c (so that np exists). Then
np ≤ p+ 1. Moreover if p > 2 then np divides p− (∆/p).

Proof. Proposition 1 implies this when p|∆. We have α = (b+
√
∆)/2 and β = (b−

√
∆)/2,

which implies that

αp ≡ bp +
√
∆

p

2p
≡ b+∆(p−1)/2

√
∆

2
≡ b+ (∆/p)

√
∆

2
(mod p),

and analogously βp ≡ (b − (∆/p)
√
∆)/2. Hence if (∆/p) = −1 then αp ≡ β (mod p)

and βp ≡ α (mod p), so that αp+1 = ααp ≡ αβ = −c (mod p) and similarly βp+1 ≡ −c
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(mod p). Now (α − β, p)|(∆, p) = 1 and therefore p|xp+1. If (∆/p) = 1 then αp−1 =
α−1αp ≡ α−1α = 1 (mod p) and similarly βp−1 ≡ 1 (mod p), so that p|xp−1.

In the special case that p = 2 we have c is odd. We see easily that if b is even (and so
2|∆) then n2 = 2. If b is odd then n2 = 3 and b2 + 4c ≡ 1 + 4 = 5 (mod 8). Therefore n2

divides 2− (∆/2), with the latter properly interpreted.

Corollary 4. Each ϕn has at most one non-characteristic prime factor, except ϕ6 is
divisible by 6 if b ≡ 3 (mod 6) and c ≡ 1 (mod 2), and ϕ12 is divisible by 6 if b ≡ ±1
(mod 6) and c ≡ 1 (mod 6).

Proof. Suppose ϕn has two non-characteristic prime factors p < q. By Corollary 3 we have
that q|np and so q ≤ np ≤ p + 1 by Lemma 3. Therefore p = 2 and q = 3, in which case
n2 = 3, so that n = 2e3 for some e ≥ 1, and this equals 3fn3 for some f ≥ 1 by Corollary
3. Thus f = 1 and n3 = 2 or 4. The result follows by working through the possibilities
mod 2 and mod 3.

Corollary 5. Suppose that xn does not contain a characteristic prime factor to an odd
power and n ̸= 6 or 12. Then either ϕn = � (where � represents the square of an integer),
or ϕn = p� where p is a prime for which pe|n with e ≥ 1 and n/pe ≤ p+ 1.

Proof. Follows from Corollaries 3 and 4 and Lemma 3.

Lemma 4. Suppose that the odd prime p divides ∆. Then xn ≡ n(b/2)n−1 (mod p) for
all n ≥ 0.

Proof. This follows by induction on n: it is trivially true for n = 0, 1, and then

xn = bxn−1 + cxn−2 ≡ b(n− 1)(b/2)n−2 + c(n− 2)(b/2)n−3

≡ 2(n− 1)(b/2)n−1 − (n− 2)(b/2)n−1 = n(b/2)n−1 (mod p),

since ∆ = b2 + 4c ≡ 0 (mod p), so that c ≡ −(b/2)2 (mod p).

2b. Lucas sequences with b,∆ > 0, (c/b) = 1 and b ≡ 3 (mod 4), c ≡ 2 (mod 4). As
b,∆ > 0 this implies that xn > 0 for all n ≥ 1 since α > |β|.

We also have xn ≡ 3 (mod 4) for all n ≥ 2, by induction. In fact xn+2 ≡ xn (mod 8)
for all n ≥ 3, which we can prove by induction: We have

x5 = b4 + 3cb2 + c2 ≡ 1 + 3c+ 4 ≡ 1 + c ≡ b2 + c = x3 (mod 8),

and

x6 = b(b4 + 4cb2 + 3c2) ≡ b(1 + 0 + 4) = b(1 + 4) ≡ b(b2 + 2c) = x4 (mod 8).

For larger n, we then have xn+2 = bxn+1 + cxn ≡ bxn−1 + cxn−2 = xn (mod 8) by the
induction hypothesis.

We also note that xn+2 ≡ bxn+1 (mod c) for all n ≥ 0, and so xn ≡ bn−1 (mod c) for
all n ≥ 1. We deduce from this and the previous paragraph that xn+2 ≡ b2xn (mod 4c)
for all n ≥ 3.



PRIMITIVE PRIME FACTORS IN SECOND-ORDER LINEAR RECURRENCE SEQUENCES 11

Proposition 2. We have (xd+1/xd) = 1 for all d ≥ 1.

Proof. For d = 1 this follows as x1 = 1; for d = 2 we have (x3/x2) = ((b2 + c)/b) =
(c/b) = 1. The result then follows from proving that θd := (xd+1/xd)(xd/xd−1) = 1 for
all d ≥ 3. Since xd+1 ≡ cxd−1 (mod xd) and as xd ≡ xd−1 ≡ 3 (mod 4) for d ≥ 3, we
have θd = (cxd−1/xd)(xd/xd−1) = −(c/xd) = (−c/xd). We will prove that this equals 1
by induction on d ≥ 3. So write −c = δC where C = |c/2|. Then note that

θ3 =

(
−c

b2 + c

)
=

(
δ

b2 + c

)(
C

b2 + c

)
=

(
δ

b2 + c

)(
−1

C

)(
b2 + c

C

)
=

(
δ

b2 − δC

)(
−1

C

)
which is shown to be 1, by running through the possibilities δ = ±2 and C ≡ ±1 (mod 4).
Also, as (−c/b) = −1,

θ4 =

(
−c

b(b2 + 2c)

)
= −

(
δ

b2 + 2c

)(
C

b2 + 2c

)
= −(−1)

(
b2 + 2c

C

)
= 1

since δ = ±2 and b2 + 2c ≡ 5 (mod 8). Now for the induction hypothesis, for d ≥ 5: The
value of θd = (−c/xd) depends only on the square class of xd (mod 4c), and we saw in
the paragraph above that this is the same square class as xd−2 (mod 4c) for d ≥ 5. Hence
θd = 1 for all d ≥ 3, and the result follows.

3. Evaluation of Jacobi symbols, when
b,∆ > 0, b ≡ 3 (mod 4), c ≡ 2 (mod 4) and (c/b) = 1.

3a. The reciprocity law. Suppose that k and m > 1 are coprime positive integers. Let
uk,m be the least residue, in absolute value, of 1/k (mod m) (that is u ≡ k (mod m) with
−m/2 < u ≤ m/2).

Lemma 5. If m, k ≥ 2 with (m, k) = 1 then kuk,m +mum,k = 1.

Proof. Now v := (1 − kuk,m)/m is an integer ≡ 1/m (mod k) with −k/2 + 1/m ≤ v <
k/2 + 1/m. This implies that −k/2 < v ≤ k/2, and so v = um,k.

Theorem 4. If k ≥ 1 and m > 1 are coprime positive integers then the value of the Jacobi
symbol (xk/xm) equals the sign of uk,m.

Proof. By induction on k + 2m ≥ 5. Note that when k = 1 we have u = 1 and the result
follows as (x1/xm) = (1/xm) = 1. For larger k, we have two cases. If k > m then let
ℓ be the least positive residue of k (mod m), say k − ℓ = jm. By Lemma 1(iii) we have
(xk/xm) = (xℓ/xm)(xm+1/xm)j = (xℓ/xm) by Proposition 2. Moreover ul,m = uk,m by
definition so that the result follows from the induction hypothesis. If 2 ≤ k < m then
(xk/xm) = −(xm/xk) since xm ≡ xk ≡ 3 (mod 4). Moreover uk,m and um,k must have
opposite signs, else 1 = k|uk,m| +m|um,k| ≥ 1 + 1 by Lemma 5 which is impossible. The
result follows from the induction hypothesis.

Define (t)m to be the least (positive) residue of t (mod m), so that (t)m = t−m[t/m].
Note that 0 ≤ (t)m < m/2 if and only if [(t)m/(m/2)] = 0. Also that [(t)m/(m/2)] =
[2t/m]− 2[t/m] ≡ [2t/m] (mod 2) Now, if m ≥ 3 and (t,m) = 1 then (t)m is not equal to
0 or m/2; therefore if u is any integer ≡ 1/k (mod m) then the sign of uk,m is given by

(−1)[2u/m]. We deduce the following from this and Theorem 4:
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Corollary 6. Suppose that k and m ̸= 2 are coprime positive integers. If u is any integer
≡ 1/k (mod m) then

(4)

(
xk

xm

)
= (−1)[2u/m].

Note that if k is odd then
(

xk

x2

)
= 1, whereas (4) would always give −1.

Remark. In email correspondence with Ilan Vardi we understood how (4) can be deduced
directly from (3) and known facts about continued fractions. Write pn/qn = [a0, a1, . . . , an]
for each n, and recall that(

pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
as may easily be established by induction on n ≥ 1. By taking determinants we see
that pnqn−1 = pn−1qn + (−1)n+1 ≡ (−1)n+1 (mod qn). Taking pn/qn = k/m with n =
Λ(k/m) − 1 and u to be the least positive residue of 1/k (mod m) we see that qn−1 ≡
(−1)n+1u (mod m) and qn−1 < qn = m, so qn−1 = u if n is odd, qn−1 = m−u if n is even.
Now m = qn = anqn−1+qn−2 ≥ 2qn−1+1, and so qn−1 < m/2. Therefore if u < m/2 then
qn−1 = u, so n is odd and the values given in (4) and (3) are equal. A similar argument
works if u > m/2. Hence we have that

(6) Λ(k/m) ≡ [2u/m] (mod 2) where uk ≡ 1 (mod m)

for all coprime, positive integers k and m.

3b. The characteristic part. If (m, k) = 1 and u ≡ 1/k (mod m) then

(7)

(
xk

ϕm

)
=

∏
d|m

(
xk

xd

)µ(m/d)

= (−1)E(m,u)

by (4) since (xk/xd) = 1 if d = 1 or 2, where

E(m,u) ≡
∑
d|m
d≥3

µ
(m
d

)[
2u

d

]
=

∑
d|m
d≥3

µ
(m
d

) ∑
1≤j≤2u−1

d|j

1

≡
∑

1≤j≤2u−1

∑
d|(m,j)

µ
(m
d

)
+ µ(m)(2u− 1) + E2 (mod 2)

where E2, the contribution when d = 2, occurs only when m is even, and is then equal to
µ(m/2)(u − 1), and we can miss the j = 2u term since if d|2u then d|(2u,m) = (2,m)|2.
However u is then odd since (u,m) = 1 and so E2 ≡ µ(m/2)(u− 1) ≡ 0 (mod 2).

Now let r(n) =
∏

p|n p for any integer n. We see that µ(m/d) = 0 unless m/d divides

r(m), that is d is divisible by m/r(m), in which case j must be also. Write j = i(m/r(m)),
and each d = D(m/r(m)) and so

E(m,u) ≡ µ(m) +
∑

1≤i<
2ur(m)

m

∑
D|(r(m),i)

µ(r(m)/D) ≡ µ(m) +
∑

1≤i<2ur(m)/m
(i,m)=1

1 (mod 2),

which is N(m,u), and so we obtain (5).
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4. The tools needed to show that ϕm ̸= �.

Proposition 4.1. If m ̸= 1, 2, 6 then N(m,u′) − N(m,u) is odd for some u, u′ with
(uu′,m) = 1.

Proof. If m is squarefree then N(m,u′) −N(m,u) = #{i : 2u ≤ i < 2u′ and (i,m) = 1}.
So, if m is odd and > 1 let u = (m − 1)/2 and u′ = u + 1. If m is even then there exists
a prime q|m with q ≥ 5 (as m ̸= 2 or 6), so we can write m = qs where q - s > 1: Then
select u ≡ −1 (mod s) and u ≡ −3/2 (mod q) with u′ = u+ 2.

Form not squarefree letm2 be the largest powerful number dividingm andm = m1m2

so that m1 is squarefree, (m1,m2) = 1, and r(m2)
2|m2. Note that m/r(m) = m2/r(m2).

When m2 = 4 then N(m,u) = #{i : 1 ≤ i < u, (i,m) = 1}, so if u is the smallest
integer > 1 that is coprime with m then N(m,u)−N(m, 1) = 1.

So we may assume that m2 > 4, in particular that 2r(m)/m ≤ 2/3. Consider
N(m, m

r(m) (ℓ+ 1) + 1)−N(m, m
r(m)ℓ+ 1) = #{i : 2ℓ+ 1 ≤ i ≤ 2ℓ+ 2 : (i,m) = 1}.

Select ℓ ≡ −1 (mod m2) so that (2ℓ+ 2,m) ≥ m2. Then we need to select ℓ (mod p) for
each prime p dividing m1 so that each of m

r(m) (ℓ+1)+1, m
r(m)ℓ+1 and 2ℓ+1 are coprime

to p. Since there are just three linear forms, such congruence classes exist modulo primes
p > 3 by the pigeonhole principle; and also for p = 3 as may be verified by a case-by-case
analysis. Thus the result follows when m1 is odd.

So we may assume that m1 is even and now consider
N(m, 2m

r(m) (ℓ+ 1) + 1)−N(m, 2m
r(m)ℓ+ 1) = #{i : 4ℓ+ 1 ≤ i ≤ 4ℓ+ 4 : (i,m) = 1}.

Select ℓ ≡ −3/4 (mod m2) so that (4ℓ + 3,m) ≥ m2. We can again select ℓ (mod p) for
each prime p > 3 dividing m1 so that each of 2m

r(m) (ℓ+1)+1, 2m
r(m)ℓ+1, 4ℓ+1 are coprime

to p by the pigeonhole principle, and therefore the result follows if 3 does not divide m1.
So we may assume that 6|m1. Select integer ℓ so that ℓ ≡ 1 (mod m2), ℓ ≡ −m/r(m)

(mod 4) and, for each prime p dividing m1/2, p does not divide ℓ, m
r(m)ℓ− 1 or m

r(m)ℓ+ 3.

Therefore, since 3r(m)/m ≤ 3/5, we have
N(m, 1

2 (
m

r(m)ℓ+ 3))−N(m, 1
2 (

m
r(m)ℓ− 1)) = #{i : ℓ ≤ i < ℓ+ 1 : (i,m) = 1} = 1.

5. The tools needed to show that ϕm ̸= p �.

Lemma 5.1. Suppose that ϕm = p�, where p is an odd prime, m = pen, 1 < n ≤ p + 1
and p|ϕn. If k ≡ k′ (mod 2n) with (kk′,m) = 1 then (xk/ϕm) = (xk′/ϕm). Moreover if
c ≡ 2 (mod 4) then (ϕm/xk) = (ϕm/xk′).

Proof. Writing k′ = k + 2nj we have xk′ ≡ xkx
2j
n+1 (mod xn), by Lemma 1(iii); and so

(xk/p) = (xk′/p) since p|xn. Therefore since ϕm = p� we have (xk/ϕm) = (xk/p) =
(xk′/p) = (xk′/ϕm).

If c ≡ 2 (mod 4) and k ≡ k′ (mod 2) then xk ≡ xk′ (mod 4), which implies that
(p/xk) (p/xk′) = (xk/p) (xk′/p), and the result follows from the first part.

Lemma 5.2. Assume that b,∆ > 0, b ≡ 3 (mod 4), c ≡ 2 (mod 4) and (c/b) = 1.
Suppose that ϕm = p�, where p is an odd prime, m = pen, 1 < n ≤ p + 1 and p|ϕn. If
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u ≡ u′ (mod n) with (uu′,m) = 1 then N(m,u′) − N(m,u) is even. If e = 1 and n ̸= p
then this implies that N(n, u′/p)−N(n, u/p) is even.

Proof. Let k, k∗ be integers for which k ≡ 1/u (mod m) and k∗ ≡ 1/u′ (mod m). Evi-
dently k ≡ 1/u ≡ 1/u′ ≡ k∗ (mod n). If k ≡ k∗ (mod 2n) then let k′ = k∗, otherwise
take k′ = k∗ +m, so k′ ≡ k (mod 2n) (since m/n = pe is odd). Applying the first part of
Lemma 5.1, the first result follows from (5).

If e = 1 then m = pn so that r(m)/m = r(n)/n. Therefore N(m,u′)−N(m,u) equals,
for U = 2ur(n)/n and U ′ = 2u′r(n)/n,∑

U≤i<U ′

(i,r(n)p)=1

1 =
∑

U≤i<U ′

(i,r(n))=1

1−
∑

U≤i<U ′

(i,r(n))=1, p|i

1 ≡
∑

U/p≤j<U ′/p
(j,r(n))=1

1 (mod 2).

since U ′ ≡ U (mod 2r(n)) (as u ≡ u′ (mod n)), so that the first term counts each residue
class coprime with r(n) an even number of times, and by writing i = jp in the second sum.
The result follows.

Proposition 5.3. Suppose n ≥ 2 and n divides p− 1 or p+ 1 for some odd prime p. Let
m = pen for some e ≥ 1. There exists an integer u such that (u(u+ n),m) = 1 for which
N(m,u+ n)−N(m,u) = 1 if e ≥ 2, for which N(n, (u+ n)/p)−N(n, u/p) = 1 if e = 1,

except when p = 3, n = 2. In that case we have N
(
2 · 3e, 3e−1+4+3(−1)e

2

)
−N (2 · 3e, 1) = 1,

for e ≥ 2.

Lemma 5.4. If n ≥ 3 and odd prime p = n− 1 or p ≥ n+ 1 (except for the cases n = 3
or 6 with p = 5; and n = 4, p = 3) then in any non-closed interval of length n, containing
exactly n integers, there exists an integer u for which u and u+ n are both prime to np.

Proof. Since p ≥ n − 1 there are no more than three integers, in our two consecutive
intervals of length n, that are divisible by p so the result follows when ϕ(n) ≥ 4. Otherwise
n = 3, 4 or 6, and if the reduced residues are 1 < a < b < n then p divides b − a, (n +
b)− a, (n+ a)− b or (2n+ a)− b. Therefore p|4, 10, 2 or 8 for n = 6; p|2 or 6 for n = 4;
p|1, 4, 2 or 5 for n = 3. The result follows.

Proof of Proposition 5.3. Let f := max{1, e− 1}. The result holds for

(m,u) =

(
3 · 5e, 5

f − 3

2

)
,

(
6 · 5e, 5

f − 3

2

)
, (4 · 3e, 3f − 2),

(
2 · pe, p

f − j

2

)
for each e ≥ 1 and, in the last case, any prime p > 3, where j is either 1 or 3, chosen so
that u is odd.

Otherwise we can assume the hypotheses of Lemma 5.4. Now suppose that e ≥ 2.
Given an integer ℓ we can select u in the range ℓ m

2r(m) − n < u ≤ ℓ m
2r(m) (which is an

interval of length n) such that u and u′ := u + n are both prime to np, by Lemma 5.4.
Therefore N(m,u′)−N(m,u) counts the number of integers, coprime withm, in an interval
of length λ := 2nr(m)/m = 2r(n)/pe−1. Note that λ ≤ 2n/p ≤ 2(p + 1)/p < 3 so our
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interval contains no more than [λ] + 1 ≤ 3 integers, one of which is ℓ. If λ < 2 we select
ℓ ≡ 1 (mod p) and ℓ ≡ −1 (mod n) so that N(m,u′) − N(m,u) = 1. Otherwise λ ≥ 2
so that n ≥ r(n) ≥ pe−1 ≥ p, and thus n = p + 1, e = 2 and r(n) = n, that is n is
squarefree, and 2|(p+ 1)|n. So select ℓ to be an odd integer for which ℓ ≡ 2 (mod p) and
ℓ ≡ −2 (mod n/2) so that ℓ ± 2, ℓ ± 1 all have common factors with m, and therefore
N(m,u′)−N(m,u) = 1.

For e = 1 and given integer ℓ we now select u in the range ℓ pn
2r(n) − n < u ≤ ℓ pn

2r(n) ,

and N(n, u′/p)−N(n, u/p) counts the number of integers, coprime with n, in an interval
of length λ := 2r(n)/p. If λ < 1 we select ℓ so that it is coprime with n then we have
that N(n, u′/p) −N(n, u/p) = 1 is odd. If λ ≥ 1 we have r(n) ≥ p/2, and we know that
r(n)|n|p ± 1, so that r(n) and n equal p+1

2 , p − 1 or p + 1. If n = r(n) = p − 1 then
n is squarefree and divisible by 2, and [λ] = 1; so we select ℓ ≡ 1 (mod 2) and ℓ ≡ −1
(mod n/2) so that N(n, u′/p)−N(n, u/p) = 1. In all the remaining cases, one may check
that N(n, (n+ 1)/p)−N(n, 1/p) = 1.

Proposition 5.5. If m = pe+1 where p is an odd prime then N
(
m, pe+1

2

)
−N(m, 1) = 1.

6. Other Lucas sequences

Proposition 6.1. Assume that ∆ and b are positive with (b, c) = 1. For n > 1 odd with
(m,n) = 1 we have the following:

(
xm

xn

)
=


(
c
b

)(m−1)(n−1)/2
if 4|c

(−1)Λ(m/n)+( b+1
2 )(m−1)

(
c
b

)(m−1)(n−1)/2
if c ≡ 2 (mod 4)(

m
n

) c−1
2

(
2
n

)(m−1)( b+c−1
2 ) ( b

c

)(m−1)(n−1)/2
if 2|b

Proof. For m odd this is the result of Rotkiewicz [5], discussed in section 1c. Note that
if c is even then b is odd and xn is odd for all n ≥ 1; and if b is even then c is odd and
xn ≡ n (mod 2) is odd for all n ≥ 1. Thus xn is odd if and only if n is odd.

For m even and n odd we have that m+ n is odd and so(
xm

xn

)
=

(
xm+n

xn

)(
xn+1

xn

)
by Lemma 1(iii); and therefore(

xn+1

xn

)
=

(
x2

xn

)(
xn+2

xn

)
;

note that n, n+ 2 are both odd, so we have yet to determine only (x2/xn) = (b/xn).
Suppose that c is even so that b is odd. If 4|c then xn ≡ 1 (mod 4) if n is odd so

that (b/xn) = (xn/b). If c ≡ 2 (mod 4) and b ≡ 1 (mod 4) then (b/xn) = (xn/b). Now
xn ≡ cxn−2 (mod b) and so xn ≡ c(n−1)/2 (mod b) for every odd n. Therefore(

xm

xn

)
=

(
xm+n

xn

)(
xn+2

xn

)(c
b

)(n−1)/2

.
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The results follow in these cases since Λ((m+ n)/n) = Λ(m/n) as (m+ n)/n = 1 +m/n,
and Λ((n+ 2)/n) = 3 as (n+ 2)/n = [1, n−1

2 , 2].
If c ≡ 2 (mod 4) and b ≡ 3 (mod 4) then xn ≡ 3 (mod 4) for all n ≥ 2. Therefore

(b/xn) = −(xn/b) for all odd n > 1, and the result follows.
Now assume that b is even so that c is odd. As xn ≡ c(n−1)/2 (mod [b, 4]) for each

odd n we have, writing b = 2eB with B odd,(
b

xnc(n−1)/2

)
=

(
2

xnc(n−1)/2

)e (
xnc

(n−1)/2

B

)
=

(
2

xnc(n−1)/2

)e

.

Now if 4|b then xn ≡ c(n−1)/2 (mod 8). Finally, if e = 1 then xnc
(n−1)/2 ≡ 1 (mod 8) if

n ≡ ±1 (mod 8), and ≡ 5 (mod 8) if n ≡ ±3 (mod 8). Therefore
(

2
xnc(n−1)/2

)
=

(
2
n

)
.

The result follows.

Corollary 6.2. Suppose that ∆ and b are positive, with (b, c) = 1 and c ≡ 2 (mod 4).
For n > 1 odd, m > 1 and (m,n) = 1. Suppose that mu ≡ 1 (mod n). If n is a power of
a prime p then (

xm

ϕn

)
= (−1)N(n,u)+µ(n)( b+1

2 )(m−1)
(c
b

)(m−1)(p−1)/2

.

If n has at least two distinct prime factors then(
xm

ϕn

)
= (−1)N(n,u)+µ(n)( b+1

2 )(m−1).

If m is even and > 2 then, for nv ≡ 1 (mod m),(
ϕm

xn

)
= (−1)N(m,v)+µ(m/2).

Proof. Throughout we assume that n > 1 is odd. Proposition 6.1 yields that we have(
xm

ϕn

)
= (−1)A(c/b)B where B equals (m− 1)/2 times∑

d|n
d>1

µ(n/d)(d− 1) =
∑
d|n

µ(n/d)(d− 1) =
∑
d|n

µ(n/d)d = ϕ(n) ≡
∏
p|n

(p− 1) (mod 4)

which is divisible by 4 except if n is a power of odd prime p, so we confirm the claimed
powers of (c/b). If d|n then Λ(m/d) ≡ [2u/d] (mod 2) where um ≡ 1 (mod n), by (6),
and so

A =
∑
d|n
d>1

µ(n/d)

(
Λ(m/d) +

(
b+ 1

2

)
(m− 1)

)

≡
∑
d|n
d>1

µ(n/d)[2u/d]− µ(n)

(
b+ 1

2

)
(m− 1) (mod 2)

≡ N(n, u) + µ(n)

(
b+ 1

2

)
(m− 1) (mod 2)
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since, in section 3b, we showed that
∑

d|n
d≥3

µ
(
n
d

) [
2u
d

]
≡ N(n, u) (mod 2), and here n is

odd (so there is no d = 2 term).
In the third case we use the fact that if d < n then the continued fraction for d/n is

that of n/d with a 0 on the front, and vice-versa. Hence Λ(n/d) + Λ(d/n) ≡ 1 (mod 2).
Hence∑

d|m

µ(m/d)Λ(d/n) ≡
∑
d|m

µ(m/d)(Λ(n/d) + 1) ≡ N(m, v) + µ(m/2) (mod 2).

The other terms disappear since ϕ(m) is even.

Proof of Theorem 2. Our goal is to show that yn is not a square, just as we did in the
proof of Theorem 2’. We begin by showing that ϕn is not a square, for n ̸= 1, 2, 3, 6 by
using Corollary 6.2:

Suppose that ϕn is a square so that (xm/ϕn) = 1. For n > 1 odd, we compare, in the
first two identities of Corollary 6.2, the results for m and m+ n. The value of u does not

change and we therefore deduce that (−1)µ(n)(
b+1
2 ) ( c

b

)(p−1)/2
= 1 and (−1)µ(n)(

b+1
2 ) = 1,

respectively. Hence those identities both becomeN(n, u) ≡ 0 (mod 2) whenever (u, n) = 1.
Similarly if n > 2 is even then the third identity of Corollary 6.2 yields that N(n, u) ≡
µ(n/2) (mod 2) whenever (u, n) = 1. These are all impossible, by Proposition 4.1, unless
n = 1, 2 or 6.

Next we suppose that pϕn is a square where n = pem and p is an odd characteristic
prime factor of ϕm, with e ≥ 0, m > 1 and m divides p − 1, p or p + 1. Lemma
5.1 tells us that if k ≡ k′ (mod 2m) with (kk′, n) = 1 then (xk/ϕn) = (xk′/ϕn) and
(ϕn/xk) = (ϕn/xk′). Corollary 6.2 thence implies that if n > 2 then N(n, u) ≡ N(n, u′)
(mod 2) where uk ≡ u′k′ ≡ 1 (mod n). We now proceed as in Lemma 5.2 to deduce that
if u ≡ u′ (mod m) with (uu′, n) = 1 then N(n, u)−N(n, u′) is even, deduce the final part
of that Lemma, and then use Proposition 5.3 to obtain the desired contradiction except
for when n = 1, 2 or 6.

We can now deduce that yn is not a square, for n ̸= 1, 2, 6, from the last two para-
graphs, and the result follows.

Proof of Theorem 3. We deduce Theorem 3 from Theorem 2 by ruling out the possibility
that there exists an n for which all of the characteristic prime factors p of xn which divide
xn to an odd power, are not primitive prime factors of xn. If this were the case then each
such p would be a divisor of ∆, which is odd, so that p is odd, and therefore n = np = p
by Lemma 3. Hence there is a unique such p, and we must have that xp = ϕp is p times a
square. But then (

xm

ϕp

)
=

(
xm

p

)
=

(
m(b/2)m−1

p

)
by Lemma 4 whenever p - m. Comparing this to the first part of Corollary 6.2 we find that(

m(b/2)m−1

p

)
= (−1)N(p,u)+( b+1

2 )(m−1)
(c
b

)(m−1)(p−1)/2

.
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where mu ≡ 1 (mod p). Replacing m by m+ p, does not change u, so comparing the two

estimates yields that ((b/2)/p) = (−1)
b+1
2 (c/b)

(p−1)/2
and thus the last equation becomes(

u

p

)
=

(
m

p

)
= (−1)N(p,u) = (−1)[2u/p]

for u ̸= 1, since N(p, u) ≡ [2u/p] (mod 2) if p - u. Now, selecting u = 2 we deduce that
(2/p) = 1 if p > 3. Taking u = p−1

2 we obtain (p−1
2 /p) = 1 and, taking u = p−1 we obtain

((p− 1)/p) = −1. These three estimates imply 1× 1 = −1, a contradiction, for all p > 3.

We note that in the other cases with bc even, our argument will not yield such a
general result about characteristic prime factors:

Corollary 6.3. Suppose that 4|c and b ≡ 1 (mod 2), with (m,n) = 1. Suppose that n is
odd: If n is a power of a prime p then(

xm

ϕn

)
=

(c
b

)(m−1)(p−1)/2

.

Otherwise (xm/ϕn) = 1 if n has at least two distinct prime factors. On the other hand if
n is even and > 2 then (ϕn/xm) = 1.

One can deduce that ϕpk is not a square if 4|c and (c/b) = −1 and p ≡ 3 (mod 4).

Corollary 6.4. Suppose that b is even and c is odd, with (m,n) = 1. Suppose that n is
odd: If n is a power of a prime p then(

xm

ϕn

)
=

(
m

p

) c−1
2

(
2

p

)(m−1)( b+c−1
2 ) (

b

c

)(m−1)(p−1)/2

.

Otherwise (xm/ϕn) = 1 if n has at least two distinct prime factors. On the other hand if
n is even and > 2 then (ϕn/xm) = 1, except when c ≡ −1 (mod 4), n is a power of 2, and
m ≡ ±3 (mod 8), whence (ϕn/xm) = −1.

Hence we can prove that ϕpk is not a square if b is even and
• c ≡ 3 (mod 4), or
• 4|b with (b/c) = −1 and p ≡ 3 (mod 4), or
• b ≡ 2 (mod 4) with (b/c) = −1 and p ≡ 7 (mod 8), or
• b ≡ 2 (mod 4) and p ≡ 5 (mod 8), or
• b ≡ 2 (mod 4) with (b/c) = 1 and p ≡ 3 (mod 8).

7. Open problems

We conjecture that for every non-periodic Lucas sequence {xn}n≥0 there exists an
integer nx such that if n ≥ nx then xn has a primitive prime factor that divides it to
an odd power. In Theorem 3 we proved this in the special case that ∆ > 0 and c ≡ 2
(mod 4), with nx = 7. Proposition 6.1 suggests that our approach is unlikely to yield the
analogous result in all other cases where 2|bc. We were unable to give a formula for the
Jacobi symbol (xm/xn) in general when b and c are odd (which includes the interesting
case of the Fibonacci numbers) which can be used in this context (though see [6]), and we
hope that others will embrace this challenge.
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