Patterns in the primes

Andrew Granville
(with animations by Anthony Doran)

New Haven, CT 30th March 2014

The Primes

$$
2,3,5,7,11,13, \ldots
$$

What? Where? How? Why? Traditional questions

The PRIMES

$$
2,3,5,7,11,13, \ldots
$$

What? Where? How? Why? Traditional questions

We will find them in strange places
 Motivated by the use of dynamics

Magic squares

We arrange numbers in a square grid, so that the sum of the rows, and columns, and diagonals all equal. For example we can take the numbers from 1 to 9:

Magic Sum is 15

MAGIC SQUARES

We arrange numbers in a square grid, so that the sum of the rows, and columns, and diagonals all equal. For example we can take the numbers from 1 to 9 :

2	7	6
9	5	1
4	3	8

MAGIC SUM IS 15

Magic squares have been identified for over 4000 years.

Next slide: A 6-by-6 magic square from the Yuan Dynasty (1271-1368)

And then: Albrecht Dürer's 1514 engraving Melencolia I

Magic squares

2	7	6
9	5	1
4	3	8

Magic Sum is 15

How about magic squares of primes ?

Magic squares

2	7	6
9	5	1
4	3	8

Magic sum is 15

Magic squares of primes

Magic square: Sum of each row, column, and diagonal, is identical:

17	89	71
113	59	5
47	29	101

Magic squares

2	7	6
9	5	1
4	3	8

Magic sum is 15

Magic squares of primes
 Magic square: Sum of each row, column, and diagonal, is identical:

17	89	71
113	59	5
47	29	101

Are there infinitely many?

We begin with 3 circles, each touching each other:

For instance:

Then there are two circles that Touch each of the three circles:

Let's check out their diameters:

The outside circe has diameter $\frac{504}{11} \mathrm{~mm}$.
Easier to work with integers.
Define Curvature: $=504 /$ diameter.
So $c_{1}=\frac{504}{d_{1}}=28, c_{2}=24, c_{3}=21$

$$
c_{4}=157, \quad c_{5}=11
$$

The curvatures of ourcircles are:

Add more circles (in the someway):

And more

Until you completely fill the circle:

An apollonian circle packing.

Dynamics and primes?

There are many links ... We'll start with proving:

There are infinitely many primes
...using dynamical systems

There are infinitely many primes Want an infinite sequence of integers

$$
1<x_{1}<x_{2}<x_{3}<\ldots
$$

such that

$$
\operatorname{gcd}\left(x_{i}, x_{j}\right)=1 \text { whenever } i \neq j
$$

If prime p_{j} divides x_{j} for each j

$$
\text { then } \quad p_{1}, p_{2}, p_{3} \ldots
$$

is an infinite seq of distinct primes.

There are infinitely many primes

 Want an infinite sequence of integers$$
1<x_{1}<x_{2}<x_{3}<\ldots
$$

such that

$$
\operatorname{gcd}\left(x_{i}, x_{j}\right)=1 \text { whenever } i \neq j
$$

If prime p_{j} divides x_{j} for each j

$$
\text { then } \quad p_{1}, p_{2}, p_{3} \ldots
$$

is an infinite seq of distinct primes.
PROOF: If $p_{i}=p_{j}$ for $i \neq j$, then p_{i} divides x_{i} and p_{j} divides x_{j},
so that

$$
\begin{array}{r}
p_{i}=p_{j} \text { divides } \operatorname{gcd}\left(x_{i}, x_{j}\right)=1 \\
\text { Contradiction. }
\end{array}
$$

THERE ARE INFINITELY MANY PRIMES

 So how do we find integers$$
1<x_{1}<x_{2}<x_{3}<\ldots
$$

such that

$$
\operatorname{gcd}\left(x_{i}, x_{j}\right)=1 \text { whenever } i \neq j ?
$$

There are infinitely many primes So how do we find integers

$$
1<x_{1}<x_{2}<x_{3}<\ldots
$$

such that

$$
\operatorname{gcd}\left(x_{i}, x_{j}\right)=1 \text { whenever } i \neq j ?
$$

Dynamical systems!

$$
\begin{aligned}
& \text { That is using a map like } \\
& \qquad x \hookrightarrow x^{2}-x+1 \ldots
\end{aligned}
$$

$$
\begin{gathered}
\text { Remainders: } x \hookrightarrow x^{2}-x+1 \\
x=k m \hookrightarrow x^{2}-x+1=\left(k^{2} m-k\right) m+1 \\
\text { Remainder } 0 \hookrightarrow \text { Remainder } 1
\end{gathered}
$$

$$
\begin{gathered}
x=k m+1 \hookrightarrow x^{2}-x+1=\left(k^{2} m+k\right) m+1 \\
\text { Remainder } 1 \hookrightarrow \text { Remainder } 1
\end{gathered}
$$

$$
\begin{gathered}
\text { Remainders: } x \hookrightarrow x^{2}-x+1 \\
x=k m \hookrightarrow x^{2}-x+1=\left(k^{2} m-k\right) m+1 \\
\text { Remainder } 0 \hookrightarrow \text { Remainder } 1
\end{gathered}
$$

$$
\begin{gathered}
x=k m+1 \hookrightarrow x^{2}-x+1=\left(k^{2} m+k\right) m+1 \\
\text { Remainder } 1 \hookrightarrow \text { Remainder } 1
\end{gathered}
$$

$$
\text { - Construction }-
$$

$$
\text { Select } x_{1}>1 \text {, say } 2 \text {, and then }
$$

$$
x_{2}=x_{1}^{2}-x_{1}+1,
$$

$$
x_{3}=x_{2}^{2}-x_{2}+1,
$$

$$
\ldots
$$

REMAINDERS: $x \hookrightarrow x^{2}-x+1$ $x=k m \hookrightarrow x^{2}-x+1=\left(k^{2} m-k\right) m+1$

Remainder $0 \hookrightarrow$ Remainder 1

$$
x=k m+1 \hookrightarrow x^{2}-x+1=\left(k^{2} m+k\right) m+1
$$

Remainder $1 \hookrightarrow$ Remainder 1

- Construction

Select $x_{1}>1$, say 2 , and then

$$
x_{2}=x_{1}^{2}-x_{1}+1
$$

$$
x_{3}=x_{2}^{2}-x_{2}+1
$$

When x_{j} is divided by $x_{i}(=m)$:
x_{i} has remainder 0 , so that
$\hookrightarrow x_{i+1}=x_{i}^{2}-x_{i}+1$ remainder 1
$\hookrightarrow x_{i+2}$ has remainder 1
$\hookrightarrow x_{i+3}$ has remainder $1 \ldots$
x_{i} has remainder 0 , so that
$\hookrightarrow x_{i+1}$ has remainder 1
$\hookrightarrow x_{i+2}$ has remainder 1
$\hookrightarrow x_{i+3}$ has remainder $1 \ldots$
Therefore x_{j} has remainder 1 when divided by x_{i} for all $j>i$

We deduce that

$$
\begin{gathered}
\operatorname{gcd}\left(x_{i}, x_{j}\right)=\operatorname{gcd}\left(x_{i}, 1\right)=1 . \\
- \text { Result }
\end{gathered}
$$

Let x_{1} be an integer, define

$$
x_{i+1}=x_{i}^{2}-x_{i}+1
$$

for all $i \geq 1$. If x_{j} has prime divisor p_{j} for each $j \geq 1$ then

$$
p_{1}, p_{2}, p_{3} \ldots
$$

is an infinite seq of distinct primes.

$$
- \text { Result }-
$$

Let x_{1} be an integer, define

$$
x_{i+1}=x_{i}^{2}-x_{i}+1
$$

for all $i \geq 1$. If x_{j} has prime divisor p_{j} for each $j \geq 1$ then
$p_{1}, p_{2}, p_{3} \ldots$
is an infinite seq of distinct primes.

Let x_{1} be an integer, define

$$
x_{i+1}=x_{i}^{2}-x_{i}+1
$$

for all $i \geq 1$. If x_{j} has prime divisor p_{j} for each $j \geq 1$ then

$$
p_{1}, p_{2}, p_{3} \ldots
$$

is an infinite seq of distinct primes.

$$
\begin{aligned}
& \text { - Examples } \longrightarrow \\
& \text { With } x \hookrightarrow x^{2}-x+1 \text {, we have: } \\
& 2 \hookrightarrow 3 \hookrightarrow 7 \hookrightarrow 43 \hookrightarrow \ldots, \\
& \text { (Euclid: } 2 \cdot 3+1=7,2 \cdot 3 \cdot 7+1=43 \text {) }
\end{aligned}
$$

Let x_{1} be an integer, define

$$
x_{i+1}=x_{i}^{2}-x_{i}+1
$$

for all $i \geq 1$. If x_{j} has prime divisor p_{j} for each $j \geq 1$ then

$$
p_{1}, p_{2}, p_{3} \ldots
$$

is an infinite seq of distinct primes.

- Examples

With $x \hookrightarrow x^{2}-x+1$, we have:

$$
2 \hookrightarrow 3 \hookrightarrow 7 \hookrightarrow 43 \hookrightarrow \ldots,
$$

(Euclid: $2 \cdot 3+1=7,2 \cdot 3 \cdot 7+1=43$)

With $x \hookrightarrow x^{2}-2 x+2$, we have:

$$
3 \hookrightarrow 5 \hookrightarrow 17 \hookrightarrow 257 \hookrightarrow \ldots,
$$

The Fermat numbers, $2^{2^{n}}+1$

Formulas that only take prime values?

Fermat (1638): $\quad 2^{2^{n}}+1$ is prime for all $n \geq 0$:
$3,5,17,257,65537$ are all prime.

Formulas that only take prime values?
Fermat (1638): $\quad 2^{2^{n}}+1$ is prime for all $n \geq 0$: $3,5,17,257,65537$ are all prime, BUT

$$
2^{2^{5}}+1=641 \times 6700417 \text { (Euler) }
$$

Formulas that only take prime values?
Fermat (1638): $\quad 2^{2^{n}}+1$ is prime for all $n \geq 0$:
$3,5,17,257,65537$ are all prime, BUT
$2^{2^{5}}+1=641 \times 6700417$ (Euler)

How did Fermat make this mistake?

How much calculation to check whether

$$
2^{2^{5}}+1
$$

is prime?
What about

$$
2^{2^{6}}+1 ?
$$

Even today: The following are primes:

$$
\begin{gathered}
2^{2}-1=3 \\
2^{2^{2}-1}-1=2^{3}-1=7 \\
2^{2^{2^{2}-1}-1}-1=2^{7}-1=127 \\
2^{2^{2^{2^{2}-1}-1}-1}-1=2^{127}-1 .
\end{gathered}
$$

Even today: The following are primes:

$$
\begin{gathered}
2^{2}-1=3 \\
2^{2^{2}-1}-1=2^{3}-1=7 \\
2^{2^{2^{2}-1}-1}-1=2^{7}-1=127 \\
2^{2^{2^{2^{2}-1}-1}-1}-1=2^{127}-1 .
\end{gathered}
$$

Conjecture (and challenge)

$$
\begin{aligned}
& 2^{2^{2^{2^{2^{2}}-1}-1}-1}-1 \\
& \quad=2^{2^{127}-1}-1
\end{aligned}
$$

is prime?

Formulas for primes?

Polynomial with lots of prime values:

$5,11,17,23,29$, but then $35=5 \times 7$
so
$6 n+5$ prime for $n=0,1, \ldots, 4$.

Formulas for primes?

Polynomial with lots of prime values:

$5,11,17,23,29$, but then $35=5 \times 7$
SO
$6 n+5$ prime for $n=0,1, \ldots, 4$.

More famous is $n^{2}+n+41$ with $41,43,47,53,61,71,83,97,113,131,151,173, \ldots$ which remains prime until

$$
40^{2}+40+41=\mathbf{1 6 8 1}=41^{2}
$$

Polynomials with only prime values?

$$
n^{2}+n+41
$$

is prime for $n=0,1, \cdots, 39$, but

$$
41^{2}+41+41
$$

is divisible by 41 .

Polynomials with only prime values?

$$
n^{2}+n+41
$$

is prime for $n=0,1, \cdots, 39$, but

$$
41^{2}+41+41
$$

is divisible by 41 .
Similarly, if $n=41 k$, then

$$
n^{2}+n+41=41\left(41 k^{2}+k+1\right),
$$

so is divisible by 41 .

Polynomials with only prime values?

$$
n^{2}+n+41
$$

is prime for $n=0,1, \cdots, 39$, but

$$
41^{2}+41+41
$$

is divisible by 41 .
Similarly, if $n=41 k$, then

$$
n^{2}+n+41=41\left(41 k^{2}+k+1\right),
$$

so is divisible by 41 .
Therefore $n^{2}+n+41$ is composite for infinitely many n.

Polynomials with only prime values?

$$
n^{2}+n+41
$$

is prime for $n=0,1, \cdots, 39$, but

$$
41^{2}+41+41
$$

is divisible by 41 .
Similarly, if $n=41 k$, then

$$
n^{2}+n+41=41\left(41 k^{2}+k+1\right)
$$

so is divisible by 41.
Therefore $n^{2}+n+41$ is composite for infinitely many n.

Argument can be modified to work for the values of any polynomial $f(n)$.

So, Polynomials cannot take only prime values

Fails. How about infinitely often prime?

Can a polynomial $f(x)$ take PRIME VALUES INFINITELY OFTEN?

$$
\begin{aligned}
& \quad n^{2}-1=(n-1)(n+1) \\
& \text { is prime only for } n=-2 \text { and } 2 \text {, } \\
& \text { because } x^{2}-1 \text { is reducible. } \\
& \text { So, must assume polynomial } f(x) \text { is } \\
& \text { Irreducible }
\end{aligned}
$$

Can a polynomial $f(x)$ take PRIME VALUES INFINITELY OFTEN?

$$
\begin{aligned}
& \quad n^{2}-1=(n-1)(n+1) \\
& \text { is prime only for } n=-2 \text { and } 2 \text {, } \\
& \text { because } x^{2}-1 \text { is reducible. } \\
& \text { So, must assume polynomial } f(x) \text { is } \\
& \quad \text { Irreducible }
\end{aligned}
$$

$$
n^{2}-n+2=2\left(\binom{n}{2}+1\right)
$$

cannot be prime, as it's always even.

Can a polynomial $f(x)$ take PRIME VALUES INFINITELY OFTEN?

$$
n^{2}-1=(n-1)(n+1)
$$

is prime only for $n=-2$ and 2 ,
because $x^{2}-1$ is reducible.
So, must assume polynomial $f(x)$ is Irreducible

$$
n^{2}-n+2=2\left(\binom{n}{2}+1\right)
$$

cannot be prime, as it's always even.

So, must assume polynomial $f(x)$ is

Admissible: There is no prime p which divides $f(n)$ for every integer n.

> CAN A POLYNOMIAL $f(x)$ TAKE PRIME VALUES INFINITELY OFTEN?
> Admissible: There is no prime p which divides $f(n)$ for every integer n.
> ConJECTURE: If a polynomial of degree ≥ 1 is irreducible and admissible then it takes on infinitely many prime values.

> CAN A POLYNOMIAL $f(x)$ TAKE PRIME VALUES INFINITELY OFTEN?
> Admissible: There is no prime p which divides $f(n)$ for every integer n.

Conjecture: If a polynomial of degree ≥ 1 is irreducible and admissible then it takes on infinitely many prime values.

True for polynomials of degree 1.

Can a polynomial $f(x)$ take PRIME VALUES INFINITELY OFTEN?
 Admissible: There is no prime p which divides $f(n)$ for every integer n.

Conjecture: If a polynomial of degree ≥ 1 is irreducible and admissible then it takes on infinitely many prime values.

True for polynomials of degree 1 .
Open for all polyns of degree >1.
The simplest open example is

$$
x^{2}+1
$$

Can a polynomial $f(x)$ take PRIME VALUES INFINITELY OFTEN?

Admissible: There is no prime p which divides $f(n)$ for every integer n.

Conjecture: If a polynomial of degree ≥ 1 is irreducible and admissible then it takes on infinitely many prime values.
True for polynomials of degree 1.
Open for all polyns of degree >1.
The simplest open example is

$$
x^{2}+1
$$

Fix integer $m>1$
Are there polynomials whose first m VALUES ARE ALL PRIME?

More complicated formulas

Let

$$
p_{1}=2<p_{2}=3<p_{3}=5 \ldots
$$

be the sequence of primes. Define

$$
\begin{aligned}
\alpha: & =\sum_{m \geq 1} \frac{p_{m}}{10^{m^{2}}} \\
& =.2003000050000007000000011 \ldots
\end{aligned}
$$

Read off the primes from α.

$$
p_{m}=\left[10^{m^{2}} \alpha\right]-10^{2 m-1}\left[10^{(m-1)^{2}} \alpha\right] .
$$

More complicated formulas

Let

$$
p_{1}=2<p_{2}=3<p_{3}=5 \ldots
$$

be the sequence of primes. Define

$$
\begin{aligned}
\alpha: & =\sum_{m \geq 1} \frac{p_{m}}{10^{m^{2}}} \\
& =.2003000050000007000000011 \ldots
\end{aligned}
$$

Read off the primes from α.

$$
p_{m}=\left[10^{m^{2}} \alpha\right]-10^{2 m-1}\left[10^{(m-1)^{2}} \alpha\right] .
$$

Magical? Interesting? Artificial?

Wilson's THEOREM

n is a prime if and only if n divides $(n-1)!+1$.

Matijasevic (1971):

$$
\begin{aligned}
& F(a, b, \ldots, z):=(k+2) \times \\
& \begin{aligned}
&(1-(n+l+v-y)^{2}-(2 n+p+q+z-e)^{2} \\
& \quad-(w z+h+j-q)^{2}-(a i+k+1-l-i)^{2} \\
& \quad-((g k+2 g+k+1)(h+j)+h-z)^{2} \\
& \quad-\left(z+p l(a-p)+t\left(2 a p-p^{2}-1\right)-p m\right)^{2} \\
& \quad-\left(p+l(a-n-1)+b\left(2 a n+2 a-n^{2}-2 n-2\right)-m\right)^{2} \\
&-\left(q+y(a-p-1)+s\left(2 a p+2 a-p^{2}-2 p-2\right)-x\right)^{2} \\
& \quad-\left(\left(a^{2}-1\right) l^{2}+1-m^{2}\right)^{2}-\left(\left(a^{2}-1\right) y^{2}+1-x^{2}\right)^{2} \\
&-\left(16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}\right)^{2} \\
& \quad-\left(e^{3}(e+2)(a+1)^{2}+1-o^{2}\right)^{2} \\
& \quad-\left(16 r^{2} y^{4}\left(a^{2}-1\right)+1-u^{2}\right)^{2} \\
&\left.\quad \quad-\left(\left(\left(a+u^{2}\left(u^{2}-a\right)\right)^{2}-1\right)(n+4 d y)^{2}+1-(x+c u)^{2}\right)^{2}\right) .
\end{aligned}
\end{aligned}
$$

26 variables, degree 20, reducible.
If $a, b, \ldots, z \in \mathbb{N}$ then
$F(a, . ., z)$ positive $\Rightarrow F(a, . ., z)$ prime.

Each prime is a value of F !
Practical?

Conway

The number of primes up to x

Gauss, Christmas eve 1849:
As a boy of 15 or 16, I determined that, at around x, the primes occur with density $\frac{1}{\ln x}$.

The number of primes up to x

Gauss, Christmas eve 1849:
As a boy of 15 or 16, I determined that, at around x, the primes occur with density $\frac{1}{\ln x}$.

$$
\#\{\text { primes } \leq x\} \approx \sum_{n=2}^{[x]} \frac{1}{\ln n}
$$

The number of primes up to x
Gauss, Christmas eve 1849:
As a boy of 15 or 16, I determined that, at around x, the primes occur with density $\frac{1}{\ln x}$.

$$
\#\{\text { primes } \leq x\} \approx \sum_{n=2}^{[x]} \frac{1}{\ln n}
$$

$$
\approx \int_{2}^{x} \frac{d t}{\ln t}=\operatorname{Li}(x)
$$

The number of primes up to x
Gauss, Christmas eve 1849:
As a boy of 15 or 16, I determined that, at around x, the primes occur with density $\frac{1}{\ln x}$.

$$
\#\{\text { primes } \leq x\} \approx \sum_{n=2}^{[x]} \frac{1}{\ln n}
$$

$$
\begin{aligned}
& \approx \int_{2}^{x} \frac{d t}{\ln t}=\operatorname{Li}(x) \\
& \approx \frac{x}{\ln x}
\end{aligned}
$$

Gauss's guesstimate:

$$
\operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\ln t}
$$

x	$\pi(x)=\#\{$ primes $\leq x\}$	Overcount: $[\operatorname{Li}(x)-\pi(x)]$
10^{8}	5761455	753
10^{9}	50847534	1700
10^{10}	455052511	3103
10^{11}	4118054813	11587
10^{12}	37607912018	38262
10^{13}	346065536839	108970
10^{14}	3204941750802	314889
10^{15}	2984570422669	1052618
10^{16}	279238341033925	3214631
10^{17}	2623557157654233	7956588
10^{18}	24739954287740860	21949554
10^{19}	234057667276344607	99877774
10^{20}	2220819602560918840	222744643
10^{21}	21127269486018731928	597394253
10^{22}	201467286689315906290	193235207
10^{23}	1925320391606803968923	7250186214

Gauss's guesstimate:

$$
\operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\ln t}
$$

x	$\pi(x)=\#\{$ primes $\leq x\}$	Overcount: $[\operatorname{Li}(x)-\pi(x)]$
10^{8}	5761455	753
10^{9}	50847534	1700
10^{10}	455052511	3103
10^{11}	4118054813	11587
10^{12}	37607912018	38262
10^{13}	346065536839	108970
10^{14}	3204941750802	314889
10^{15}	29844570422669	1052618
10^{16}	279238341033925	3214631
10^{17}	2623557157654233	7956588
10^{18}	24739954287740860	21949554
10^{19}	234057667276344607	99877774
10^{20}	2220819602560918840	222744643
10^{21}	2112726948601873928	597394253
10^{22}	201467286689315906290	1932355207
10^{23}	1925320391606803968923	7250186214

Guess: $0<\operatorname{Li}(x)-\pi(x)<\sqrt{\pi(x)}$.

x	$\pi(x)=\#\{$ primes $\leq x\}$	Overcount: $[\operatorname{Li}(x)-\pi(x)]$
10^{8}	5761455	753
10^{9}	50847534	1700
10^{10}	455052511	3103
10^{11}	4118054813	11587
10^{12}	37607912018	38262
10^{13}	346065536839	108970
10^{14}	3204941750802	314889
10^{15}	2984570422669	1052618
10^{16}	279238341033925	3214631
10^{17}	2623557157654233	7956588
10^{18}	24739954287740860	21949554
10^{19}	234057667276344607	99877774
10^{20}	2220819602560918840	222744643
10^{21}	21127269486018731928	597394253
10^{22}	20146728668315906290	1932355207
10^{23}	1925320391606803968923	7250186214

$$
\text { Guess: } 0<\int_{2}^{x} \frac{d t}{\ln t}-\pi(x)<\sqrt{\pi(x)}
$$

Riemann Hypothesis: \Leftrightarrow

$$
\left|\int_{2}^{x} \frac{d t}{\ln t}-\pi(x)\right| \leq \sqrt{x} \ln x
$$

Back to consecutive prime values

Are there polynomials whose first m VALUES ARE ALL PRIME? Remember:

$$
\begin{gathered}
5,11,17,23,29 \\
\text { or even, } 199,409,619,829 \\
1039,1249,1459,1669,1879,2089 \\
=\{199+210 n, 0 \leq n \leq 9\}
\end{gathered}
$$

Are there polynomials whose first

 m VALUES ARE ALL PRIME?Remember:

$$
\begin{aligned}
& \qquad 5,11,17,23,29 \\
& \text { or even, } 199,409,619,829, \\
& 1039,1249,1459,1669,1879,2089 \\
& =\{199+210 n, 0 \leq n \leq 9\} \\
& \text { Dirichlet }(1837) \text { : Any linear poly- } \\
& \text { nomial } m n+a \text { with } \operatorname{gcd}(a, m)=1, \\
& \text { takes infinitely many prime values. }
\end{aligned}
$$

Arbitrarily many consecutive prime values?

Are there polynomials whose first

 m VALUES ARE ALL PRIME?Remember:

$$
5,11,17,23,29
$$

or even, 199, 409, 619, 829,

$$
1039,1249,1459,1669,1879,2089
$$

$$
=\{199+210 n, 0 \leq n \leq 9\}
$$

Dirichlet (1837): Any linear polynomial $m n+a$ with $\operatorname{gcd}(a, m)=1$, takes infinitely many prime values.

Arbitrarily many consecutive prime values?
Van der Corput (1939): Infinitely many linear polynomials whose first 3 values are prime.
Balog (1990): Infinitely many degree d polynomials whose first $2 d+1$ values are prime.

Are there linear polynomials whose first k Values are all prime?

Are there linear polynomials whose first k values are all prime?

Green and Tao (2007): Yes. There are infinitely many k-term arithmetic progressions of primes In fact the smallest has all primes

Record: $43142746595714191+5283234035979900 n$ for $0 \leq n \leq 25$.

Are there linear polynomials whose first k values are all prime?

Green and Tao (2007): Yes. There are infinitely many k-term arithmetic progressions of primes
In fact the smallest has all primes

Record: $43142746595714191+5283234035979900 n$ for $0 \leq n \leq 25$.

Rephrase as: There are infinitely many linear polyns $f(x)=a x+b$ s.t. $f(0), f(1), \ldots, f(k)$ are all prime.

And for higher degree polynomials?

Consecutive prime values of polynomials, I Green-Tao: There are infinitely many linear polyns $f(x)=a x+b$ s.t. $f(0), f(1), \ldots, f(k)$ are all prime.

Another example: $x^{2}+x+41$ prime for $x=0,1,2, \ldots, 39$.
How about quadratic polynomials with 41 consecutive prime values?

Consecutive prime values of polynomials, I Green-Tao: There are infinitely many linear polyns $f(x)=a x+b$ s.t. $f(0), f(1), \ldots, f(k)$ are all prime.

Another example: $x^{2}+x+41$ prime for $x=0,1,2, \ldots, 39$.
How about quadratic polynomials with 41 consecutive prime values?
Or 1000 consecutive prime values?
Seems like a very deep question...

Consecutive prime values of polynomials, II Green-Tao: There are infinitely many
linear polyns $f(x)=a x+b$ s.t. $f(0), f(1), \ldots, f(k)$ are all prime.

Corollary Fix $N \geq 3$. There are infinitely many quadratic polyns $f(x)$ s.t. $f(0), f(1), \ldots, f(N)$ are all prime.

Consecutive prime values of polynomials, II Green-Tao: There are infinitely many
linear polyns $f(x)=a x+b$ s.t. $f(0), f(1), \ldots, f(k)$ are all prime.

Corollary Fix $N \geq 3$. There are infinitely many quadratic polyns $f(x)$ s.t. $f(0), f(1), \ldots, f(N)$ are all prime.

Proof: By Green-Tao, select integers a and b for which $a j+b$ is prime for $0 \leq j \leq N^{2}+N$,

Consecutive prime values of polynomials, II Green-Tao: There are infinitely many
linear polyns $f(x)=a x+b$ s.t. $f(0), f(1), \ldots, f(k)$ are all prime.

Corollary Fix $N \geq 3$. There are

 infinitely many quadratic polyns $f(x)$ s.t. $f(0), f(1), \ldots, f(N)$ are all prime.Proof: By Green-Tao, select integers a and b for which $a j+b$ is prime for $0 \leq j \leq N^{2}+N$, so that
$a\left(i^{2}+i\right)+b$ is prime for $0 \leq i \leq N$.
Let $f(x)=a x^{2}+a x+b$.

Consecutive prime values of polynomials, II
Green-Tao: There are infinitely many
linear polyns $f(x)=a x+b$ s.t. $f(0), f(1), \ldots, f(k)$ are all prime.

Corollary Fix $N \geq 3$. There are infinitely many quadratic polyns $f(x)$ s.t. $f(0), f(1), \ldots, f(N)$ are all prime.

Proof: By Green-Tao, select integers a and b for which $a j+b$ is prime for $0 \leq j \leq N^{2}+N$, so that
$a\left(i^{2}+i\right)+b$ is prime for $0 \leq i \leq N$.
Let $f(x)=a x^{2}+a x+b$.
Extends to arbitrary degree polyns. 2011 result: Can do this for f monic and degree d.

Balog cubes

Van der Corput (1939): Inf many arithmetic progressions of primes of length 3.
Balog (1990): Inf many 3-by-3 squares of distinct primes, each row and each column in arithmetic progression.

Balog cubes

Van der Corput (1939): Inf many

 arithmetic progressions of primes of length 3.Balog (1990): Inf many 3-by-3 squares of distinct primes, each row and each column in arithmetic progression.

And 3-by-3-by-3 cubes, eg:

47	383	719
179	431	683
311	479	647

149	401	653
173	347	521
197	293	389

251	419	587
167	263	359
83	107	131

Arithmetic progressions of primes along each row, column, and layer.

Theorem. There are infinitely many N-by- N-by-. . .-by- N Balog cubes.

Proof: Green-Tao gives
$b+j m$ is prime for $0 \leq j \leq N^{d}-1$.

Theorem. There are infinitely many N-by- N-by-. . .-by- N Balog cubes.

Proof: Green-Tao gives
$b+j m$ is prime for $0 \leq j \leq N^{d}-1$
The ($a_{0}, a_{1}, \ldots, a_{d-1}$) entry of our
Balog cube, with $0 \leq a_{i} \leq N-1$ for each i is
$b+\left(a_{0}+a_{1} N+\ldots+a_{d-1} N^{d-1}\right) m$.

Theorem. There are infinitely many N-by- N-by-. ..-by- N Balog cubes.

Proof: Green-Tao gives
$b+j m$ is prime for $0 \leq j \leq N^{d}-1$
The ($a_{0}, a_{1}, \ldots, a_{d-1}$) entry of our
Balog cube, with $0 \leq a_{i} \leq N-1$ for each i is
$b+\left(a_{0}+a_{1} N+\ldots+a_{d-1} N^{d-1}\right) m$.
Now if

$$
j=a_{0}+a_{1} N+\ldots+a_{d-1} N^{d-1}
$$

with each

$$
0 \leq a_{i} \leq N-1
$$

then

$$
0 \leq j \leq N^{d}-1
$$

so each entry, $b+j m$, is prime.

Magic squares of primes

Magic square: Sum of each row, column, and diagonal, is identical:

17	89	71
113	59	5
47	29	101

and

41	71	103	61
97	79	47	53
37	67	83	89
101	59	43	73

These are magic squares of primes.

How about n-by- n ?

Magic squares of primes

Magic square: Sum of each row, column, and diagonal, is identical:

17	89	71
113	59	5
47	29	101

and

41	71	103	61
97	79	47	53
37	67	83	89
101	59	43	73

These are magic squares of primes.

How about n-by- n ?

There are n-by- n magic squares of integers, say with (i, j) th entry, $m_{i, j}$.

Magic squares of primes

Magic square: Sum of each row, column, and diagonal, is identical:

17	89	71
113	59	5
47	29	101

and

41	71	103	61
97	79	47	53
37	67	83	89
101	59	43	73

These are magic squares of primes.

How about n-by- n ?

There are n-by- n magic squares of integers, say with (i, j) th entry, $m_{i, j}$.

Then square $a+d m_{i, j}$ is magic

Magic squares of primes

 Magic square: Sum of each row, column, and diagonal, is identical:| 17 | 89 | 71 |
| :--- | :--- | :--- |
| 113 | 59 | 5 |
| 47 | 29 | 101 |

and

41	71	103	61
97	79	47	53
37	67	83	89
101	59	43	73

These are magic squares of primes.

How about n-by- n ?

There are n-by- n magic squares of integers, say with (i, j) th entry, $m_{i, j}$.

Then square $a+d m_{i, j}$ is magic
Green-Tao theorem \Rightarrow Magic Square of Primes.

Apollonian packings

Three circles touching - create two new circles tangent to them.
Descartes: If three curvatures are a, b, c, the two tangent circles' curvatures are solutions to
$2\left(x^{2}+a^{2}+b^{2}+c^{2}\right)=(x+a+b+c)^{2}$

Apollonian packings

Three circles touching - create two new circles tangent to them.
Descartes: If three curvatures are a, b, c, the two tangent circles' curvatures are solutions to
$2\left(x^{2}+a^{2}+b^{2}+c^{2}\right)=(x+a+b+c)^{2}$

Given solution t, other is

$$
x=2(a+b+c)-t
$$

Apollonian packings

Three circles touching - create two new circles tangent to them.
Descartes: If three curvatures are a, b, c, the two tangent circles' curvatures are solutions to
$2\left(x^{2}+a^{2}+b^{2}+c^{2}\right)=(x+a+b+c)^{2}$

Given solution t, other is

$$
x=2(a+b+c)-t
$$

View this as a map:

$$
t \rightarrow 2(a+b+c)-t
$$

Apollonian packings

Three circles touching - create two new circles tangent to them.
Descartes: If three curvatures are a, b, c, the two tangent circles' curvatures are solutions to
$2\left(x^{2}+a^{2}+b^{2}+c^{2}\right)=(x+a+b+c)^{2}$

Given solution t, other is

$$
x=2(a+b+c)-t
$$

View this as a map:

$$
t \rightarrow 2(a+b+c)-t
$$

Starting with (21, 24, 28, -11) use map, and re-orderings, to find all the numbers in the packing!

> Apollonian Packings
> Starting with $(21,24,28,-11)$ use

$$
x=2(a+b+c)-t
$$

and re-orderings, to find all the numbers in the packing!

Apollonian packings
 Starting with (21, 24, 28, -11) use

$$
x=2(a+b+c)-t
$$

and re-orderings, to find all the numbers in the packing!

Sarnak (2010): Infinitely many primes.

Apollonian packings
 Starting with (21, 24, 28, -11) use

$$
x=2(a+b+c)-t
$$

and re-orderings, to find all the numbers in the packing!

Sarnak (2010): Infinitely many primes. Sarnak (2010): Infinitely many pairs of "kissing" primes.

$$
\begin{aligned}
& \text { Apollonian Packings } \\
& \text { Starting with }(21,24,28,-11) \text { use } \\
& \quad x=2(a+b+c)-t
\end{aligned}
$$

and re-orderings, to find all the numbers in the packing!

Sarnak (2010): Infinitely many primes.
Sarnak (2010): Infinitely many pairs of "kissing" primes.

Can generalize this to other linear maps of this type, and by allowing several such maps
Bourgain, Kontorovic (2012): If these maps do not "repel points too fast" then there are indeed infinitely many such primes

Gaps between primes, I Difference 1?

> GAPS BETWEEN PRIMES, I Difference 1?
> Difference 2?
> $\{3,5\},\{5,7\},\{11,13\},\{17,19\},\{29,31\}$.

> GAPS BETWEEN PRIMES, I Difference 1?
> Difference 2?
> $\{3,5\},\{5,7\},\{11,13\},\{17,19\},\{29,31\}$.

Infinitely many such prime twins?
That is, n for which $p_{n+1}-p_{n}=2$?
Open question

The primes

$$
\begin{gathered}
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, \\
53,59,61,67,71,73,79,83,89,97, \ldots
\end{gathered}
$$

Euclid: Infinitely many primes.

The primes

$$
\begin{gathered}
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, \\
53,59,61,67,71,73,79,83,89,97, \ldots
\end{gathered}
$$

Euclid: Infinitely many primes.
You can't help but notice Patterns in the primes

Pairs of primes that differ by 2

$2, \underline{3,5}, 7,11,13,17,19,23,29,31,37,41,43,47$, $53,59,61,67,71,73,79,83,89,97, \ldots$

Pairs of primes that differ by 2

$2, \underline{3,5}, \underline{7}, 11,13,17,19,23,29,31,37,41,43,47$, $53,59,61,67,71,73,79,83,89,97, \ldots$

Pairs of primes that differ by 2

$2, \underline{3,5}, \underline{7}, \underline{11,13}, 17,19,23,29,31,37,41,43,47$, $53,59,61,67,71,73,79,83,89,97, \ldots$

Pairs of primes that differ by 2

$2, \underline{3,} \underline{5}, \underline{7}, \underline{11}, 13, \underline{17}, 19,23, \underline{29}, 31,37, \underline{41,43}, 47$, $53,59,61,67,71,73,79,83,89,97, \ldots$

Pairs of primes that differ by 2

$2, \underline{3,5}, \underline{7}, \underline{11,13}, \underline{17,19}, 23, \underline{29,31}, 37, \underline{41,43}, 47$, $53, \underline{59,61}, 67, \underline{71}, 73,79,83,89,97, \ldots$

Pairs of primes that differ by 2

$2, \underline{3,5}, \underline{7}, \underline{11,13}, \underline{17,19}, 23, \underline{29,31}, 37, \underline{41,43}, 47$, $53, \underline{59,61}, 67, \underline{71}, 73,79,83,89,97, \ldots$

3 and $5 \mid 5$ and $7 \mid 11$ and $13 \mid 17$ and $19 \mid 29$ and $31 \mid 41$ and 43 59 and $61 \mid 71$ and $73 \mid 101$ and 103 | 107 and $109 \mid \ldots$

Pairs of primes that differ by 2

$$
\begin{gathered}
2, \underline{3,5}, \underline{7}, \underline{11,13}, \underline{17,19}, 23, \underline{29,31}, 37, \underline{41,43}, 47, \\
53, \underline{59,61}, 67, \underline{71,73}, 79,83,89,97, \ldots
\end{gathered}
$$

3 and $5 \mid 5$ and $7 \mid 11$ and $13 \mid 17$ and $19 \mid 29$ and $31 \mid 41$ and 43 59 and $61 \mid 71$ and $73 \mid 101$ and $103 \mid 107$ and $109 \mid \ldots$

The twin prime conjecture. There are infinitely many prime pairs $\quad p, p+2$

Pairs of primes that differ by 4

$$
\begin{gathered}
2, \underline{3}, 5, \underline{7}, 11,13,17,19,23,29,31,37,41,43,47, \\
53,59,61,67,71,73,79,83,89,97, \ldots
\end{gathered}
$$

Pairs of primes that differ by 4

$2, \underline{3}, 5, \underline{7}, 11,13,17,19,23,29,31,37,41,43,47$, $53,59,61,67,71,73,79,83,89,97, \ldots$

Pairs of primes that differ by 4

$2, \underline{3}, 5, \underline{7}, 11,13,17,19,23,29,31, \underline{37}, 41, \underline{43,47}$, $53,59,61, \underline{67,71}, 73, \underline{79,83}, 89,97, \ldots$

Pairs of primes that differ by 4

$$
2, \underline{3}, 5, \underline{7}, 11, \underline{13,17}, \underline{19,23}, 29,31, \underline{37,41}, \underline{43,47},
$$

```
53,59,61, 67, 71,73, 79, 83, 89, 97,\ldots.
```

3 and $7 \mid 7$ and $11 \mid 13$ and $17 \mid 19$ and $23 \mid 37$ and $41 \mid 43$ and 47 67 and $71 \mid 79$ and $83 \mid 97$ and 101 | 103 and $107 \ldots$

Pairs of primes that differ by 4

$$
2, \underline{3}, 5, \underline{7}, 11, \underline{13,17}, \underline{19,23}, 29,31, \underline{37,41}, \underline{43,47},
$$ $53,59,61, \underline{67,71}, 73, \underline{79}, 83,89,97, \ldots$

3 and $7 \mid 7$ and $11 \mid 13$ and $17 \mid 19$ and $23 \mid 37$ and $41 \mid 43$ and 47 67 and $71 \mid 79$ and $83 \mid 97$ and 101 | 103 and $107 \ldots$

Another twin prime conjecture. There are infinitely many prime pairs $\quad p, p+4$

Pairs of primes that differ by 6

5 and $11 \mid 7$ and $13 \mid 11$ and $17 \mid 13$ and $19 \mid 17$ and 23 23 and $29 \mid 31$ and $37 \mid 37$ and $43 \mid 41$ and $47 \mid \ldots$

Yet another twin prime conjecture. There are infinitely many prime pairs $\quad p, p+6$

Pairs of primes that differ by 10

3 and $13 \mid 7$ and $17 \mid 13$ and $23 \mid 19$ and $29 \mid 31$ and 41

$$
37 \text { and } 47 \mid 43 \text { and } 53 \mid 61 \text { and } 71 \mid 73 \text { and } 83 \ldots ?
$$

And another twin prime conjecture. There are infinitely many prime pairs $p, p+10$

Pairs of primes that differ by 10

$$
\begin{gathered}
3 \text { and } 13 \mid 7 \text { and } 17 \mid 13 \text { and } 23 \mid 19 \text { and } 29 \mid 31 \text { and } 41 \\
37 \text { and } 47 \mid 43 \text { and } 53 \mid 61 \text { and } 71 \mid 73 \text { and } 83 \ldots ?
\end{gathered}
$$

And another twin prime conjecture. There are
infinitely many prime pairs \quad p, $p+10$

A common generalization?

Generalized twin prime conjecture. (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$

Generalized twin prime conjecture. (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$.

Other patterns?

Generalized twin prime conjecture. (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$.

Other patterns? Last digits

$$
\begin{array}{r|r}
11,13,17 \text { and } 19 & 101,103,107 \text { and } 109 \\
191,193,197 \text { and } 199 & 821,823,827 \text { and } 829, \ldots
\end{array}
$$

Generalized twin prime conjecture. (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$

Other patterns? Last digits

$$
\begin{array}{r|r}
11,13,17 \text { and } 19 & 101,103,107 \text { and } 109 \\
191,193,197 \text { and } 199 & 821,823,827 \text { and } 829, \ldots
\end{array}
$$

Prime quadruple Conjecture.
There are infinitely many quadruples of primes

$$
10 n+1,+3,+7,+9
$$

Generalized twin prime conjecture. (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$.

Other patterns? Sophie Germain pairs
Sophie Germain used prime pairs

$$
p, q:=2 p+1
$$

Generalized twin prime conjecture. (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$

Other patterns? Sophie Germain pairs
Sophie Germain used prime pairs

$$
p, q:=2 p+1
$$

2 and $5 \mid 3$ and $7 \mid 5$ and $11 \mid 11$ and $23 \mid 23$ and 47
29 and 59 | 41 and $83 \mid 53$ and 107 | 83 and $167 \mid \ldots$;

> Sophie Germain pairs Conjecture. There are infinitely many prime pairs \quad p, $2 p+1$

Generalized twin prime conjecture. (De Polignac, 1849) For any even integer h, there are infinitely many prime pairs $\quad p, p+h$.

Prime quadruple Conjecture.

There are infinitely many quadruples of primes

$$
10 n+1,+3,+7,+9
$$

Sophie Germain pairs Conjecture. There are infinitely many prime pairs $\quad p, 2 p+1$

A common generalization?

Question. Are there infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k} \quad$?

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Question. Are there infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$?

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!

Question. Are there infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$?

If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!
Prime pairs $p, p+1$?

Question. Are there infinitely many
prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k} \quad ?$
If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!
Prime pairs $p, p+1$? Or $p, p+h$ with h odd? $x, x+h$ a Dickson 2-tuple $\Longrightarrow h$ even

Question. Are there infinitely many
prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k} \quad ?$
If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!
Prime pairs $p, p+1$? Or $p, p+h$ with h odd? $x, x+h$ a Dickson 2-tuple $\Longrightarrow h$ even

Prime triples?
One of $n, n+2, n+4$ is divisible by 3

Question. Are there infinitely many
prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$?
If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Careful!
Prime pairs $p, p+1$? Or $p, p+h$ with h odd? $x, x+h$ a Dickson 2-tuple $\Longrightarrow h$ even

Prime triples?
One of $n, n+2, n+4$ is divisible by 3
Prime p is an obstruction if
p always divides $\mathcal{P}(n)=\left(a_{1} n+b_{1}\right) \ldots\left(a_{k} n+b_{k}\right)$

Question. Are there infinitely many
prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$?
If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Prime p is an obstruction if
p always divides $\mathcal{P}(n)=\left(a_{1} n+b_{1}\right) \ldots\left(a_{k} n+b_{k}\right)$

The set $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is admissible if there is no obstruction, and all $a_{i}>0$.

Question. Are there infinitely many
prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$
If so, $\quad a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is a Dickson k-tuple.

Prime p is an obstruction if
p always divides $\mathcal{P}(n)=\left(a_{1} n+b_{1}\right) \ldots\left(a_{k} n+b_{k}\right)$

The set $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is admissible if there is no obstruction, and all $a_{i}>0$.

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

Primes in intervals of

bounded length

	2239	2243	225	2267	2269	2273	2281	2287	4759	4783	4787	4789		4801	4813	4817
229	2309	2311	2333	2339	2341	2347	2351	2357	4861	4871	4877	4889		919	4931	4933
2377	2381	2383	2389	2393	2399	2411	2417	2423	4943	4951	4957	4967		77	4993	4999
2441	2447	2459	2467	2473	2477	2503	2521	2531	5009	5011	5021	5023			5077	5081
2543	2549	2551	2557	2579	2591	2593	2609	2617	5099	5101	5107	5113			5167	5171
26	264	2657	2659	2663	2671	2677	2683	2687	5189	5197	5209	5227		7	526	5273
2693	2699	2707	2711	2713	2719	2729	2731	2741	5281	5297	5303	5309		347	5351	5381
275	276	277	2789	279	2797	2801	2803	2819	5393	5399	5407	5413		, 31	543	5441
2837	2843	2851	2857	2861	2879	2887	2897	2903	5449	5471	5477	5479		5503	5507	5519
2917	2927	2939	2953	2957	2963	2969	2971	2999	5527	5531	5557	556		5581	559	5623
3011	3019	3023	3037	3041	3049	3061	3067	3079	5641	5647	5651	5653		5669	5683	5689
3089	3109	3119	3121	3137	3163	3167	3169	3181	5701	5711	5717	5737		574	577	5783
3191	3203	3209	3217	3221	3229	3251	3253	3257	5801	5807	5813	5821		5843	5849	5851
3271	3299	3301	3307	3313	3319	3323	3329	3331	5861	5867	5869	5879		59	5923	5927

Yitang Zhang, 2013 University of New Hampshire

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

Spectacular new progress.

Dickson's Conjecture. If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then there are infinitely many prime k-tuplets $\quad a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$

Spectacular new progress.

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of

$$
a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}
$$

are prime, for infinitely many integers n.
Note: Only two of the $a_{i} n+b_{i}$ are prime, not all.

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of

$$
a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}
$$

are prime, for infinitely many integers n.

Let each $a_{i}=1$. If $p_{1}<\ldots<p_{k}$ are the k smallest primes $>k$ then $\quad x+p_{1}, \ldots, x+p_{k}$ is admissible. By Zhang's Theorem, infinitely many n with two of

$$
n+p_{1}, \ldots, n+p_{k}
$$

prime. This pair of primes differs by

$$
\leq p_{k}-p_{1}
$$

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely many pairs of prime numbers

$$
p<q \leq p+B
$$

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely many pairs of prime numbers

$$
p<q \leq p+B
$$

Corollary. [Given gap between primes]
There exists an integer $h, 0<h \leq B$ such that there are infinitely many pairs of primes $p, p+h$

Yitang Zhang. (2013) There exists an integer k such that: If $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is an admissible set then at least two of $a_{1} n+b_{1}, \ldots, a_{k} n+b_{k}$ are prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely many pairs of prime numbers

$$
p<q \leq p+B
$$

Corollary. [Given gap between primes]
There exists an integer $h, 0<h \leq B$ such that there are infinitely many pairs of primes $p, p+h$

True for at least $\frac{1}{4} \%$ of all even integers h.

The records page
Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1} .
$$

The records page
Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1} .
$$

Apr 2013: Zhang
$k=3500000, \quad B \leq 70000000$

The records page
Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1}
$$

Apr 2013: Zhang
$k=3500000, \quad B \leq 70000000$
Oct 2013: Polymath 8a

$$
k=632, \quad B=4680
$$

The records page
Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1}
$$

Apr 2013: Zhang
$k=3500000, \quad B \leq 70000000$
Oct 2013: Polymath 8a

$$
k=632, \quad B=4680
$$

Nov 2013: Maynard

$$
k=105, \quad B=600
$$

The records page
Corollary. There exists an integer k such that if $x+b_{1}, \ldots, x+b_{k}$ is an admissible set then there are infinitely many prime pairs

$$
p<q \leq p+B \quad \text { with } \quad B:=b_{k}-b_{1}
$$

Apr 2013: Zhang
$k=3500000, \quad B \leq 70000000$
Oct 2013: Polymath 8a

$$
k=632, \quad B=4680
$$

Nov 2013: Maynard

$$
k=105, \quad B=600
$$

Jan 2014: Polymath 8b

$$
k=55, \quad B=272
$$

Corollary. If $x+b_{1}, \ldots, x+b_{55}$ is an admissible set then there exists $\quad b_{i}<b_{j}$ such that $n+b_{i}, n+b_{j}$ are a prime pair, infinitely often

Narrowest admissible 55-tuple: Given by $x+\{0,2,6$ $12,20,26,30,32,42,56,60,62,72,74,84,86,90,96,104$ $110,114,116,120,126,132,134,140,144,152,156,162$, 170, 174, 176, 182, 186, 194, 200, 204, 210, 216, 222, 224, $230,236,240,242,246,252,254,260,264,266,270,272\}$

Green, Tao and Ziegler

No attack on

$$
\begin{aligned}
& p, p+2(\text { twin prime }) ; \\
& p, N-p \text { (Goldbach), } \\
& p, 2 p+1 \text { (Sophie Germain twins). }
\end{aligned}
$$

Green, Tao and Ziegler

No attack on

$$
\begin{aligned}
& p, p+2(\text { twin prime }) \\
& p, N-p(\text { Goldbach }) \\
& p, 2 p+1 \text { (Sophie Germain twins). }
\end{aligned}
$$

These are all difficult pairs: Here one requires primes p and q for which

$$
a p+b q=c
$$

for some fixed non-zero a, b.

Green, Tao and Ziegler

No attack on

$$
\begin{aligned}
& p, p+2(\text { twin prime }) \\
& p, N-p \text { (Goldbach) } \\
& p, 2 p+1 \text { (Sophie Germain twins). }
\end{aligned}
$$

These are all difficult pairs: Here one requires primes p and q for which

$$
a p+b q=c
$$

for some fixed non-zero a, b.
Green-Tao-Ziegler, 2012:
The prime k-tuplets conjecture holds for any admissible k-tuple of linear forms that does not contain a difficult pair.

Green-Tao-Ziegler Theorem The prime k-tuplets conjecture for any admissible k-tuple of linear forms that does not contain a difficult pair.

Green-Tao-Ziegler Theorem The prime k-tuplets conjecture for any admissible k-tuple of linear forms that does not contain a difficult pair.

Example 1: $a, a+d, a+2 d \ldots, a+k d$ The original Green-Tao Theorem

Green-Tao-Ziegler Theorem The prime k-tuplets conjecture for any admissible k-tuple of linear forms that does not contain a difficult pair.

Example 1: $a, a+d, a+2 d \ldots, a+k d$ The original Green-Tao Theorem

Example 2: $b, b+a+1, b+2 a+4$ $\ldots, b+k a+k^{2}$

Green-Tao-Ziegler Theorem The prime k-tuplets conjecture for any admissible k-tuple of linear forms that does not contain a difficult pair.

Example 2: $b, b+a+1, b+2 a+4$ $\ldots, b+k a+k^{2}$
These are the values of $x^{2}+a x+b$ for $x=0,1, \ldots, k$

Green-Tao-Ziegler Theorem The prime k-tuplets conjecture for any admissible k-tuple of linear forms that does not contain a difficult pair.

Example 2: $b, b+a+1, b+2 a+4$ $\ldots, b+k a+k^{2}$
These are the values of $x^{2}+a x+b$ for $x=0,1, \ldots, k$

Consequence: Existence of infinitely many monic polynomials $f(x)$ of degree d, for which $f(0), f(1), \ldots, f(m)$ are all prime.

Green-Tao-Ziegler Theorem The prime k-tuplets conjecture for any admissible k-tuple of linear forms that does not contain a difficult pair.

Consequence: Existence of infinitely many monic polynomials $f(x)$ of degree d, for which $f(0), f(1), \ldots, f(m)$ are all prime.

Example 3: $p, q, 2 p+3 q, 2 p-3 q$

Pythagorean triples

A Pythagorean triangle has sides

$$
r^{2}-s^{2}, \quad 2 r s, \quad r^{2}+s^{2}
$$

with area

$$
A:=r s(r+s)(r-s)
$$

PYTHAGOREAN TRIPLES

A Pythagorean triangle has sides

$$
r^{2}-s^{2}, \quad 2 r s, \quad r^{2}+s^{2}
$$

with area

$$
\begin{gathered}
A:=r s(r+s)(r-s) \\
\text { How few prime factors can } A / 6 \text { have? }
\end{gathered}
$$

PYTHAGOREAN TRIPLES

A Pythagorean triangle has sides

$$
r^{2}-s^{2}, \quad 2 r s, \quad r^{2}+s^{2}
$$

with area

$$
A:=r s(r+s)(r-s) .
$$

How few prime factors can $A / 6$ have?
Three, if $s=6$ and $r-6, r, r+6$ are all prime.

PYTHAGOREAN TRIPLES

A Pythagorean triangle has sides

$$
r^{2}-s^{2}, \quad 2 r s, \quad r^{2}+s^{2}
$$

with area

$$
A:=r s(r+s)(r-s)
$$

How few prime factors can $A / 6$ have?
Three, if $s=6$ and $r-6, r, r+6$ are all prime.
Ben Tsou (2007, junior thesis) A/6 has four prime factors infinitely often: Take $r=2 p, s=3 q$ when
$p, q, 2 p+3 q$, and $2 p-3 q$ are all prime.

PYTHAGOREAN TRIPLES

A Pythagorean triangle has sides

$$
r^{2}-s^{2}, \quad 2 r s, \quad r^{2}+s^{2}
$$

with area

$$
A:=r s(r+s)(r-s)
$$

How few prime factors can $A / 6$ have?
Three, if $s=6$ and $r-6, r, r+6$ are all prime.

Ben Tsou (2007, junior thesis) $A / 6$ has four prime factors infinitely often: Take $r=2 p, s=3 q$ when

$$
p, q, 2 p+3 q, \text { and } 2 p-3 q
$$ are all prime.

This follows from the Green-TaoZiegler Theorem

Green-Tao-Ziegler Theorem
 The prime k-tuplets conjecture for any admissible k-tuple of linear forms that does not contain a difficult pair.

Further consequences: You find them!

