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Prime factors of dynamical sequences
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Abstract. Let fðtÞ A QðtÞ have degree df 2. For a given rational number x0, define
xnþ1 ¼ fðxnÞ for each nf 0. If this sequence is not eventually periodic, and if f does not
lie in one of two explicitly determined a‰ne conjugacy classes of rational functions, then
xnþ1 � xn has a primitive prime factor in its numerator for all su‰ciently large n. The
same result holds for the exceptional maps provided that one looks for primitive prime fac-
tors in the denominator of xnþ1 � xn. Hence the result for each rational function f of degree
at least 2 implies (a new proof) that there are infinitely many primes. The question of primi-
tive prime factors of xnþD � xn is also discussed for D uniformly bounded.

1. Introduction

For a given sequence of non-zero integers fxngnf0, a primitive prime factor of xn is a
prime pn that divides xn but does not divide any term xm with 0em < n. For example, the
non-zero terms of the Fibonacci sequence a0 ¼ 0, a1 ¼ 1 and anþ2 ¼ anþ1 þ an have a primi-
tive prime factor for every n > 12 (see [3]).

We call pn a super-primitive prime factor of xn if pn F xm for all m3 n. The Fermat
numbers Fn ¼ 22

n þ 1 are pairwise coprime, and so have a super-primitive prime factor for
every nf 0.

Given a rational function fðtÞ and a point x0 A CW fyg, we define xnþ1 ¼ fðxnÞ for
each nf 0. We have already seen an example, namely the sequence of Fermat numbers.
Indeed, note that

Fnþ1 � 2 ¼ 22
nþ1 � 1 ¼ ð22n þ 1Þð22n � 1Þ ¼ FnðFn � 2Þ;

and so if fðtÞ ¼ t2 � 2tþ 2 and F0 ¼ 3, then Fnþ1 ¼ fðFnÞ for each nf 0.

Our first goal was to show that, for any fðtÞ A QðtÞ, the numerator of xnþ1 � xn
contains a primitive prime factor for all su‰ciently large n provided fxngnf0 does not
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eventually become periodic (which is equivalent to the statement that the xn are distinct).
However this is not always true: Let x0 ¼ 1 and xnþ1 ¼ x2

n=ð2xn þ 1Þ for nf 0. One verifies
by induction that if Fn is the nth Fermat number, then

xn ¼
1

Fn � 2
and xnþ1 � xn ¼ � 22

n

Fnþ1 � 2
;

so that 2 is the only prime divisor of the numerator of xnþ1 � xn for all nf 0. Note that the
denominator of xn has a primitive prime factor for all n > 0, which also divides the denomi-
nator of xnþ1. This is what we prove in general: Define F1 to be those fðtÞ A QðtÞ of the
form s�1 � c � s for some linear transformation sðtÞ ¼ ltþ b with l3 0, where

cðtÞ ¼ t2

tþ 1
or

t2

2tþ 1
:

Theorem 1. Suppose that fðtÞ A QðtÞ has degree df 2, and that a positive integer D is

given. Let x0 A Q and define xnþ1 ¼ fðxnÞ for each nf 0. If the sequence fxngnf0 is not

eventually periodic, then the numerator of xnþD � xn has a primitive prime factor for all su‰-

ciently large n, except if f A F1 and D ¼ 1. (If xn or xnþD is y, interpret xnþD � xn as the

‘‘fraction’’ 1=0.) In the case f A F1 and D ¼ 1, the numerator of xnþ1 � xn has the same

prime factors for all n, and for all su‰ciently large n the denominator of xn has a primitive

prime factor, which also divides the denominator of xnþ1.

The two a‰ne conjugacy classes of rational functions in F1 are exceptions to the
theorem for dynamical reasons. They are characterized by the fact that the point at infinity
is fixed with small multiplicity (one or two), and all of the other fixed points are totally
ramified. See Lemma 3 and the proof of Theorem 1.

We call pD;n a doubly primitive prime factor if pD;n divides the numerator of
xnþD � xn, and if Nf n and DfD whenever pD;n divides the numerator of xNþD � xN .
Ingram and Silverman ([5], Conjecture 20) conjectured that the numerator of xnþD � xn
has a doubly primitive prime factor for all Df 1 and nf 0, other than for finitely many
exceptional pairs ðD; nÞ. Unfortunately their conjecture is false with D ¼ 1 for any f A F1,
though we believe that an appropriate modification is true: Let BD;d be the set of all
fðtÞ A CðtÞ of degree d such that f has no periodic point of exact period D. A result of
Baker (see §7 and Appendix B) shows that BD;d is non-empty if and only if ðD; dÞ is one of
the pairs ð2; 2Þ, ð2; 3Þ, ð2; 4Þ or ð3; 2Þ. Define F2 to be the union of B2;d for d ¼ 2; 3; 4 along
with all rational maps fðtÞ of the form f ¼ s�1 � c � s for some sðtÞ ¼ ðat� bÞ=ðgt� dÞ
with ad� bg3 0 and cðtÞ ¼ 1=t2. Define F3 ¼ B3;2. Corollary 2 in §7 shows that the
classes F2 and F3 provide further counterexamples to the conjecture of Ingram and
Silverman, and we believe that should be all of them.

Conjecture. Suppose that fðtÞ A QðtÞ has degree df 2. Let x0 A Q and define

xnþ1 ¼ fðxnÞ for each nf 0, and suppose that the sequence fxngnf0 is not eventually peri-

odic. The numerator of xnþD � xn has a doubly primitive prime factor for all nf 0 and

Df 1, except for those pairs with D ¼ 1; 2 or 3 when f A F1;F2 or F3, respectively, as well
as for finitely many other exceptional pairs ðD; nÞ.

In fact we can prove a strengthening of Theorem 1, which implies that if the above
conjecture is false, then there must be exceptional pairs ðD; nÞ with D arbitrarily large.
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Theorem 2. Suppose that fðtÞ A QðtÞ has degree df 2. Let x0 A Q and define

xnþ1 ¼ fðxnÞ for each nf 0, and suppose that the sequence fxngnf0 is not eventually peri-

odic. For any given Mf 1, the numerator of xnþD � xn has a doubly primitive prime factor

for all nf 0 and MfDf 1, except for those pairs with D ¼ 1; 2 or 3 when f A F1;F2 or

F3, respectively, as well as for finitely many other exceptional pairs ðD; nÞ.

Upon iterating the relation Fnþ1 � 2 ¼ FnðFn � 2Þ, we see that

Fnþ1 � Fn ¼ 22
nþ1 � 22

n ¼ 22
nðFn � 2Þ ¼ 22

n

Fn�1ðFn�1 � 2Þ ¼ � � � ¼ 22
n

Fn�1Fn�2 � � �F1F0:

Hence Fnþ1 � Fn has the same primitive prime factor pn�1 as Fn�1, but there can be no
super-primitive prime factor since if pn�1 divides Fn�1, then pn�1 divides FNþ1 � FN for
all Nf n. On the other hand, we saw that all prime factors of Fn are super-primitive, and
this does generalize as we see in the following result (from which Theorems 1 and 2 are
deduced). For this statement, a point x0 is called preperiodic if and only if the sequence
fxngnf0 is eventually periodic.

Proposition 1. Let K be a number field. Suppose that fðtÞ A KðtÞ has degree df 2,
and that 0 is a preperiodic point, but not periodic. If the sequence of K-rationals fxngnf0 is

not eventually periodic, then the numerator of xn has a super-primitive prime (ideal) factor Pn

for all su‰ciently large n.1)

Although we discovered Proposition 1 independently, we later learned that it appears
as a special case of [5], Theorem 7. Our general strategy is virtually identical to that of [5],
but we have simplified the main Diophantine step in the argument. (Our proof avoids the
use of Roth’s theorem, and instead proceeds by solving a certain Thue/Mahler equation.
We discuss this further at the end of the section.)

We will prove a result analogous to Proposition 1 when 0 is a periodic point in Sec-
tion 4, though in this case one does not find super-primitive prime factors. Indeed, if 0 has
period q and if P divides the numerator of xn, then P divides the numerator of xnþkq for all
kf 0, other than for finitely many exceptional primes P.

The proof of Proposition 1 is based on the following sketch of the special case
fðtÞ ¼ t2 � 2tþ 2 and x0 A Z (which includes another proof for the special case
x0 ¼ F0 ¼ 3, so that xn ¼ Fn for all nf 0). For this f we see that 0 is preperiodic but
not periodic: fð0Þ ¼ fð2Þ ¼ 2. Now xnþ1 ¼ fðxnÞ1 fð0Þ ¼ 2 ðmod xnÞ, and for m > n we
then have, by induction, that xmþ1 ¼ fðxmÞ1 fð2Þ ¼ 2 ðmod xnÞ. Hence if m > n, then
ðxm; xnÞ ¼ ð2; xnÞ which divides 2, and so any odd prime factor of xn is super-primitive. If
xn does not have an odd prime factor, then xn ¼G2k, and there are only finitely many such
n as there are only finitely many integers r for which fðrÞ ¼G2k, and no two xn can equal
the same value of r, else the sequence is eventually periodic.

The deduction of Theorem 1 is based on the following sketch of the special case
fðtÞ ¼ t2 þ 3tþ 1 and D ¼ 1, and x0 A Z. Here fð�2Þ ¼ fð�1Þ ¼ �1, so that �2 is pre-
periodic but not periodic. To be able to apply Proposition 1, we make a linear change

1) See Section 2 for an explanation of the ‘‘numerator’’ of an element of K .
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of variables and consider cðtÞ ¼ fðt� 2Þ þ 2 ¼ t2 � tþ 1 so that cð0Þ ¼ cð1Þ ¼ 1; that is,
0 is preperiodic but not periodic. We see that if y0 ¼ x0 þ 2 and ynþ1 ¼ cðynÞ, then
yn ¼ xn þ 2 by induction. So Proposition 1 shows yn ¼ xn þ 2 has a super-primitive prime
factor pn for all n su‰ciently large. But then pn divides xnþ2 � xnþ1 since

xnþ2 ¼ f
�
fðxnÞ

�
1 f

�
fð�2Þ

�
¼ fð�1Þ ¼ fð�2Þ1 fðxnÞ ¼ xnþ1 ðmod pnÞ;

while pn cannot divide xkþ1 � xk for any ke n, else

�1 ¼ fð�2Þ1 fðxnÞ ¼ f � � � � � f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�k times

ðxkþ1Þ1 f � � � � � f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�k times

ðxkÞ ¼ xn1�2 ðmod pnÞ:

Hence any super-primitive prime factor pn of yn ¼ xn þ 2 is also a primitive prime factor of
xnþ2 � xnþ1.

Having a super-primitive prime factor is, by definition, more rare than having just a
primitive prime factor. At first sight it might seem surprising that one can prove that eso-
teric dynamical recurrences have super-primitive prime factors whereas second-order linear
recurrences (like the Fibonacci numbers) do not. However the numerator and denominator
of the nth term of a degree-d dynamical recurrence grow like Cd n

, far faster than the Cn of
linear recurrences, so we might expect each new term to have a much better chance of hav-
ing a prime factor that we have not seen before. One approach to proving this is simply
based on size, the approach used for second-order linear recurrences, and so one might be-
lieve it should work even more easily here—this is the approach, for instance, of [5]. Our
approach uses simple considerations to imply that a new term in the sequence (or a suitable
factor of that term) can only include ‘‘old’’ prime factors from a finite set, and then we use
the Thue/Mahler theorem to show that this can happen only finitely often. One further up-
shot of our method is that it can be made e¤ective; i.e., in principle one could give a bound
on the size of the set of exceptions in our main theorems. Essentially this amounts to apply-
ing Baker’s method to obtain an e¤ective form of the Thue/Mahler theorem; see the discus-
sion in §4 for a few more details.

The remainder of this article is laid out as follows. In the next section, we give a de-
scription of the notation used in the paper. In §3 we give a lower bound on the number of
distinct zeros a rational function can have outside of certain exceptional scenarios; this tool
will be used in §4 to prove Proposition 1 and the analogous result for periodic points. As an
application we deduce a new unified proof that there are infinitely many primes congruent
to 1 modulo a fixed odd prime power. In §5, §7 and §8 we study properties of fixed points
and preperiodic points in order to determine when one can change coordinates and apply
Proposition 1, and then we use this analysis in §6 and §9 to deduce Theorems 1 and 2. Ap-
pendix A contains a number of results from complex dynamics that are used throughout
the paper, and Appendix B recalls the classification of the exceptional rational maps arising
from Baker’s theorem, as stated in §7.

2. Notation

Suppose that K is a number field, with ring of integers R. If S is a finite set of non-
zero prime ideals of R, write RS for the ring of S-integers—i.e., the set of all elements
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a=b A K where a; b A R and the ideal ðbÞ is divisible only by primes in S. One may always
enlarge a given set of primes S so that RS is a principal ideal domain [2], Proposition 5.3.6.
In that case, any a A K can be written a ¼ a=b with a; b A RS and ða; bÞ ¼ ð1Þ; i.e., a and b

share no common prime ideal factor in RS. Moreover, the greatest common divisor of any
two elements a; b A RS, denoted gcdða; bÞ, is defined to be a generator of the ideal ða; bÞ. It
is well defined up to a unit in RS.

We will say that a prime ideal P of K divides the numerator (resp. denominator) of an
element a A K to mean that upon writing the fractional ideal ðaÞ as a=b with a and b co-
prime integral ideals, the ideal P divides a (resp. b). When K ¼ Q and P is a rational prime
number, this agrees with standard usage.

For any field k, we identify the projective space P1ðkÞ with kW fyg. Returning to
the number field K with ring of integers R, fix a non-zero prime ideal PHR. Write RP for
the localization of R at P; the ring RP is the subset of all elements a=b A K such that a; b A R

and b B P. The ring RP has a unique maximal ideal PRP ¼ fa=b A K : a A P; b B Pg, and we
can identify the residue fields R=PRGRP=PRP. There is a canonical reduction map
P1ðKÞ ! P1ðRP=PRPÞ given by sending a A RP to its image in the quotient RP=PRP, and
by sending a A P1ðKÞnRP to y. We extend the notion of congruences modulo P to P1ðKÞ
by saying that a1 b ðmodPÞ if and only if a and b have the same canonical reduction
in P1ðRP=PRPÞ. This gives the usual notion of congruence when restricted to RP; i.e.,
a� b A PRP if and only if a and b have the same canonical reduction in P1ðRP=PRPÞ.

For a given fðtÞ A KðtÞ, fix polynomials f ðtÞ; gðtÞ A R½t� with no common root in K

such that fðtÞ ¼ f ðtÞ=gðtÞ. Let d ¼ deg f :¼ maxfdeg f ; deg gg; then Fðx; yÞ ¼ ydf ðx=yÞ,
Gðx; yÞ ¼ ydgðx=yÞ A R½x; y� are homogeneous of degree d with no common linear factor
over K. For F0ðx; yÞ ¼ x, G0ðx; yÞ ¼ y, we define Frþ1ðx; yÞ ¼ F

�
Frðx; yÞ;Grðx; yÞ

�
and

Grþ1ðx; yÞ ¼ G
�
Frðx; yÞ;Grðx; yÞ

�
for all rf 0. The polynomials Frðx; yÞ and Grðx; yÞ

have no common factor in K ½x; y�.

Throughout we will use the notation fxngnf0 to denote a sequence of elements of K
obtained by choosing x0 A K and setting xnþ1 ¼ fðxnÞ for nf 0. We will also write fðnÞ for
the n-fold composition of f with itself, so that xn ¼ fðnÞðx0Þ.

3. Rational functions with many distinct zeros

Define T to be the set of rational functions fðtÞ A CðtÞ of degree df 2 of one of the
following forms:

(i) fðtÞ ¼ td=gðtÞ where gðtÞ is a polynomial of degreee d;

(ii) fðtÞ ¼ c=td for some constant c3 0; or

(iii) fðtÞ ¼ aðt� aÞd

ðt� aÞd � ctd
for some constants a; c3 0.

Note that 0 is periodic in a period of length one in (i), and in a period of length two in (ii)
and (iii) (where fð0Þ ¼ y and a, respectively). Geometrically speaking, T consists of all
rational functions of degree d such that fð2ÞðtÞ has a totally ramified fixed point at 0.
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The main reason for defining T is seen in the following lemma:

Lemma 1. Suppose that fðtÞ A CðtÞnT has degree df 2. If rf 4, then Frðx; yÞ has
at least three non-proportional linear factors.

Proof. [12], Proposition 3.44 states that if cðtÞ A CðtÞ has degree df 2, and if cð2ÞðtÞ
is not a polynomial, then c�4ðyÞ contains at least three elements. Let cðtÞ ¼ 1=fð1=tÞ so
that cð2ÞðtÞ A C½t� if and only if fð2ÞðtÞ is of the form tD=g2ðtÞ where g2ðtÞ is a non-zero
polynomial of degreeeD ¼ d 2. The result follows by showing that this occurs if and
only if fðtÞ A T: One easily confirms that, for each f A T, one has fð2ÞðtÞ ¼ tD=g2ðtÞ for
some polynomial g2ðtÞ of degreeeD. On the other hand, any fð2ÞðtÞ of this form is totally
ramified over 0. Let b ¼ fð0Þ so that 0 ¼ fðbÞ. As ramification indices are multiplicative,
we deduce that f is totally ramified at 0 and at b. An easy calculation then confirms that the
cases b ¼ 0;y, or a (3 0 or y) correspond to the three cases in T. r

We deduce the following from Lemma 1:

Corollary 1. Suppose that fðtÞ A CðtÞnT has degree df 2. If rf 4, then Frðx; yÞ has
at least d r�4 þ 2 non-proportional linear factors.

To prove Corollary 1 we use the abc-Theorem for polynomials (see, e.g., [4], Theorem
F.3.6). As we will have use for it again later in the paper, we recall the statement:

abc-Theorem for polynomials. If a; b; c A C½x; y� are homogeneous forms of degree

df 1 with no common linear factor such that aðx; yÞ þ bðx; yÞ þ cðx; yÞ ¼ 0, then the

number of non-proportional linear factors of abc is at least d þ 2.

Proof of Corollary 1. We have Frðx; yÞ ¼ F4ðX ;YÞ where X ¼ Fr�4ðx; yÞ,
Y ¼ Gr�4ðx; yÞ (which have degree d r�4). By Lemma 1, F4ðX ;YÞ has at least three non-
proportional linear factors in X , Y which must themselves satisfy a linear equation with
constant coe‰cients. Indeed, if the three linear factors are X � aY , X � bY , and X � gY ,
then

ðb � gÞðX � aYÞ þ ðg� aÞðX � bY Þ þ ða� bÞðX � gYÞ ¼ 0:

If the three linear factors are instead X � aY , X � bY , and Y , then we use

ðX � aYÞ � ðX � bYÞ þ ða� bÞY ¼ 0:

The abc-theorem for polynomials then implies that there are at least d r�4 þ 2 coprime lin-
ear factors of ðX � aYÞðX � bY ÞðX � gY Þ, and hence of F4ðX ;YÞ ¼ Frðx; yÞ. r

4. Preperiodic points and super-primitivity

We use the following result from Diophantine approximation:

The Thue/Mahler Theorem. Suppose that Fðx; yÞ A K ½x; y� is homogeneous and has

at least three non-proportional linear factors (over K). Let S be any finite set of primes of K.
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There are only finitely many m=n A Knf0g such that all prime factors of Fðm; nÞ belong to

the set S.

See [2], Theorem 5.3.2 for a proof.2) With this tool in hand we can complete the proof
of Proposition 1:

Proof of Proposition 1. Write y0 ¼ 0 and ykþ1 ¼ fðykÞ for each kf 0. Let r0 ¼ 0,
s0 ¼ 1, and choose rk; sk A R—the ring of integers of K—so that yk ¼ rk=sk for each kf 0.
If yk ¼ y, let rk ¼ 1, sk ¼ 0. As 0 is preperiodic, we may assume there are only finitely
many elements rk and sk. Let S be the set of prime ideals that either divide rk for some
kf 1 or that divide ResultantðF ;GÞ. Note that S is finite since rj 3 0 for all jf 1, and f

and g have no common root in K . We may also enlarge the set S so that the ring of
S-integers RS is a principal ideal domain.

Let P be a prime ideal that is not in S, and divides the rational prime p, so that
R=PRG Fq for q some power of p. Then P1ðR=PRÞGP1ðFqÞ ¼ Fq W fyg. We identify P

with the prime ideal PRS in RS. There is a canonical isomorphism R=PRGRS=PRS, and
hence also P1ðR=PRÞGP1ðRS=PRSÞ.

At most one term of the sequence fxngnf0 is equal to y, so we may assume that n is
large enough that xn 3y. Write each xn ¼ un=vn A K with un; vn A RS and ðun; vnÞ ¼ ð1Þ.
Suppose P j un. Observe that since P does not divide ResultantðF ;GÞ, for any kf 0 we
find that

xnþk ¼ fðkÞðxnÞ1 fðkÞð0Þ ¼ yk ðmodPÞ:

We deduce that if a prime ideal P is not in S, then P divides at most one un. For if P
divides um and un with n > m, then P j rk with k ¼ n�m by the previous paragraph. Hence
P A S, which is a contradiction.

Let N be the set of integers nf 0 such that all prime factors of un are in the set S.
Now F4ðun�4; vn�4Þ equals un � gcd

�
F4ðun�4; vn�4Þ;G4ðun�4; vn�4Þ

�
so that if n A N then all

prime factors of F4ðun�4; vn�4Þ are in the set S. Note that fðtÞ B T as 0 is not a periodic
point. Hence, by Lemma 1, F4 has at least three non-proportional linear factors, and there-
fore, by the Thue/Mahler Theorem, there are only finitely many un�4=vn�4 A K such that all
prime factors of F4ðun�4; vn�4Þ belong to the set S. We deduce that there are only finitely
many n A N, since fxngnf0 is not eventually periodic.

Finally, if m B N, then um has a prime ideal factor Pm not in S, and we have seen that
Pm cannot divide un for any n3m. Moreover, Pm cannot divide vm since ðum; vmÞ ¼ ð1Þ.

r

Finally we prove a version of Proposition 1 in the case that 0 is periodic. It is also a
special case of [5], Theorem 7, again with the added benefit that our method can be made
e¤ective.

2) Although we will not need it at present, the Thue/Mahler Theorem can be made e¤ective. One reduces

its proof to the solution of a unit equation, and unit equations are e¤ectively solvable by Baker’s method. See [2],

§5.4 for a discussion.
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Proposition 1O. Let K be a number field. Suppose that fðtÞ A KðtÞnT has degree

df 2, and that 0 is a periodic point. If the sequence of K-rationals fxngnf0 is not eventually

periodic, then the numerator of xn has a primitive prime factor Pn for all su‰ciently large n.

Remark 1. It is not hard to see that if f A T, then the conclusion of Proposition 10

does not follow. Indeed a prime dividing xn for some nf 0, divides x0 in T(i), and xd in
T(ii) and T(iii) where d is the least non-negative residue of n ðmod2Þ.

Remark 2. In the proof of Proposition 10 we actually construct a sequence fu�
ngnf0

of algebraic integers of K , where the numerators un of xn are a product of powers of u�
m

with me n; and we show that u�
n has a super-primitive prime factor Pn for all su‰ciently

large n. Proposition 10 then follows.

Remark 3. Ingram and Silverman [5] conjecture that if fðtÞ A KðtÞ has degree df 2,
and if 0 is not a preperiodic point, then for the sequence of K-rationals fxngnf0 starting
with x0 ¼ 0, the numerator of xn has a primitive prime factor for all su‰ciently large n.
This does not seem approachable using our methods.

Proof of Proposition 10. This is largely based on the above proof when 0 is pre-
periodic and not periodic, but has some additional complications. Suppose that 0 has
period q. Then Fqðx; yÞ ¼ xbF �

q ðx; yÞ for some integer bf 1 and F �
q ðx; yÞ A R½x; y� where

F �
q ð0; 1Þ3 0. Therefore if n > q then

Fnðx; yÞ ¼ Fq

�
Fn�qðx; yÞ;Gn�qðx; yÞ

�
¼

�
Fn�qðx; yÞ

�b
F �
q

�
Fn�qðx; yÞ;Gn�qðx; yÞ

�
:

So we define F �
n ðx; yÞ ¼ Fnðx; yÞ=Fn�qðx; yÞb A R½x; y�, and we let F �

n ðx; yÞ ¼ Fnðx; yÞ if
n < q. Note that

Fnðx; yÞ ¼
Q

0e je½n=q�
F �
n�jqðx; yÞ

b j

:

Write y0 ¼ 0 and ykþ1 ¼ fðykÞ for each kf 0. Let S be the set of primes of K that
either divide the numerator of yk for some yk 3 0, or that divide ResultantðF ;GÞ, or that
divide F �

q ð0; 1Þ. This set is finite since 0 is periodic. Enlarge the set S if necessary so that the
ring of S-integers RS is a PID. Write yk ¼ rk=sk A K with rk; sk A RS and ðrk; skÞ ¼ ð1Þ.
There are only finitely many elements rk and sk, since 0 is periodic.

Now write each xk ¼ uk=vk A K with uk; vk A RS and ðuk; vkÞ ¼ ð1Þ. Suppose that the
prime P is not in S and that m is the smallest nonnegative integer such that P divides
F �
mðu0; v0Þ. Then m is the smallest integer such that P divides Fmðu0; v0Þ, since Fmðx; yÞ is

(as we saw above) the product of F �
r ðx; yÞ to various powers, over rem.

Proceeding as in the proof of Proposition 1, for P B S we see that

fðnÞðx0Þ ¼ xn ¼ fðn�mÞðxmÞ1 fðn�mÞð0Þ ¼ yn�m ðmodPÞ:

Hence P divides Fnðu0; v0Þ if and only if P divides the numerator of yn�m, which holds if
and only if q divides n�m as P B S. So if P divides F �

n ðu0; v0Þ, we must have that q divides
n�m, and nfm. If n > m, let X ¼ Fn�qðu0; v0Þ, Y ¼ Gn�qðu0; v0Þ. As q divides n�m we
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know that q divides ðn� qÞ �m, so that P divides Fn�qðu0; v0Þ ¼ X , and hence not Y (else
P divides ResultantðF ;GÞ which implies that P A S, a contradiction). Now

F �
n ðu0; v0Þ ¼ F �

q ðX ;Y Þ1F �
q ð0;YÞ1Y lF �

q ð0; 1Þ ðmodPÞ;

where l ¼ degF �
q . But PFY lF �

q ð0; 1Þ as P B S, and so P does not divide F �
n ðu0; v0Þ. Hence

we have proved that if P B S, then there is at most one value of n for which P divides
F �
n ðx; yÞ.

If FqðX ;Y Þ has at least four non-proportional linear factors, then FqðX ;YÞ=X b

has at least three non-proportional linear factors. Now F �
n ðx; yÞ ¼ FqðX ;Y Þ=X b where

X ¼ Fn�qðx; yÞ;Y ¼ Gn�qðx; yÞ, and the result follows from the Thue/Mahler Theorem,
as in Proposition 1. (Note that the fact that fðtÞ B T is part of the hypothesis.)

If FqðX ;Y Þ has not more than three non-proportional linear factors, select kf 2
minimal such that Fkqðx; yÞ has at least 2k þ 2 non-proportional linear factors. We know
that such a k exists since Corollary 1 implies that F8qðx; yÞ has at least

d 8q�4 þ 2f 24 þ 2 ¼ 2 � 8þ 2

non-proportional linear factors. Then FkqðX ;Y Þ=Fðk�1ÞqðX ;YÞb has at least three non-
proportional linear factors. Now we see that F �

n ðx; yÞ ¼ FkqðX ;YÞ=Fðk�1ÞqðX ;Y Þb where
X ¼ Fn�kqðx; yÞ, Y ¼ Gn�kqðx; yÞ, and the result follows from the Thue/Mahler Theorem,
as in Proposition 1. r

Remark 4. Propositions 1 and 10 imply the main results of [11], although no
Diophantine approximation was necessary in the cases presented there.

Proposition 10 gives a unified means for finding prime numbers in certain residue
classes.

Application. Let qn be an odd prime power. There exist infinitely many primes of the

form qnk þ 1.

Proof. Consider the polynomial fðtÞ ¼ ðt� 1Þq þ 1. Then fð0Þ ¼ 0 so that 0 is a
fixed point, but f B T. Let x0 be any integer larger than 1. Clearly xm ! y as m ! y,
and so Proposition 10 implies, after a small shift in notation, that xnþm has an odd primi-
tive prime factor pm for all su‰ciently large m. By the definition of f, we see that
xmþr � 1 ¼ ðxmþr�1 � 1Þq for every rf 1, and so by induction,

ðxm � 1Þq
n

¼ xmþn � 11�1 ðmod pmÞ:

That is, xm � 1 has order dividing 2qn in the group ðZ=pmZÞ�. If the order of xm � 1 is q j

for some je n, then

�11 ðxm � 1Þq
n

¼
�
ðxm � 1Þq

j�qn�j

1 1 ðmod pmÞ;

a contradiction. On the other hand, if the order of xm � 1 is 2q j, then

ðxm � 1Þq
j

1�1 ðmod pmÞ ) xmþj ¼ ðxm � 1Þq
j

þ 11 0 ðmod pmÞ;
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which contradicts the primitivity of pm unless j ¼ n. Hence xm � 1 has order exactly 2qn

in the group ðZ=pmZÞ�, and consequently 2qn divides pm � 1. That is, pm1 1 ðmod qnÞ.
Varying m, we produce infinitely many primes of this form. r

5. Dynamical systems with exceptional behavior at T, Part I

In order to prove Theorem 1, we choose a point that falls into a cycle of length divid-
ing D after exactly one step. The following lemma tells us this is always possible:

Lemma 2. Suppose fðtÞ A CðtÞ has degree df 2 and that Df 1 is an integer. There

exists a point a A P1ðCÞ ¼ CW fyg such that fðDÞ�fðaÞ� ¼ fðaÞ, but fðDÞðaÞ3 a.

Proof. Suppose not. If b is a fixed point of fðDÞ, and if fðgÞ ¼ b then g is also a fixed
point of fðDÞ, or else we may take a ¼ g. But then g ¼ fðD�1Þ�fðgÞ� ¼ fðD�1ÞðbÞ is unique,
and so b is totally ramified for f. By symmetry, fðbÞ is totally ramified too.

In particular, this implies that f 0ðbÞ ¼ 0 and so
�
fðDÞðbÞ

� 0 ¼ QD�1

j¼0

f 0�fð jÞðbÞ
�
¼ 0.

Hence b has multiplicity 1 as a root of fðDÞðxÞ � x by Lemma A.1. Therefore d D þ 1, the
number of fixed points of fðDÞðxÞ � x, by Lemma A.2, equals the number of such b, which
is not more than the number of totally ramified points of f. This is at most 2, by the
Riemann/Hurwitz formula (for any map f) and so we have established a contradiction.

r

Define E to be the class of rational functions fðtÞ A CðtÞ of degree df 2 satisfying
one of the following:

(i) fðtÞ ¼ tþ 1

gðtÞ for some polynomial gðtÞ with degðgÞ ¼ d � 1;

(ii) f ¼ s�1 � c � s for some linear transformation sðtÞ ¼ ltþ b with l3 0, where

cðtÞ ¼ td

td�1 þ 1
; or

(iii) f ¼ s�1 � c � s with s as in (ii) and cðtÞ ¼ t2

2tþ 1
.

Observe that in the classes E(ii) and E(iii), the map s has no denominator, which means
that y is fixed under the transformation s. The point at infinity plays an important role
in the appearance of prime divisors in the numerators of our dynamical sequences.

Lemma 3. Let fðtÞ A CðtÞ be a rational function of degree df 2 and D a posi-

tive integer. If Df 2, or if D ¼ 1 and fðtÞ B E, then there exists a A P1ðCÞ such that

fðDÞ�fðaÞ� ¼ fðaÞ, fðDÞðaÞ3 a and fðaÞ3y.

Proof. We proceed as in the proof of Lemma 2: Suppose that the result is false. If
b3y is a fixed point of fðDÞ, then b is totally ramified for f, and f�1ðbÞ is another fixed
point of fðDÞ. Moreover b�1ðbÞ is a fixed point of multiplicity one for fðDÞ by Lemma A.1.
So if there are r finite fixed points of f, and R finite fixed points of fðDÞ, then reRe 2 by
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the Riemann/Hurwitz formula (using the fact that the fixed points of f are a subset of the
fixed point of fðDÞ). If y has multiplicity k as a fixed point of f, then Lemma A.2 gives

k þ r ¼ d þ 1:

We deduce that k ¼ d þ 1� rf 2þ 1� 2 ¼ 1; that is, y must be a fixed point of f, and
hence of fðDÞ. So either the finite fixed points of fðDÞ are also fixed points of f, or there are
two finite fixed points b, g of fðDÞ such that fðbÞ ¼ g and fðgÞ ¼ b. In either case we know
that the finite fixed points of fðDÞ are totally ramified for f.

Now suppose that we have two finite fixed points b, g of fðDÞ and change coordinates
so that b 7! 0, g 7! y, and y 7! 1 to obtain a new function c. (When we say ‘‘change co-
ordinates so that a 7! b’’, we mean ‘‘replace f with c ¼ s�1 � f � s’’, where s is a fractional
linear transformation such that s�1ðaÞ ¼ b. Then a is a fixed point of f if and only if b is
a fixed point of c.) Now c is totally ramified at 0 and y, with pre-images 0 and y, and
cð1Þ ¼ 1, so that cðtÞ ¼ tGd . As c 0ð1Þ3 1, we see that 1 is a fixed point of c of multi-
plicity 1. Counting fixed points of c using Lemma A.2 and the fact that r is the number
of fixed points distinct from 1 gives 3e 1þ r ¼ d þ 1e 3; that is, r ¼ d ¼ 2 ¼ R. Now
cðDÞðtÞ ¼ t2

D

(as 0 and y must be fixed), which has 2D þ 1 distinct fixed points, so that
2D þ 1 ¼ 1þ R ¼ 3, and so D ¼ 1. Hence the only possibility is cðtÞ ¼ t2, and we obtain
E(iii) as s�1 � c � s with sðtÞ ¼ t=ðtþ 1Þ. Note that the coordinate change at the beginning
of this paragraph moved y 7! 1 and then this last coordinate change sent 1 7! y, so that
y was not moved in their composition. This corresponds to a change of coordinates of the
form sðtÞ ¼ ltþ b for some l3 0.

Henceforth we may assume Re 1, so that the multiplicity of y as a fixed point of
f satisfies k ¼ d þ 1� rf d þ 1� Rf 2. By Lemma A.3(1), we know y has multiplicity
k as a fixed point of fðDÞ, and so d D þ 1, the number of fixed points of fðDÞ, equals
k þ R ¼ d þ 1� rþ Re d þ 2. Hence dðd D�1 � 1Þe 1, which implies that D ¼ 1.

If R ¼ 0, then y is the only fixed point of f, which means fðtÞ � t ¼ 1=gðtÞ for some
polynomial gðtÞ of degree d � 1, from which we obtain E(i).

If R ¼ 1, so that b is the only finite fixed point of f, replace f with fðtþ bÞ � b. Now
fðtÞ ¼ td=gðtÞ, and the numerator of fðtÞ � t ¼ t

�
td�1 � gðtÞ

�
=gðtÞ has only one root, so

that gðtÞ ¼ td�1 þ c for some constant c3 0. Taking cðtÞ ¼ l�1fðltÞ with ld�1 ¼ c gives
E(ii). r

6. Di¤erences in the terms of dynamical sequences, Part I

Theorem 1 is closely related to the following result, Theorem 10, which gives primitive
congruences in projective space. Their proofs are almost identical except that we need to be
cautious about primes dividing the denominator in order to deduce Theorem 1. Theorem 10

is perhaps more aesthetically appealing than Theorem 1 due to the fact that its conclusion
holds for every rational function.

Theorem 1O. Suppose that fðtÞ A QðtÞ has degree df 2, and a positive integer D
is given. Let x0 A Q and define xnþ1 ¼ fðxnÞ for each nf 0. If the sequence of rationals
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fxngnf0 is not eventually periodic, then for all su‰ciently large n there exists a prime pn such

that xnþD 1 xn in P1ðFpnÞ, but xmþD E xm in P1ðFpnÞ for any m < n.

Proof of Theorem 10, and then of Theorem 1. Choose a point a A P1ðQÞ such that
fðDÞ�fðaÞ� ¼ fðaÞ, but fðDÞðaÞ3 a, by Lemma 2. If D > 1 or if fðtÞ B E, then we also insist
that fðaÞ3y, by Lemma 3. Note that a is preperiodic, but not periodic for f.

If a A C then define cðtÞ :¼ fðtþ aÞ � a, else if a ¼ y set cðtÞ :¼ 1=fð1=tÞ. Note that
0 is preperiodic, but not periodic for c (and so cðtÞ B T). Note that cðtÞ A KðtÞ for some
finite Galois extension K=QðaÞ.

If a A C then let y0 ¼ x0 � a and ynþ1 ¼ cðynÞ for each nf 0; one can easily verify
that yn ¼ xn � a for all nf 0. If a ¼ y then let y0 ¼ 1=x0 and ynþ1 ¼ cðynÞ for each
nf 0; now, yn ¼ 1=xn for all nf 0.

We apply Proposition 1 to the sequence fyngnf0, so proving that the numerator of
xn � a if a A C, and the denominator of xn if a ¼ y, has a super-primitive prime factor Pn

(in K) for each su‰ciently large n. By taking n larger if necessary, we may assume that

(i) no Pn divides ResultantðF ;GÞ (which guarantees that fðtÞ induces a well-defined
map of degree d on P1ðFqÞ by canonically reducing each of its coe‰cients modulo Pn,
where Fq GR=PnR is the finite field with q elements);

(ii) no Pn divides the denominator of fðaÞ if fðaÞ3y; and

(iii) fðDÞðaÞE a ðmodPnÞ for any Pn (where the congruence is taken in P1ðR=PnRÞ,
so that if a ¼ y then condition (iii) means that Pn does not divide the denominator of
fðDÞðyÞ).

We exclude only finitely many prime ideals in this way since Fðx; yÞ and Gðx; yÞ have
no common linear factor over Q, and since a is not periodic.

The definition of a and the fact that Pn divides the numerator of xn � a yields

xnþ1þD ¼ fðDþ1ÞðxnÞ1 fðDþ1ÞðaÞ ¼ fðaÞ1 fðxnÞ ¼ xnþ1 ðmodPnÞ

(i.e., in P1ðR=PnRÞ). If pn is the rational prime divisible by Pn then xnþ1þD1xnþ1 ðmod pnÞ,
since xnþ1þD � xnþ1 is rational. Note that if D > 1 or if fðtÞ B E, then fðaÞ3y, and so, by
condition (ii), pn does not divide the denominator of xnþ1 or xnþ1þD.

We claim that pn is a primitive prime factor of xnþ1þD � xnþ1. Indeed, suppose that pn
is a factor of xmþD � xm for some m < nþ 1. Then

fðDÞðaÞ1 fðDÞðxnÞ ¼ fðDÞ�fðn�mÞðxmÞ
�

¼ fðn�mÞðxmþDÞ1 fðn�mÞðxmÞ ¼ xn 1 a ðmodPnÞ;
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contradicting the assumption in (iii). We conclude that pn is a primitive prime factor of
xnþ1þD � xnþ1 and, changing variable to N ¼ nþ 1, we deduce that there exists a primitive
prime factor pn of xNþD � xN for all su‰ciently large N.

This completes the proof of Theorem 10. It also finishes the proof of Theorem 1 when
D > 1 or when D ¼ 1 and fðtÞ B E, so it remains to treat the case D ¼ 1 and fðtÞ A E. Let
xn ¼ un=vn for coprime integers un, vn. By Theorem 10, either the numerator of xnþ1 � xn or
vn, the denominator of xn, has a primitive prime factor pn.

Now if fðtÞ ¼ tþ 1=gðtÞ for some polynomial gðtÞ of degree d � 1, then

xnþ1 � xn ¼ fðxnÞ � xn ¼
1

gðxnÞ
¼ vd�1

n

vd�1
n gðun=vnÞ

:

Evidently the numerator is divisible by pn, being a power of vn, except perhaps if pn divides
the leading coe‰cient of g (which can only occur for finitely many n). This completes the
proof of Theorem 1 for such functions fðtÞ.

Similarly if lfðtÞ þ b ¼ ðltþ bÞd

ðltþ bÞd�1 þ 1
, so that f A E(ii), then

lðxnþ1 � xnÞ ¼ lfðxnÞ � lxn ¼ � ðlxn þ bÞ
ðlxn þ bÞd�1 þ 1

¼ � ðlun þ bvnÞvd�2
n

ðlun þ bvnÞd�1 þ vd�1
n

;

which is divisible by pn when d > 2 since vn is in the numerator, except perhaps if pn divides
the numerator of l. (Note that b and l need not be rational, but the conclusion follows
anyway upon consideration of prime ideal divisors.)

For d ¼ 2 and f A E(ii), we study the function cðtÞ ¼ t2

tþ 1
, proving that

cðrþ1ÞðtÞ � cðrÞðtÞ ¼ � t2
r

grðtÞ
where grðtÞ is a monic polynomial in Z½t� of degree 2r by induc-

tion. For r ¼ 0 we have this with g0ðtÞ ¼ tþ 1 by definition. For rf 1 we have, using the
induction hypothesis,

cðrþ1ÞðtÞ � cðrÞðtÞ ¼ cðrÞ�cðtÞ�� cðr�1Þ�cðtÞ� ¼ � cðtÞ2
r�1

gr�1

�
cðtÞ

�

¼ � t2
r

ðtþ 1Þ2
r�1

gr�1
t2

tþ 1

� � ¼ � t2
r

grðtÞ
:

Hence the prime divisors of the numerator of xrþ1 � xr are always the same: namely the
prime divisors of the numerator of x0. Similarly, for fðtÞ obtained through the linear trans-
formation t 7! ltþ b, the prime factors of the numerator of xrþ1 � xr are always the same,
namely the prime divisors of the numerator of lx0 þ b and the prime divisors of the denomi-
nator of l.

Finally, we show that the rational functions E(iii) are exceptional: For cðtÞ ¼ t2

2tþ 1
we observe that 1þ 1

cðtÞ ¼ 1þ 1

t

� �2

, and so 1þ 1

cðrÞðtÞ
¼ 1þ 1

t

� �2 r

by an appropriate
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induction hypothesis. Hence

cðrÞðtÞ ¼ 1

1þ 1

t

� �2 r

� 1

and cðrþ1ÞðtÞ �cðrÞðtÞ ¼ �
1þ 1

t

� �2 r

1þ 1

t

� �2 rþ1

� 1

¼
�
tðtþ 1Þ

�2 r

t2
rþ1 � ðtþ 1Þ2 rþ1 :

Therefore the prime divisors of the numerator of xrþ1 � xr are always the same, namely the
prime divisors of the numerator of x0ðx0 þ 1Þ. Similarly, for fðtÞ obtained through the lin-
ear transformation t 7! ltþ b, the prime factors of the numerator of xrþ1 � xr are always
the same, namely the prime divisors of the numerator of ðlx0 þ bÞðlx0 þ b þ 1Þ and those
of the denominator of l. r

Remark 5. It is desirable to remove the Thue/Mahler Theorem from the above
proof, because, even though it is e¤ective, the constants that come out are so large as to
be of little practical use. Moreover, the constants should grow with the field of definition
of a (as chosen in the proof), and thus one should not expect any strong uniformity in D
to come from this argument. So, do we really need the full power of the Thue/Mahler
Theorem in this proof ? In fact it may be the case that our proof can be modified to show
that the exceptional un must divide a particular non-zero integer (rather than un only
having prime factors from a particular finite set). If we examine the proof above then
we see that this idea works fine for the primes Pn of types (ii) and (iii). It is the primes
that divide that resultant (i.e., those of type (i)) that require careful consideration to deter-
mine whether their e¤ect can be understood in this way.

Remark 6. In the introduction we gave the example x0 ¼ 1 with xnþ1 ¼ x2
n=ð2xn þ 1Þ

so that xn ¼
1

Fn � 2
, and xnþ1 � xn ¼ � 22

n

Fnþ1 � 2
. Another amusing example is given by

Sylvester’s sequence E0 ¼ 2 and Enþ1 ¼ E2
n � En þ 1. (The terms are 2; 3; 7; 43; . . . , which

can occur in a version of Euclid’s proof of the infinitude of primes, based on the fact that

En ¼ En�1En�2 � � �E0 þ 1.) Now let x0 ¼ 1 with xnþ1 ¼ x2
n=ðxn þ 1Þ so that xn ¼

1

En � 1
,

and xnþ1 � xn ¼ � 1

En

, so that there are never prime divisors of the numerator of xnþ1 � xn.

Remark 7. One could instead use Proposition 10 to prove Theorem 1. In this case,
we would have to select a point a A P1ðQÞnfyg that is periodic with period dividing D,
but that is not totally ramified. This allows us to change coordinates to obtain a new ratio-
nal function that is not in T. One can choose a fixed point a with this property precisely
when f B E, and then the proof proceeds essentially as above.

Remark 8. If p is a prime dividing the numerator of xnþD � xn but not
ResultantðF ;GÞ, then

xnþ1þD ¼ fðxnþDÞ1 fðxnÞ ¼ xnþ1 ðmod pÞ;

and so p divides the numerator of xnþ1þD � xnþ1. Iterating we find that p divides the
numerator of xmþD � xm for all m > n.
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We can also ask to understand the power of p appearing as a factor in each

subsequent term. From the Taylor expansion fðtþ hÞ ¼ fðtÞ þ hf 0ðtÞ þ h2

2!
f 00ðtÞ þ � � �

with h ¼ fðDÞðtÞ � t, we deduce that fðDþ1ÞðtÞ � fðtÞ �
�
fðDÞðtÞ � t

�
f 0ðtÞ is divisible by�

fðDÞðtÞ � t
�2
. Taking t ¼ xn we deduce that xnþD � xn divides xnþ1þD � xnþ1, up to a

bounded quantity, so we recover the result of the previous paragraph. But we can go
much further assuming that the numerators of fðDÞðtÞ � t and f 0ðtÞ have no common fac-
tor. If so, then the gcd of the numerators of fðDÞðxnÞ � xn and f 0ðxnÞ divides the resultant of
the polynomials in the two numerators, which is non-zero. Hence for all but finitely many
primes pn, if p

e
n k xnþD � xn where pn F xm for all m < n, then pe

n k xNþD � xN for all Nf n.

7. Baker’s Theorem and primitive prime factors

Baker’s Theorem ([1], Theorem 3). A rational map of degree df 2 defined over C

has a periodic point in P1ðCÞ of exact period Df 2 except perhaps when D ¼ 2, d ¼ 2; 3
or 4, or when D ¼ 3, d ¼ 2. There exist exceptional maps in each of these four cases.

The exceptional maps in Baker’s Theorem are also exceptions to our Theorem 2, as is
shown by Lemma 4 below. The exceptions were classified up to conjugation by a linear
fractional transformation by Kisaka [7]; see Appendix B for the classification. As in the
introduction, let us write BD;d for the set of rational functions of degree d with no point
of exact period D; so B2;2 WB2;3 WB2;4 WB3;2 is the set of exceptions in Baker’s Theorem.

Lemma 4. Suppose fðtÞ A BD;d XQðtÞ is a rational map of degree d with no peri-

odic point of period D. There exists a finite set of primes S such that for any u=v A Q,
either fðu=vÞ ¼ y, fðDÞðu=vÞ ¼ y, or else every p B S that divides the numerator of

fðDÞðu=vÞ � u=v is also a factor of the numerator of fðu=vÞ � u=v.

Proof. Write

fðx=yÞ � x=y ¼ A1ðx; yÞ
B1ðx; yÞ

;

fðDÞðx=yÞ � x=y ¼ ADðx; yÞ
BDðx; yÞ

;

where Aiðx; yÞ;Biðx; yÞ A Z½x; y� are homogeneous polynomials such that A1 and B1 (resp.
AD and BD) share no common linear factor over Q and no common factor in their content.
(Recall that the content of a polynomial with integer coe‰cients is the greatest common
divisor of its coe‰cients.) As fðtÞ has no point of exact period D, every solution in P1ðQÞ
to fðDÞðaÞ ¼ a must also be a solution to fðaÞ ¼ a. (Here we are using the fact that D ¼ 2
or 3 is prime.) In particular, any non-constant factor of ADðx; yÞ that is irreducible over Z is
also a factor of A1ðx; yÞ.

Define S to be the set of primes dividing ResultantðA1;B1Þ together with those
primes dividing the content of AD. We may assume that fðu=vÞ and fðDÞðu=vÞ are not
equal to infinity, and also that u, v are coprime integers. Suppose p B S is a prime factor
of the numerator of fðDÞðu=vÞ � u=v. Then p jADðu; vÞ, and consequently there exists an

15Faber and Granvil le, Prime factors of dynamical sequences



irreducible factor (over Z) of AD, say Qðx; yÞ, such that p jQðu; vÞ. By the last paragraph,
we know Qðx; yÞ divides A1ðx; yÞ, and hence p jA1ðu; vÞ. Now pFB1ðu; vÞ since otherwise
p jResultantðA1;B1Þ. We conclude that p divides the numerator of fðu=vÞ � u=v. r

Corollary 2. Suppose ðD; dÞ is one of the exceptional pairs in Baker’s Theorem, and
let fðtÞ A BD;d XQðtÞ. There is a finite set of primes S with the following property. If we

define x0 A Q and xnþ1 ¼ fðxnÞ, and if the sequence fxngnf0 is not eventually periodic, then
for all n su‰ciently large, any prime p B S that divides the numerator of xnþD � xn must

also divide the numerator of xnþ1 � xn.

8. Dynamical systems with exceptional behavior at infinity, Part II

Recall that pD;n is a doubly primitive prime factor of xnþD � xn if pD;n divides the nu-
merator of xnþD � xn, and if Nf n and DfD whenever pD;n divides the numerator of
xNþD � xN . To produce a doubly primitive prime factor of the numerator of xnþD � xn,
we want an a A P1ðQÞ such that fðaÞ is not y, and fðaÞ has exact period D, while a is
not itself periodic. This will allow us to apply Proposition 1 inductively as in the proof of
Theorems 1 and 10.

Lemma 5. Suppose fðtÞ A CðtÞ is a rational function of degree df 2, and let Df 1 be

an integer. There exists a point a A P1ðCÞ ¼ CW fyg such that fðaÞ has exact period D,
fðaÞ3y, and fðDÞðaÞ3 a unless

(1) D ¼ 1 and fðtÞ A E (see §5 for the definition of E); or

(2) D ¼ 2 and fðtÞ ¼ aþ 1=gðt� aÞ for some a A C and some quadratic polynomial

gðtÞ A C½t� such that gð0Þ ¼ 0, but gðtÞ3 ct2 for any complex number c; or

(3) D ¼ 2 and f ¼ s�1 � c � s for some sðtÞ ¼ ðatþ bÞ=ðgtþ dÞ with ad� bg3 0, and
cðtÞ ¼ 1=t2; or

(4) D ¼ 2 and f A B2;d for some d ¼ 2; 3; 4 (see §7 for the definition of BD;d ); or

(5) D ¼ 3 and f A B3;2.

Proof. Assume that no such a exists. Baker’s Theorem states that if f has no point
of exact period D then we are in case (4) or (5). So henceforth assume that f has a point g of
exact period D. Every point in the orbit of g must also have exact period D, and hence there
are at least D points of exact period D.

As in the proofs of Lemmas 2 and 3, if b3y has period D, then b must be totally
ramified for f else there would be an a as desired with fðaÞ ¼ b. There are not more than
two elements that are totally ramified for (any rational map) f, hence there can be not more
than three points of exact period D (that is, y and the two fully ramified points). Hence
De 3.

The case D ¼ 1 is given by Lemma 3 in §5: The exceptions are precisely those in E;
that is, case (1).
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If D ¼ 2 or 3 then all of the points of exact order D must be in a unique orbit, else
there would be at least 2Df 4 points of exact order D, a contradiction.

So, if D ¼ 3 then there is exactly one orbit, containing y and two totally ramified
points which, we will show, is impossible. We may conjugate by a linear fractional trans-
formation in order to assume the totally ramified points are 0 and 1, and that the other
fixed point is 2. We suppose that fð2Þ ¼ 1, fð1Þ ¼ 0, fð0Þ ¼ 2. The only possible rational
function with these ramification conditions is

fðtÞ ¼ 2dþ1ðt� 1Þd

2dþ1ðt� 1Þd � ðt� 2Þd
;

so that

fð3ÞðtÞ � t ¼ f
�
fð2ÞðtÞ

�
� t ¼

ð1� tÞ2dþ1
�
fð2ÞðtÞ � 1

�d þ t
�
fð2ÞðtÞ � 2

�d
2dþ1

�
fð2ÞðtÞ � 1

�d � �
fð2ÞðtÞ � 2

�d :

We choose homogeneous polynomials F2ðx; yÞ;G2ðx; yÞ A C½x; y� of degree d 2 ¼ deg fð2Þ

with no common linear factor so that fð2Þðx=yÞ ¼ F2ðx; yÞ=G2ðx; yÞ after clearing denomi-
nators. (One can use the polynomials defined in §2, for example.) The numerator of
fð3Þðx=yÞ � x=y is therefore

N3ðx; yÞ ¼ ðy� xÞ2dþ1
�
F2ðx; yÞ � G2ðx; yÞ

�d þ x
�
F2ðx; yÞ � 2G2ðx; yÞ

�d
:

Dividing through by the common factors xðx� yÞ we will apply the abc-theorem for poly-
nomials (§3). Note that the number of non-proportional linear factors of N3ðx; yÞ is 3 plus
the number of distinct fixed points of fðtÞ, which is at most 3þ ðd þ 1Þ ¼ d þ 4. Hence the
total number of distinct roots in our abc-equation is at most 2 deg fð2Þ þ d þ 4. The abc-
theorem implies that ðd deg fð2Þ � 1Þ þ 2e 2 deg fð2Þ þ d þ 4, hence d 2ðd � 2Þe d þ 3,
and so d ¼ 2. When d ¼ 2 we find that the numerator of fð3ÞðtÞ � t is

tðt� 1Þðt� 2Þð7t3 � 14t2 þ 8ÞN1ðtÞ;

where N1ðtÞ is the numerator of fðtÞ � t. It follows that we have a second cycle of exact
order three, consisting of the roots of 7t3 � 14t2 þ 8. But this contradicts our hypothesis
that only one orbit of length 3 exists.

We know that if D ¼ 2 then there is a single orbit of length 2. If both points of order 2
are totally ramified, we change coordinates so that the 2-cycle consists of 0 and y, and that
1 is a fixed point. Then cðtÞ ¼ 1=td , and hence

cðtÞ � t ¼ ð1� tdþ1Þ=td ; cð2ÞðtÞ � t ¼ tðtd 2�1 � 1Þ:

Since there are no points of exact order 2 other than 0 and y, all of the ðd 2 � 1Þ th roots
of unity (which satisfy cð2ÞðtÞ ¼ t) must also be ðd þ 1Þ th roots of unity, so as to satisfy
cðtÞ ¼ t. Hence d 2 � 1e d þ 1, and thus d ¼ 2 and cðtÞ ¼ 1=t2. It follows that any ratio-
nal map of the form fðtÞ ¼ ðs�1 � c � sÞðtÞ with sðtÞ ¼ ðatþ bÞ=ðgtþ dÞ and ad� bg3 0
has a unique periodic orbit of length 2 consisting entirely of totally ramified points, yielding
case (3).
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Finally suppose that D ¼ 2 and there is a unique cycle of length 2 consisting of y and
one totally ramified point, a A C. We may assume y is not totally ramified, else we are
in the previous case. We have fðtÞ ¼ aþ 1=gðt� aÞ where degðgÞ ¼ d and gð0Þ ¼ 0, and
gðtÞ3 ctd for some complex number c. The remainder of the proof follows the strategy of
Baker’s Theorem. The map fð2Þ has d 2 þ 1 fixed points counted with multiplicity (Lemma
A.2). Two of them are a and y, which each have multiplicity 1 since the fixed point mul-
tiplier of fð2Þ at a and y is zero (because ðfð2ÞÞ0ðaÞ ¼ ðfð2ÞÞ0ðyÞ ¼ f 0ðyÞf 0ðaÞ ¼ 0 as a is
ramified). All of the remaining fixed points of fð2Þ must be fixed points of f as we are as-
suming there are no other periodic orbits of length 2. By Lemma A.3, each of the remaining
fixed points bi A C falls into exactly one of the following categories:

(i) The fixed point multiplicity of bi for f and fð2Þ is 1. Suppose there are M fixed
points of this type.

(ii) The fixed point multiplicity of bi for f is li > 1, which implies the fixed point mul-
tiplicity for fð2Þ is also li.

(iii) The fixed point multiplicity of bi for f is 1, and the fixed point multiplicity of bi
for fð2Þ is 2ki þ 1 for some positive integer ki. Suppose there are r fixed points of this type.

As f has exactly d þ 1 fixed points (always with multiplicity), we may add up the fixed
points of these types to find

d þ 1 ¼ M þ
P

li þ r:

Applying the same reasoning to fð2Þ and noting that we must also count 0 and y, we
have

d 2 þ 1 ¼ 2þM þ
P

li þ
P

ð2ki þ 1Þ ¼ 2þM þ
P

li þ rþ 2
P

ki:

Subtracting the first of these equations from the second gives d 2 � d ¼ 2þ 2
P

ki, orP
ki ¼

1

2
ðd 2 � d � 2Þ. On the other hand, Lemma A.3 also tells us that each of the type

(iii) fixed points bi attracts ki distinct critical points. Since a critical point can only be at-
tracted to a single one of the bi, we see that there are

P
ki distinct critical points attracted

to the set of fixed points fbig. By the Riemann/Hurwitz formula, there are exactly 2d � 2
critical points (with multiplicity). Now y is a critical point of order d � 1 (as a is totally
ramified), but it is also a periodic point, so it cannot be attracted to one of the bi. Hence

1

2
ðd 2 � d � 2Þ ¼

P
ki e d � 1 ) de 3:

If d ¼ 2, then f has three fixed points counted with multiplicity, and fð2Þ has 5
(Lemma A.2). Hence there are exactly two points of exact period 2, namely a and y.
This yields case (2).

If d ¼ 3, let us change coordinates so that a ¼ 0. Now fðtÞ ¼ 1=gðtÞ, where
gðtÞ ¼ at3 þ bt2 þ ct and a3 0. Choosing d A C such that d4 ¼ a�1 and replacing fðtÞ by
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d�1fðdtÞ, we may even suppose that a ¼ 1. A direct calculation shows the numerator of
fðtÞ � t is

t4 þ bt3 þ ct2 � 1;

while the numerator of fð2ÞðtÞ � t is

tðt4 þ bt3 þ ct2 � 1Þ
�
t4 þ 2bt3 � ð�b2 � cÞt2 þ bctþ 1

�
:

Therefore f has a second periodic orbit of length 2 if the polynomials t4 þ bt3 þ ct2 � 1 and
t4 þ 2bt3 � ð�b2 � cÞt2 þ bctþ 1 have no common root. The resultant of these two poly-
nomials is b4 � 4b2cþ 16, which shows that they have a common root if and only if b3 0
and c ¼ ðb4 þ 16Þ=4b2. Let us now assume that c ¼ ðb4 þ 16Þ=4b2, in which case the nu-
merators of fðtÞ � t and fð2ÞðtÞ � t become

ð2tþ bÞð2b2t3 þ b3t2 þ 8t� 4bÞ and

tð2tþ bÞ3ð2b2t3 þ b3t2 þ 8t� 4bÞð4b4t2 þ 4tb5 þ 16b2Þ:

The roots of the final factor 4b4t2 þ 4tb5 þ 16b2 yield a new periodic orbit of length 2, a
contradiction. r

Lemma 5 is used in the proof of Theorem 2 as in the following:

Lemma 6. Suppose that fðtÞ A QðtÞ is a rational function of degree df 2, and that

there exists a point a A P1ðQÞ such that fðaÞ has exact period Df 1, fðaÞ3y, and

fðDÞðaÞ3 a. Let x0 A Q and define xnþ1 ¼ fðxnÞ for each nf 0, and suppose that the se-

quence fxngnf0 is not eventually periodic. Suppose that P is a prime ideal that does not divide

Resultantð f ; gÞ (where f ¼ f =g), and that p is the rational prime divisible by P. If P divides

the numerator of xn � a, but neither the denominator of a nor fðaÞ, and neither the numerator

of fðDÞðaÞ � a nor fðlÞ�fðaÞ�� fðaÞ for any 1e l < D, then the prime p divides the numera-

tor of xNþD � xN if and only if Nf nþ 1 and D divides D.

Proof. We begin by noting that

xnþDþ1 ¼ fðDÞ�fðxnÞ�1 fðDÞ�fðaÞ� ¼ fðaÞ1 fðxnÞ ¼ xnþ1 ðmodPÞ;

and so p divides the numerator of xnþ1þD � xnþ1. (We have used the fact that P does not
divide the denominator of fðaÞ.)

If N1 nþ j ðmodDÞ for 1e jeD with N > n then xN 1 xnþj ðmod pÞ. To see this,
we proceed by induction on Nf nþ 1þ D since

xN ¼ fðN�ðnþ1þDÞÞðxnþ1þDÞ1 fðN�ðnþ1þDÞÞðxnþ1Þ ¼ xN�D ðmod pÞ:

We now prove that if p divides the numerator of xNþD � xN , then D divides D.
If not let D1 l ðmodDÞ where 1e l < D, and select m a large integer such that
m1 nþ 1 ðmodDÞ. Then, using the congruences of the previous paragraph,

xnþ11 xm ¼ fðm�NÞðxNÞ1 fðm�NÞðxNþDÞ ¼ xmþD1 xnþ1þl ðmod pÞ:
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Hence

fðaÞ1 fðxnÞ ¼ xnþ1 1 xnþ1þl ¼ fðlþ1ÞðxnÞ ¼ fðlÞ�fðaÞ� ðmodPÞ;

which contradicts the hypothesis.

Finally suppose that p divides the numerator of xNþD � xN with Ne n and D divides
D. Then

xn ¼ fðn�NÞðxNÞ1 fðn�NÞðxNþDÞ ¼ xnþD1 xnþD ðmod pÞ;

using the congruence from two paragraphs above, and so

a1 xn 1 xnþD ¼ fðDÞðxnÞ1 fðDÞðaÞ ðmodPÞ

which contradicts the hypothesis. r

9. Di¤erences in the terms of dynamical sequences, Part II

Now we give the proof of Theorem 2. We recall the statement for the reader’s con-
venience. Define F1 to be those fðtÞ A QðtÞ of the form s�1 � c � s, for some linear trans-
formation sðtÞ ¼ ltþ b with l3 0, where

cðtÞ ¼ t2

tþ 1
or

t2

2tþ 1
:

Define F2 to be the union of B2;d for d ¼ 2; 3; 4 along with all rational maps fðtÞ of the
form f ¼ s�1 � c � s for some sðtÞ ¼ ðat� bÞ=ðgt� dÞ with ad� bg3 0 and cðtÞ ¼ 1=t2.
Define F3 ¼ B3;2.

Theorem 2. Suppose that fðtÞ A QðtÞ has degree df 2. Let x0 A Q and define

xnþ1 ¼ fðxnÞ for each nf 0, and suppose that the sequence fxngnf0 is not eventually peri-

odic. For any given Mf 1, the numerator of xnþD � xn has a doubly primitive prime factor

for all nf 0 and MfDf 1, except for those pairs with D ¼ 1; 2 or 3 when f A F1;F2 or

F3, respectively, as well as for finitely many other exceptional pairs ðD; nÞ.

Proof of Theorem 2. We proceed by induction on M, the case M ¼ 1 being a con-
sequence of Theorem 1. Suppose now that the result holds for all MeM 0 � 1, and let us
prove it holds for M ¼ M 0 f 2. By the induction hypothesis, we find that the numerator of
xnþD � xn has a doubly primitive prime factor pD;n for nf 0 and M 0 � 1fDf 1 other
than for finitely many pairs ðD; nÞ, excluding those with D ¼ 1; 2 or 3 and f A F1;F2 or
F3, respectively. Set D ¼ M 0.

Let us suppose that f does not belong to one of the corresponding exceptional classes
of Lemma 5, in which case we can choose a A P1ðQÞ so that fðaÞ has exact period D,
fðaÞ3y, and fðDÞðaÞ3 a. Proceeding as in the proof of Theorems 10 and 1, we obtain a
sequence of prime ideals fPD;ng of the Galois closure of QðaÞ such that PD;n is a primitive
prime factor of the numerator of xn � a for all su‰ciently large n. Moreover, if pD;n is the
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rational prime divisible by PD;n, then pD;n is a doubly primitive prime factor of the numer-
ator of xnþ1þD � xnþ1 by Lemma 6, provided that PD;n is not one of the finitely many prime

ideal divisors of the numerator of fðDÞðaÞ � a or fðlÞ�fðaÞ�� fðaÞ for some 1e leD� 1,
or of the denominator of a or fðaÞ.

Now suppose that f belongs to case (2) of Lemma 5, so that D ¼ M 0 ¼ 2 and that
fðtÞ ¼ aþ 1=gðt� aÞ for some a A Q and some quadratic polynomial gðtÞ ¼ bt2 þ ct with
bc3 0. Define cðtÞ ¼ fðtþ aÞ � a ¼ 1=gðtÞ, so that 0 is periodic of period 2 for c and
cð0Þ ¼ y. Note c B T (as in §3) since gðtÞ3 ct2. Define y0 ¼ x0 � a and ynþ1 ¼ cðynÞ.
Then yn ¼ xn � a by induction. Let K=Q be a Galois extension containing QðaÞ. Invoking
Proposition 10, we see there exists a prime ideal P2;n of K that is a primitive prime factor
of the numerator of yn ¼ xn � a for all su‰ciently large n. We exclude the finitely many
prime ideals P2;n that divide the numerator or denominator of b or c. Note that, since
cðx=yÞ ¼ y2=xðbxþ cyÞ, P2;n is a primitive prime factor of the denominator of yn�1, and
hence for Nf n� 1, we have that P2;n divides the numerator of yN if N � n is even, and
the denominator of yN if N � n is odd. Moreover, if e is the exact power of P2;n dividing
the denominator of yn�1, then 2 le is the exact power of P2;n dividing the numerator of
ynþ2l�2 and the denominator of ynþ2l�1 for all lf 1. Hence if a > bf n� 1 then P2;n di-
vides the numerator of xa � xb ¼ ya � yb if and only if a1 b1 n ðmod2Þ. Now suppose
that P2;n divides the numerator of xa � xb ¼ ya � yb with b < n� 1. If ae n� 1 we have
yn�1 ¼ cðn�1�aÞðyaÞ1cðn�1�aÞðybÞ ¼ yn�1�ða�bÞ ðmodP2;nÞ, so we may assume, without
loss of generality that af n� 1. Therefore P2;n divides the numerator or denominator of
ya, and so of yb (as P2;n divides the numerator of their di¤erence), which contradicts prim-
itivity. In summary, we have shown that the numerator of xNþD � xN is divisible by P2;n if
and only if Nf n and Df 2 is even, and since xNþD � xN is rational, the same statement is
true when P2;n is replaced by the rational prime p2;n dividing P2;n. This completes the proof
for the maps from case (2) of Lemma 5.

Now suppose that f belongs to case (3) of Lemma 5, so that D ¼ M 0 ¼ 2 and there
exists a fractional linear tranformation sðtÞ ¼ ðatþ bÞ=ðgtþ dÞ such that f ¼ s�1 � c � s
with cðtÞ ¼ 1=t2. Set K ¼ Qða; b; g; dÞ, let R be the ring of integers of K , and let S be a fi-
nite set of prime ideals of R such that the ring of S-integers RS is a principal ideal domain,
and such that a; b; g; d A RS. (In particular, S contains all prime ideals dividing the denomi-
nators of a, b, g, d.) Let y0 ¼ sðx0Þ and ynþ1 ¼ cðynÞ for all nf 0. For each n choose
un; vn A RS such that yn ¼ un=vn and ðun; vnÞ ¼ 1. Note that yn ¼ y

ð�2Þn
0 ¼ sðxnÞ for all

nf 0. Then

xn � xm ¼ ðad� bgÞðyn � ymÞ
ðgym � aÞðgyn � aÞ ¼ ðad� bgÞðunvm � umvnÞ

ðgum � avmÞðgun � avnÞ

and in particular

xnþ1 � xn ¼
ðad� bgÞðv2nvn � unu

2
nÞ

ðgun � avnÞðgv2n � au2nÞ
¼ ðad� bgÞðv3n � u3nÞ

ðgun � avnÞðgv2n � au2nÞ

and

xnþ2 � xn ¼
ðad� bgÞðu4nvn � unv

4
nÞ

ðgun � avnÞðgu4n � av4nÞ
¼ � ðad� bgÞunvnðv3n � u3nÞ

ðgun � avnÞðgu4n � av4nÞ
:
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Let h ¼ gun � avn. Now ðun; vnÞ ¼ ð1Þ so that ðv3n � u3n ; unÞ ¼ ðv3n � u3n ; vnÞ ¼ ð1Þ, an equal-
ity of RS-ideals. Hence

�
v3n � u3n ; hðgv2n � au2nÞ

�
¼

�
v3n � u3n ; hðgv3n � au2nvnÞ

�
¼

�
v3n � u3n ; hðgu3n � au2nvnÞ

�
¼ ðv3n � u3n ; h

2Þ:

Similarly
�
v3n � u3n ; hðgu4n � av4nÞ

�
¼ ðv3n � u3n ; h

2Þ. Hence the prime factors in the numerator
of xnþ2 � xn are a subset of those in the numerator of xnþ1 � xn, and those dividing unvn,
which are the same as those dividing u0v0. We deduce that there can be no doubly primitive
prime factor of the numerator of xnþ2 � xn for any nf 2. This completes the proof for the
maps from case (3) of Lemma 5.

Finally, if D ¼ 2 or 3 and f A BD;d , that is cases (4) and (5) of Lemma 5, then Corol-
lary 2 of §7 shows xnþD � xn fails to have a doubly primitive prime factor in its numerator
when n is large. r

10. The density of prime divisors of dynamical sequences

Given a sequence fxngnf0, let P be the set of primes which divide the numerator of
some non-zero element xn, and PðxÞ be the number of elements of P up to x. We will
prove that for the Fermat numbers, one has PðxÞf x1=2=logx. Although this bound is
small compared to the total number of primes up to x, a simple heuristic indicates that
the true order of magnitude of PðxÞ is probably some power of log logx!

Select integers m and N so that 2mAx1=2 and 2NAx2=3. There aref 2m=m prime
factors of F0F1 � � �Fm�1 ¼ 22

m � 1 by the prime number theorem. Any prime divisor pn of
Fn ¼ 22

n þ 1 is1 1 ðmod2nþ1Þ. There aree x=2n integers in this arithmetic progression,
and so f x=2N such primes, in total, with nfN. The Brun/Titchmarsh Theorem tells
us that there are f x=2n logðx=2nÞ primes 1 1 ðmod2nþ1Þ up to x. If me n < N, this is
f x=2n log x, and so there aref x=2m log x such primes in total. Combining these observa-
tions yields the claim that PðxÞf x1=2=log x.

Presumably if fxngnf0 is a dynamical sequence, obtained from a rational function of
degree df 2, then it might be possible to prove something like PðxÞf x1�1=dþoð1Þ (except
for certain degenerate cases, such as xn defined as iterates of fðtÞ ¼ ðtþ pÞ2 � p for any
prime p). We expect that the prime divisors of xn belong to an increasingly sparse se-
quence as n gets larger, since the xn are values of the iterated function fðmÞðtÞ for all
nfm. Some result of this type should be accessible from a study of the Galois groups
of these extensions. In fact there are several interesting results in the literature. First,
Odoni [9] showed that for the Euclid numbers En (where E0 ¼ 2 and Enþ1 ¼ E2

n � En þ 1)
we have PðxÞf pðxÞ=log log log x; and then in [10], the remarkable result that for ‘‘almost
all’’ monic fðtÞ A Z½t� of given degreef 2 and given height, PðxÞ ¼ o

�
pðxÞ

�
no matter

what the value of x0 A Z. Recently Jones [6] showed that PðxÞ ¼ o
�
pðxÞ

�
, no matter

what the value of x0 A Z, for the polynomials fðtÞ ¼ tðt� aÞ þ a, t2 þ at� 1 ða3 0; 2Þ,
t2 þ a ða3�1Þ, t2 � 2atþ a ða3�1; 1Þ, where a A Z.
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Appendix A. On complex dynamics

Here we collect a few results that lie in the realm of complex dynamics on P1ðCÞ
viewed as a Riemann surface. They are all well-known, and we either point the reader to
a proof or give our own if it is brief.

Let fðtÞ A CðtÞ be a rational function and let P A P1ðCÞ be a fixed point of f. The
fixed point multiplicity of P A C is the order of vanishing of fðtÞ � t at t ¼ P. If P ¼ y,
we observe that 1=fð1=tÞ has a fixed point at t ¼ 0, and we define the fixed point multi-

plicity of P ¼ y to be the order of vanishing of 1=fð1=tÞ � t at the origin. Note that
1=fð1=tÞ ¼ ðs�1 � f � sÞðtÞ, where sðtÞ ¼ 1=t is a fractional linear change of coordinates.

Continuing with the notation from the last paragraph, we define the fixed point mul-

tiplier lP to be the derivative f 0ðPÞ if P3y. If P ¼ y, define the fixed point multiplier

to be

ly ¼ d

dt

1

fð1=tÞ

� �����
t¼0

¼ d

dt
ðs�1 � f � sÞðtÞ

����
t¼0

;

where as above, sðtÞ ¼ 1=t.

Next let us suppose that P A P1ðCÞ is a periodic point of (exact) period m; i.e.,
fðmÞðPÞ ¼ P and this relation is false if we replace m by any smaller positive integer. Then
fðnÞðPÞ ¼ P for any integer n divisible by m since

fðnÞðPÞ ¼ ðfðmÞ � fðmÞ � � � � � fðmÞÞðPÞ ¼ P.

Conversely, if fðnÞðPÞ ¼ P, then m j n, for if we write n ¼ mqþ r for some 0e r < m, then
fðrÞðPÞ ¼ fðrÞ�fðmqÞðPÞ

�
¼ fðnÞðPÞ ¼ P, which implies r ¼ 0 by minimality.

Lemma A.1. Let fðtÞ be a rational function of degree df 2 and let P A P1ðCÞ be a

fixed point of fðtÞ. The fixed point multiplicity of P is greater than one if and only if lP ¼ 1.
In particular, if lP ¼ 0, then the fixed point multiplicity of P is exactly 1.

Proof. We may assume that P3y by replacing fðtÞ with 1=fð1=tÞ and replacing
P ¼ y with P ¼ 0 if necessary. Note that by definition this does not a¤ect the fixed point
multiplicity or the multiplier. Moreover, we may replace fðtÞ by fðtþ PÞ � P in order to
assume that P ¼ 0. By the chain rule, this does not a¤ect the fixed point multiplier. The
fixed point multiplicity is una¤ected because fðtþ PÞ � P� t ¼ fðtþ PÞ � ðtþ PÞ has a
zero of order m at t ¼ 0 if and only if fðtÞ � t has a zero of order m at t ¼ P.

To prove the first assertion, we expand as a power series about the origin:
fðtÞ ¼ l0tþ c2t

2 þ c3t
3 þ � � � . Then fðtÞ � t ¼ ðl0 � 1Þtþ c2t

2 þ � � � and the result follows.
r

Lemma A.2. A rational function fðtÞ of degree df 2 has exactly d þ 1 fixed points

when counted with multiplicity.

Proof. Choose a fractional linear change of coordinates sðtÞ ¼ ðatþ bÞ=ðgtþ dÞ
with ad� bg3 0, and consider the new rational function ðs�1 � f � sÞðtÞ. One can choose
s so that any three given distinct points of P1ðCÞ are sent to any other three given distinct
points; so, for example, we may assume that y is not a fixed point. (As df 2 there must
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exist at least one non-fixed point, say because fðtÞ � t is not the zero function.) Changing
coordinates doesn’t change the derivatives of fðtÞ at a fixed point (by the chain rule),
and hence does not a¤ect the multiplicity of a fixed point. Now fðtÞ ¼ f ðtÞ=gðtÞ where
deg f e deg g ¼ d. The fixed points are exactly the solutions to the equation fðtÞ ¼ t, or
equivalently, the roots of f ðtÞ ¼ tgðtÞ. This equation has degree d þ 1, and hence exactly
d þ 1 roots when counted with multiplicity. r

Lemma A.3. Let fðtÞ be a rational function of degree df 2 and let P A P1ðCÞ be a

fixed point of fðtÞ, in which case P is also a fixed point of fð2ÞðtÞ.

(1) If the fixed point multiplicity of P for f is l > 1, then the fixed point multiplicity of

P for fð2Þ is l.

(2) Suppose the fixed point multiplicity of P is 1 for f and l > 1 for fð2Þ. Then

l ¼ 2k þ 1 for some positive integer k. Moreover, there exist k distinct critical points

Q1; . . . ;Qk for f—i.e., Qi A P1ðCÞ with f 0ðQiÞ ¼ 0—such that fðmÞðQiÞ ! P as m ! y.

Proof. We may assume that P3y by replacing fðtÞ with 1=fð1=tÞ and replacing
P ¼ y with P ¼ 0 if necessary. Note that by definition this does not a¤ect the fixed point
multiplicities or multipliers. To prove (1), we expand as a power series about the origin:
fðtÞ � t ¼ clt

l þ � � � , or fðtÞ ¼ tþ clt
l þ � � � . Iterating shows fð2ÞðtÞ � t ¼ 2clt

l þ � � � ,
from which (1) follows.

The proof of (2) is significantly more di‰cult. See [1], Lemma 4, or [8], Lemmas 10.4
and 10.11. r

Appendix B. Kisaka’s classification of exceptions to Baker’s Theorem

Two rational maps fðtÞ;cðtÞ A CðtÞ are said to be conjugate if f ¼ s�1 � c � s for
some fractional linear transformation sðtÞ ¼ ðatþ bÞ=ðgtþ dÞ with ad� bg3 0.

In [7], Theorem 1, Kisaka showed that if fðtÞ A CðtÞ is a rational map of degree df 2
with no periodic point of exact period D, then f is conjugate to one of the following:

(1) ðD; dÞ ¼ ð2; 2Þ:

cðtÞ ¼ t2 � t

atþ 1
ða3�1Þ:

(2) ðD; dÞ ¼ ð2; 3Þ:

cðtÞ ¼ t3 þ at2 � t

ða2 � 1Þt2 � 2atþ 1
ða3 0Þ; or

cðtÞ ¼ t3 � t

�t2 þ btþ 1
ðb3 0Þ; or

cðtÞ ¼
t3 þ 4

c
t2 � t

�t2 þ ctþ 1
ðc3 0;G2iÞ:
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(3) ðD; dÞ ¼ ð2; 4Þ:

cðtÞ ¼ t4 � t

�2t3 þ 1
or

t4 þ t3 þ t2 � t

�t3 þ t2 � 3tþ 1
or

t4 � 3
1
3 � t3 þ 3

2
3 � t2 � t

�t3 þ 3
4
3 � t2 � 5 � 3�1

3 � tþ 1

or
t4 þ c0t

3 þ b0t
2 � t

�t3 þ b0t2 þ c0tþ 1
;

where ðx� b0Þðx� b0Þ ¼ x2 � 3xþ 1 and ðx� c0Þðx� c0Þ ¼ x2 þ 5xþ 5.

(4) ðD; dÞ ¼ ð3; 2Þ:

cðtÞ ¼ t2 þ ot

oþ 5

o� 1
tþ 1

or
t2 þ ot

otþ 1
;

where o is a primitive third root of unity.

Note added in proof. A collision between the terminologies for discussing ramifi-
cation in algebraic number theory and in complex dynamics has led to the following non-
standard usage in Lemmas 2, 3, and 5: We say that f is totally ramified at y if f�1ðyÞ is a
single point.

Erratum added in proof. In Lemma 5, there should be an extra exceptional case ð20Þ:
D ¼ 2 and f ¼ s�1 � c � s for some sðtÞ ¼ ltþ b with l3 0, and cðtÞ ¼ 1=ðt3 þ 2t2 þ 2tÞ.
It arises because the final two displayed expressions in the proof of the lemma may share
a non-obvious common factor for certain choices of b. By taking an appropriate resultant,
one sees that b ¼G2;G2i are precisely the values that yield such a common factor. Taking c
as in the proof, this gives fðtÞ ¼ 1=

�
t3 þ 2imt2 þ 2ð�1Þmt

�
. Replacing f with i�mfðimtÞ

gives c.

The statement of Theorem 2 is una¤ected by this new exception to Lemma 5. Indeed,
the strategy of the third paragraph of the proof carries over mutatis mutandis to this case.
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