C.R. Math. Rep. Acad. Canada - Vol.VIII, No. 3, June 1986 juin

POWERFUL NUMBERS AND FERMAT'S LAST THEOREM

Andrew Granville

Presented by P. Ribenboim F.R.S.C.

A powerful number $\, n \,$ is a positive integer with the property that $\, p^2 \,$ divides $\, n \,$ whenever prime $\, p \,$ divides $\, n \,$.

Mollin and Walsh conjectured [4] that there does not exist three consecutive powerful numbers and gave some strong numerical evidence.

Recently Adleman and Heath-Brown [1], using a result of Fourry [3] on the Brun-Titchmarsh inequality, showed that the first case of Fermat's Last Theorem is true for infinitely many primes $\,p\,$.

We shall show that if the conjecture of Mollin and Walsh is true then the Adleman-Heath-Brown theorem follows immediately.

Lemma

If p is a prime such that p^2 divides $2^{p}-2$ and m is a positive integer for which p divides $2^{m}-1$ then p^2 divides $2^{m}-1$.

 \underline{Proof} : Let r be the greatest common divisor of m

and p-1. Clearly p divides 2^r-1.

Suppose $2^r = 1 + ap$.

Then
$$2^{p-1} = (2^r)^{(p-1)/r} = (1+ap)^{(p-1)/r}$$

 $\equiv 1 + a \cdot \frac{p-1}{r} \cdot p \mod p^2$.

But $2^{p-1} \equiv 1 \mod p^2$, so that p divides a . Thus $2^r \equiv 1 \mod p^2$ and as r divides m ,

 $2^m \equiv 1 \mod p^2$.

THEOREM

If the conjecture of Mollin and Walsh is true then there exists an infinite sequence of primes p for which p^2 does not divide 2^{p-2} .

 \underline{Proof} : Suppose p^2 divides 2^p-2 for all primes $p > p_0$.

Let $t = \pi$ p, and $A = 2^{t\phi(t)}$ where $\phi(\cdot)$ is $p \le p_0$

Euler's function. We claim that $A^{n}-1$ is powerful for any positive integer n .

For, if $2 , <math>p \cdot p-1 \mid t \phi(t)$ and so $A \equiv 1 \mod p^2$.

Thus $A^n \equiv 1 \mod p^2$ for each positive integer n.

A. Granville

If $p > p_0$ and $p|A^n-1$ then $p|2^{nt\phi(t)}-1$. By the lemma $p^2|2^{nt\phi(t)}-1$ that is p^2 divides A^n-1 .

Thus $A^{n}-1$ is powerful.

So A-1 and A^2-1 are both powerful.

But gcd(A-1,A+1) = gcd(2,A-1) = 1 as 2 divides A.

Thus, as $A^2-1=A-1$. A+1, we know A+1 is also powerful. But then A-1, A, A+1 are three consecutive powerful numbers, which contradicts the conjecture of Mollin and Walsh,

Wieferich [5] showed the following:

If x, y and z are positive integers and p is a prime, for which

$$x^p + y^p = z^p$$
 with $p \nmid xyz$

then p^2 divides 2^p-2 .

(See a recent elegant proof by Agoh [2].)

So, by the theorem and Wieferich's criteria, we can immediately state the following.

Corollary

If the conjecture of Mollin and Walsh is true then there exists an infinite sequence of primes p for which the First

A. Granville

Case of Fermat's Last Theorem is true.

References

- 1. Adleman, L.M. and Heath-Brown, D.R., 'The First Case of Fermat's Last Theorem,' Invent. Math. 79, 409-415 (1985).
- Agoh, T., 'On the Criteria of Wieferich and Mirimanoff,' C. R. Math. Rep. Acad. Sci. Canada, 8, 49-52 (1986).
- Fouvry, E., 'Théorème de Brun-Titchmarsh. Application au Théorème de Fermat,' Invent. Math. 79, 383-407 (1985).
- 4. Mollin, R.A. and Walsh, P.G., 'A Note on Powerful Numbers, Quadratic Fields and the Pellian,' C. R. Math. Rep. Acad. Sci. Canada, 8, (1986), to appear.
- 5. Wieferich, A., 'Zum letzten Fermat'schen Theorem,' J. reine u. angew Math. 136, 293-302 (1909).

Received 12 February, 1986

Department of Mathematics and Statistics Queen's University Kingston, Ontario Canada, K7L 3N6