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POWERFUL NUMBERS AND FERMAT'S LAST THEOREM

Andrew Granville
Pregented by P. Ribenboim F.R.S.C.
A powerful number n is a positive integer with the
property that p2 divides n whenever prime p divides

n .

Mollin and Walsh conjectured [4] that there does not exist
three consecutive powerful numbers and gave some strong

numerical evidence.

Recently Adleman and Heath-Brown [1], using a result of
Fouvry [3] on the Brun-Titchmarsh inequality, showed that the
first case of Fermat's Last Theorem is true for infinitely

many primes p .

We shall show that if the conjecture of Mollin and Walsh
is true then the Adleman-Heath-Brown theorem follows immedi-

ately.

Lemma

If p is a prime such that p° divides 2P-2 - and

m__is a positive integer for which p divides 2™-1 then

p2 ‘divides 2™-1 .

Proof: Let r be the greatest common divisor of m
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and p-1 . Clearly p divides 2%-1 .

Suppose 2" =1 +ap .
Then 2P°! = (zr)(p-l)/r = (1 +ap)(p'1)/r

"

1 +a .E;A . p mod p2 .

put 2Pl =1 mod p2 , so that p divides a .

T 2

Thus 2 1 mod p° and as r divides m ,

2® 21 mod p2 .

THEOREM

I1f the conjecture of Mollin and Walsh is true then there

exists an infinite sequence of primes p for which p2 does
not divide 2P-2 .

proof: Suppose p2 divides 2P-2 for all primes

P>Pyp -

Let t= ® p, and A= ZtQ(t) where ¢(°) 1is
P<Pg

Euler's function. We claim that AR-1 is powerful for any

positive integer n .

2
For, if 2<p<pj » p-p-1/te (t) and so A =1 mod p~ .

Thus A" = 1 mod p2 for each positive integer n .
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If p > p, and pIAn-l then pIZnt¢(t)-1 . By the lemma

p?122% ()1 that is p? divides A"-1 .
Thus A"-1 is powerful.

So A-1 and Az-l are both powerful.
But gcd (A-1,A+1) = ged (2,A-1) = 1 as 2 divides A .
Thus, as A%-1 = A-1 . Asl » we know A+l is

also powerful. But then A-1 , A, A+1 are three consecutive

powerful numbers, which contradicts the conjecture of Mollin

and Walsh,

Wieferich [5]) showed the following:
If x,y and Z are positive integers and p is a

prime, for which
xP+yP = 2P with p{xyz
then p? divides 2P-2 .

(See a recent elegant proof by Agoh [2].)
So, by the theorem and Wieferich's criteria, we can

immediately state the following.

Corollary

If the conjecture of Mollin and Walsh is true then there
exists an infinite sequence of primes p for which the First
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Case of Fermat's Last Theorem is true.
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