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We count binary strings where the possible numbers of successive 0’s and 1’s are restricted.

For given sets A and B of positive integers define, for each n =1, S(A, B;n) to
be the set of vectors (x;, x5, . .. ,x,) in {0, 1}" which do not contain a subvector
(x5, Xj+1, -+ »Xj1cr Xj4c41) Of the form (1,0,0,...,0,0,1) (with ¢ zeros) for any
c¢A or the form (0,1,1,...,1,1,0) (with ¢ ones) for any c ¢ B (here the
indices of the x;’s are taken (modn)). (A vector in {0,1}" is called a ‘binary
string with n bits’). Let W(A, B; n) be the number of elements in S(A, B; n)\
{(0,0,...,0), (1,1, ..., 1)}. We prove the following.

Theorem. For any given sets A and B of positive integers,

3. WA, B; n)x" = —x-log(1 ~ [(x)g x)

n=1

where f(x) = Xaeca x“ and g(x) = Ypep x°.

(N.B. f and g converge inside the unit disk, centred at the origin, and so,
henceforth assume that |x| <1. We call f the ‘characteristic generating function’
of the set A.)

In [1], Agur, Fraenkel and Klein considered the two examples A=B =
{integers n =2} and A=B={1,2} and came to an equivalent result by a
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different method (Equation (1) below gives this equivalence explicitly). The first
example appears in connection with a model of information processing called
‘majority rule’. They actually had a set of k integers {c;,c;, ..., ¢k} and k
complex numbers {y,, ¥, ..., ¥} such that W(A, B;n)= X, ¢y’ for each
n =1. We shall derive, from the Theorem, necessary and sufficient conditions for
when such a result holds.

Corollary. Let A, B, f and g be as in the Theorem. There exist integers cy, . . . , C
and complex numbers v, . . . , v, such that W(A, B;n) =Y, ¢;y? for each n=1
if and only if f(x)g(x) is a rational function.

Remark. In the two examples above one has

f(x)=gx)=x*/(1-x) and f(x)=g(x)=x(1+x)

and so f(x)g(x) is a rational function.
We now proceed to the following.

Proof of the Theorem. We will first consider strings in S(A, B; n) which begin
with 1 (i.e., x; = 1), and write them in the abbreviated form

102112072 - - « 16m-1(%m1 ™
which corresponds to the vector which starts with ¢ ones, than a, zeros, b,
ones, . . ., a,, zeros and finally u ones. Such a string is counted by ¥(A, B;n) if
and only if m=1, t=1, each a,€eA and b;eB for i=1,2,...,m where
b,=u+t=t, and L, (a; +b;) =n. Therefore the number of such strings is
precisely the coefficient of x" in

> D xf(x)glx) - fl)g)f(x) > x

m=1t=1 u=0,b=u+teB

=2 f)g)" 'Y X x°

mz=1 t=1 b=t,beB

= 2 f)"g(x)™™" b% bx®

m=1
_ f®
1-f(x)g(x)
By counting the strings in S(A, B; n) that begin with a 0, in an analogous way,
we get

- xg'(x).

o RU0R0) + 1 (E())
2 WA, By - f()glr)

- _xﬁxoga ~fe)®). O
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Proof of the Corollary. Sir Isaac Newton implicitly used the following identity in

his work on symmetric polynomials: For any integers c;, c,, . . . , ¢, and complex
numbers y1, Y2, - - -5 Yi»
d k k
xd_x {log[ﬂ (1- Yix)_c']} = 2 [2 Ci)’?]x"- (1)
i=1 n=1 Li=1

The corollary can be deduced immediately from comparing this identity to the
Theorem, and then invoking the Fundamental Theorem of Calculus. [

When the characteristic generating function of a set A can be written as a
rational function then one can deduce precise information about the structure of
A. '

Proposition. Suppose that f(x) is the characteristic generating function of the set
A. Then f(x) is a rational function if and only if A consists of the integers
belonging to some finite union of arithmetic progressions with, at most, finitely
many exceptions.

I had hoped that a similar result might be deduced for a product of
characteristic generating functions f(x)g(x), so that if this were a rational
function then the sets A and B might both be finite unions of arithmetic
progressions with finitely many exceptions. This would have given a delightful
conclusion to the Corollary! However, this conjecture is incorrect, as may be seen
from the clever counterexample provided independently by Michael Albert and
Neil Calkin, and by Paul Erdés:

Let A be the set of sums of even powers of 2 and let B be the set of sums of
odd powers of 2 (include 0 in both sets). Now as any integer n =1 can be written
in a unique way as a sum of distinct powers of 2 so W(A, B; n) =1 and therefore
f(x)g(x)=1/(1 —x) is a rational function.

On the other hand, any integer # that lies in an interval of the form [2%~, 22¥)
cannot belong to the set A, as 2°*~! appears when we write n as a sum of distinct
powers of 2. So, as these intervals grow to be arbitrarily large, A cannot contain
all positive integers from some point onwards of any arithmetic progression.

Proof of the Proposition. Any finite union of arithmetic progressions may be
rewritten as a finite union of disjoint arithmetic progressions, with a common
modulus m (which is the least common multiple of the original moduli). (As an
example, the union of 1 (mod2) and 2 (mod 3) may be written as the union of 1,
2, 3, and 5 (mod 6).) Thus the characteristic generating function of such a set A is

Z X

reR 1-x"

r
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where the set Rc {0, 1, ..., m — 1} is composed of the least nonnegative integer
in each of the arithmetic progressions. In order to add a finite set of integers S
and to remove a finite set of integers 7 from A we need only add the polynomial
Ysesx* — Lierx’ to our generating function. Therefore if A is a finite union of
arithmetic progressions except at most finitely many integers, then it has a
characteristic generating function of the form u(x)/(1 —x™) where u(x) is some
polynomial and m some positive integer.

On the other hand suppose that f(x)=u(x)/v(x) where u(x) and v(x)=
Vo+ v;x + - - - + v x? are polynomials without a common zero. Note that v, # 0
else v(0) =0 and u(0) = f(0)v(0) =0, implying that u and v do have a common
zero. Let ny be the maximum of the degrees of u(x) and v(x). Let p,=1ifaec A
and 0 otherwise, so that f(x)=Y,.op:x". Also for any n = n, define the vector
Cn = (pn’ Prn-1,---> Pn—d)'

Now, as the value of each p; is either O or 1, we see that there are only finitely
many distinct vectors c,. Therefore, by the Pigeonhole Principle, we can find
values k and kK +m, with m=1, k=n,+ 1, for which c.,, = c,.. We shall now
prove that c,,,, =c, for each n =k, by induction on n: We are given the result
for n=k and so assume that c¢,_,,,, =c,-;. Therefore p,.,,_;=p,_; for
i=1,2,...,d Then by comparing the coefficients of x” and x"*" on both sides
of the equation

v(x)f (x) = u(x),

we get
d d
;) YiPn—i = 2;) YiPpim—i =0. 2)
Thus
d
UoPn+m = — Z] UiPn+m—i by (2)
d
= - 2 ViPrn—i by the induction hypothesis
i=1
= VoPn by (2).

Then p,,,, = p, as v F 0.
Finally, as ¢, ,, =c, foreachn=k, sop, ., =p,foreachn=k and so, ifa=k
we see that a € A if and only if a + m € A. The result follows immediately. O

At first sight it seems that the main difficulty in the above proof lies in showing
that whenever the characteristic generating function of some set is the rational
function u(x)/v(x) then v(x) divides 1—x" for some m=1. Actually it is
possible to generalize this (though with some difficulty) to the following result.

If fi(x), fi(x), ..., fi(x) are the characteristic generating functions of k sets of
nonnegative integers, such that fi(x)fa(x)---fi(x) is the rational function
u(x)/v(x) then v(x) divides (1 — x™)* for some m = 1.
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Unfortunately, as we saw from the above counterexample, this does not imply
that each f;(x) takes the form u;(x)/(1 —x™).
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