Note

On a paper of Agur, Fraenkel and Klein

Andrew Granville

Department of Mathematics, University of Toronto, Toronto, Ont., Canada M5S 1A1

Received 7 September 1988; Revised 13 February 1989

Abstract

Granville, A., On a paper of Agur, Fraenkel and Klein, Discrete Mathematics 94 (1991) 147-151.

We count binary strings where the possible numbers of successive 0's and 1's are restricted.

For given sets A and B of positive integers define, for each $n \ge 1$, S(A, B; n) to be the set of vectors (x_1, x_2, \ldots, x_n) in $\{0, 1\}^n$ which do not contain a subvector $(x_j, x_{j+1}, \ldots, x_{j+c}, x_{j+c+1})$ of the form $(1, 0, 0, \ldots, 0, 0, 1)$ (with c zeros) for any $c \notin A$ or the form $(0, 1, 1, \ldots, 1, 1, 0)$ (with c ones) for any $c \notin B$ (here the indices of the x_i 's are taken (mod n)). (A vector in $\{0, 1\}^n$ is called a 'binary string with n bits'). Let $\Psi(A, B; n)$ be the number of elements in $S(A, B; n) \setminus \{(0, 0, \ldots, 0), (1, 1, \ldots, 1)\}$. We prove the following.

Theorem. For any given sets A and B of positive integers,

$$\sum_{n\geq 1} \Psi(A, B; n)x^n = -x \frac{\mathrm{d}}{\mathrm{d}x} \log(1 - f(x)g(x))$$

where $f(x) = \sum_{a \in A} x^a$ and $g(x) = \sum_{b \in B} x^b$.

(N.B. f and g converge inside the unit disk, centred at the origin, and so, henceforth assume that |x| < 1. We call f the 'characteristic generating function' of the set A.)

In [1], Agur, Fraenkel and Klein considered the two examples $A = B = \{\text{integers } n \ge 2\}$ and $A = B = \{1, 2\}$ and came to an equivalent result by a

148 A. Granville

different method (Equation (1) below gives this equivalence explicitly). The first example appears in connection with a model of information processing called 'majority rule'. They actually had a set of k integers $\{c_1, c_2, \ldots, c_k\}$ and k complex numbers $\{\gamma_1, \gamma_2, \ldots, \gamma_k\}$ such that $\Psi(A, B; n) = \sum_{i=1}^k c_i \gamma_i^n$ for each $n \ge 1$. We shall derive, from the Theorem, necessary and sufficient conditions for when such a result holds.

Corollary. Let A, B, f and g be as in the Theorem. There exist integers c_1, \ldots, c_k and complex numbers $\gamma_1, \ldots, \gamma_k$ such that $\Psi(A, B; n) = \sum_{i=1}^k c_i \gamma_i^n$ for each $n \ge 1$ if and only if f(x)g(x) is a rational function.

Remark. In the two examples above one has

$$f(x) = g(x) = x^2/(1-x)$$
 and $f(x) = g(x) = x(1+x)$

and so f(x)g(x) is a rational function.

We now proceed to the following.

Proof of the Theorem. We will first consider strings in S(A, B; n) which begin with 1 (i.e., $x_1 = 1$), and write them in the abbreviated form

$$1^{t}0^{a_1}1^{b_1}0^{a_2}\cdots 1^{b_{m-1}}0^{a_m}1^{u}$$

which corresponds to the vector which starts with t ones, than a_1 zeros, b_1 ones, ..., a_m zeros and finally u ones. Such a string is counted by $\Psi(A, B; n)$ if and only if $m \ge 1$, $t \ge 1$, each $a_i \in A$ and $b_i \in B$ for i = 1, 2, ..., m where $b_m = u + t \ge t$, and $\sum_{i=1}^m (a_i + b_i) = n$. Therefore the number of such strings is precisely the coefficient of x^n in

$$\sum_{m \ge 1} \sum_{t \ge 1} x' f(x) g(x) \cdots f(x) g(x) f(x) \sum_{u \ge 0, b = u + t \in B} x^{u}$$

$$= \sum_{m \ge 1} f(x)^{m} g(x)^{m-1} \sum_{t \ge 1} \sum_{b \ge t, b \in B} x^{b}$$

$$= \sum_{m \ge 1} f(x)^{m} g(x)^{m-1} \sum_{b \in B} b x^{b}$$

$$= \frac{f(x)}{1 - f(x) g(x)} \cdot x g'(x).$$

By counting the strings in S(A, B; n) that begin with a 0, in an analogous way, we get

$$\sum_{n\geq 0} \Psi(A, B; n) x^n = \frac{x(f(x)g'(x) + f'(x)g(x))}{1 - f(x)g(x)}$$
$$= -x \frac{\mathrm{d}}{\mathrm{d}x} \log(1 - f(x)g(x)). \qquad \Box$$

Proof of the Corollary. Sir Isaac Newton implicitly used the following identity in his work on symmetric polynomials: For any integers c_1, c_2, \ldots, c_k and complex numbers $\gamma_1, \gamma_2, \ldots, \gamma_k$,

$$x\frac{\mathrm{d}}{\mathrm{d}x}\left\{\log\left[\prod_{i=1}^{k}\left(1-\gamma_{i}x\right)^{-c_{i}}\right]\right\} = \sum_{n\geq1}\left[\sum_{i=1}^{k}c_{i}\gamma_{i}^{n}\right]x^{n}.\tag{1}$$

The corollary can be deduced immediately from comparing this identity to the Theorem, and then invoking the Fundamental Theorem of Calculus. \Box

When the characteristic generating function of a set A can be written as a rational function then one can deduce precise information about the structure of A.

Proposition. Suppose that f(x) is the characteristic generating function of the set A. Then f(x) is a rational function if and only if A consists of the integers belonging to some finite union of arithmetic progressions with, at most, finitely many exceptions.

I had hoped that a similar result might be deduced for a product of characteristic generating functions f(x)g(x), so that if this were a rational function then the sets A and B might both be finite unions of arithmetic progressions with finitely many exceptions. This would have given a delightful conclusion to the Corollary! However, this conjecture is incorrect, as may be seen from the clever counterexample provided independently by Michael Albert and Neil Calkin, and by Paul Erdős:

Let A be the set of sums of even powers of 2 and let B be the set of sums of odd powers of 2 (include 0 in both sets). Now as any integer $n \ge 1$ can be written in a unique way as a sum of distinct powers of 2 so $\Psi(A, B; n) = 1$ and therefore f(x)g(x) = 1/(1-x) is a rational function.

On the other hand, any integer n that lies in an interval of the form $[2^{2k-1}, 2^{2k})$ cannot belong to the set A, as 2^{2k-1} appears when we write n as a sum of distinct powers of 2. So, as these intervals grow to be arbitrarily large, A cannot contain all positive integers from some point onwards of any arithmetic progression.

Proof of the Proposition. Any finite union of arithmetic progressions may be rewritten as a finite union of *disjoint* arithmetic progressions, with a common modulus m (which is the least common multiple of the original moduli). (As an example, the union of $1 \pmod{2}$ and $2 \pmod{3}$ may be written as the union of 1, 2, 3, and $5 \pmod{6}$.) Thus the characteristic generating function of such a set A is

$$\sum_{r \in R} \frac{x^r}{1 - x^m}$$

150 A. Granville

where the set $R \subseteq \{0, 1, \ldots, m-1\}$ is composed of the least nonnegative integer in each of the arithmetic progressions. In order to add a finite set of integers S and to remove a finite set of integers T from A we need only add the polynomial $\sum_{s \in S} x^s - \sum_{t \in T} x^t$ to our generating function. Therefore if A is a finite union of arithmetic progressions except at most finitely many integers, then it has a characteristic generating function of the form $u(x)/(1-x^m)$ where u(x) is some polynomial and m some positive integer.

On the other hand suppose that f(x) = u(x)/v(x) where u(x) and $v(x) = v_0 + v_1 x + \cdots + v_d x^d$ are polynomials without a common zero. Note that $v_0 \neq 0$ else v(0) = 0 and u(0) = f(0)v(0) = 0, implying that u and v do have a common zero. Let n_0 be the maximum of the degrees of u(x) and v(x). Let $p_a = 1$ if $a \in A$ and 0 otherwise, so that $f(x) = \sum_{i \geq 0} p_i x^i$. Also for any $n \geq n_0$ define the vector $c_n = (p_n, p_{n-1}, \ldots, p_{n-d})$.

Now, as the value of each p_i is either 0 or 1, we see that there are only finitely many distinct vectors c_n . Therefore, by the Pigeonhole Principle, we can find values k and k+m, with $m \ge 1$, $k \ge n_0 + 1$, for which $c_{k+m} = c_k$. We shall now prove that $c_{n+m} = c_n$ for each $n \ge k$, by induction on n: We are given the result for n = k and so assume that $c_{n-1+m} = c_{n-1}$. Therefore $p_{n+m-i} = p_{n-i}$ for $i = 1, 2, \ldots, d$. Then by comparing the coefficients of x^n and x^{n+m} on both sides of the equation

v(x)f(x)=u(x),

we get

$$\sum_{i=0}^{d} v_i p_{n-i} = \sum_{i=0}^{d} v_i p_{n+m-i} = 0.$$
 (2)

Thus

$$v_0 p_{n+m} = -\sum_{i=1}^d v_i p_{n+m-i}$$
 by (2)
 $= -\sum_{i=1}^d v_i p_{n-i}$ by the induction hypothesis
 $= v_0 p_n$ by (2).

Then $p_{n+m} = p_n$ as $v_0 \neq 0$.

Finally, as $c_{n+m} = c_n$ for each $n \ge k$, so $p_{n+m} = p_n$ for each $n \ge k$ and so, if $a \ge k$ we see that $a \in A$ if and only if $a + m \in A$. The result follows immediately. \square

At first sight it seems that the main difficulty in the above proof lies in showing that whenever the characteristic generating function of some set is the rational function u(x)/v(x) then v(x) divides $1-x^m$ for some $m \ge 1$. Actually it is possible to generalize this (though with some difficulty) to the following result.

If $f_1(x), f_2(x), \ldots, f_k(x)$ are the characteristic generating functions of k sets of nonnegative integers, such that $f_1(x)f_2(x)\cdots f_k(x)$ is the rational function u(x)/v(x) then v(x) divides $(1-x^m)^k$ for some $m \ge 1$.

Unfortunately, as we saw from the above counterexample, this does not imply that each $f_i(x)$ takes the form $u_i(x)/(1-x^m)$.

Acknowledgements

I would like to thank Michael Albert, Neil Calkin and Paul Erdős for finding the counterexample mentioned herein.

References

[1] Z. Agur, A.S. Fraenkel and S.T. Klein, The number of fixed points of the majority rule, Discrete Math. 70 (1988) 295-302.