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Parading a panoply of prime proofs.

A panopoly of proofs that there are infinitely many primes

Andrew Granville

Abstract: There are many different ways to prove that there are infinitely many primes. I will highlight a few
of my favourites, selected so as to involve a rich variety of mathematical ideas.

1 Different types of proofs

1.1 Proofs by contradiction

Proofs that there are infinitely many primes typically
rely on the theorem that

Every integer q > 1 has a prime factor.

Euclid used this to prove that there are infinitely
many primes, as follows: Suppose that p1, . . . , pk
is a complete list of all of the primes. Now q =
p1 · · · pk + 1 is divisible by some prime p. But then
p = pj for some j and so q ≡ 1 (mod p), so that
(q, p) = 1, a contradiction.

There are many variations on this theme. For
instance we can take q to be p1 · · · pk − 1, or
mp1 · · · pk + 1 for any integer m 6= 0. We could
also split the primes into any two subsets: write
{p1, . . . , pk} = M ∪ N , and then let m be the
product of the elements of M, and let n be the
product of the elements of N . Finally let q = m+n
have prime divisor p. Then p must divide one, and
only one, of m and n: if p divides, say, m then
(q, p) = (n, p) = 1, a contradiction.

One could also take q = |m − n|, and as long
as this is not 1 then the analogous argument works,
though there are a couple of examples known where
m− n = 1.1

One can have more than two summands: If N =
p1 · · · pk, let q =

∑k
i=1N/pi. Now pj divides N/pi

whenever i 6= j, so that (q, pj) = (N/pj , pj) = 1.
A more flexible variant comes by including coeffi-
cients c1, . . . , ck where each cj is an integer that

is not divisible by pj , and then q =
∑k

i=1 ci N/pi.
This is so flexible that if p1, . . . , pk are the primes
up to x, then each prime between x and x2 equals
such a q, for carefully selected values of the cj (see
[1]).

The key idea in Euclid’s proof is that q is an
integer that is greater than 1 and coprime to N =
p1 · · · pk. This can easily be generalized as Euler
showed that there are (p1 − 1)(p2 − 1) · · · (pk − 1)
positive integers ≤ N that are coprime to N , so we
could have taken q to be any such integer > 1.

1.2 A (point-set) topological proof

One of the most elegant ways to present Euclid’s
idea is in Furstenberg’s extraordinary proof [5] us-
ing basic notions of point set topology:

Define a topology on the set of integers Z in
which a set S is open if it is empty or if for every
a ∈ S there is an arithmetic progression

Z(a,m) := {a+ nm : n ∈ Z},

with m 6= 0, which is a subset of S. Evidently each
Z(a,m) is open, and it is also closed since

Z(a,m) = Z \
⋃

b: 0≤b≤m−1, b 6=a

Z(b,m).

If there are only finitely many primes p then A =
∪p Z(0, p) is also closed, and so Z \A = {−1, 1} is
open, but this is false since {−1, 1} is finite and so
cannot contain any arithmetic progression Z(a,m),
as this would contain infinitely many integers. This
contradiction implies that there are infinitely many
primes.

I love the surprising sparse elegance of this proof.
However, I know of other number theorists who dis-
like the way it obscures what is really going on.

1.3 An analytic proof

The idea is to count the number of positive integers
up to some large point x whose prime factors only
come from a given set of primes P = {p1 < p2 <
. . . < pk}. These integers all take the form

pe11 p
e2
2 · · · p

ek
k for some integers ej , each ≥ 0.

(1)
We are going to count the number of such integers
up to x = 2m−1, for an arbitrary integer m ≥ 1, by
studying this formula: For each j, the prime pj ≥ 2,
and every other peii ≥ 1, and so

2ej ≤ pejj ≤ p
e1
1 p

e2
2 · · · p

ek
k ≤ 2m − 1.

This implies that ej is at most m− 1, and so there
are at most m possibilities for the integer ej , the
integers from 0 through to m − 1. Therefore the

1Most famously, at least for baseball afficionados, Babe Ruth’s home runs record of 714 = 2 × 3 × 7 × 17 home runs, was
overtaken when Hank Aaron hit 715 = 5× 11× 13.
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number of integers of the form (1), up to 2m − 1,
is

≤
k∏

j=1

#{integers ej : 0 ≤ ej ≤ m− 1} = mk.

Now if P is the set of all primes then every positive
integer is of the form (1), and so the last equation
implies that 2m − 1 ≤ mk for all integers m. We
select m = 2k, so this implies that 2k ≤ k2, which
is false for every integer k ≥ 5. Therefore as we
know that there are at least five primes (for exam-
ple 2, 3, 5, 7, 11), we can deduce that there cannot
be finitely many.

This proof highlights the use of counting argu-
ments in number theory, a first step on the road to
analytic number theory.

1.4 Two arithmetic proofs.

Fermat’s little theorem implies that if p is an odd
prime then

2p−1 ≡ 1 (mod p).

If 2m ≡ 1 (mod p) then one can deduce that
2g ≡ 1 (mod p) where g = (m, p − 1). We will
use this observation to give two proof of the infini-
tude of primes, booth based on arithmetic structure.

• Suppose that there are only finitely many
primes and let q be the largest prime. If p is a
prime factor of the Mersenne number, 2q − 1, then
2q ≡ 1 (mod p). Therefore 2g ≡ 1 (mod p) where
g = gcd(q, p−1). Now g divides q, so g must equal
either 1 or q. However g cannot equal 1, else p di-
vides 2g − 1 = 2 − 1 = 1. Therefore q = g which
divides p − 1. But then q ≤ p − 1 < p, so p is a
larger prime than q, contradicting the maximality of
q.

• Suppose that there are only finitely many
primes p1, . . . , pk and let 2n be the highest power
of 2 dividing any of the pj−1. Let q = 22

n

+1, the

nth Fermat number. Then 22
n+1−1 = (22

n

)2−1 ≡
(−1)2 − 1 ≡ 0 (mod q), and so if p is a prime fac-

tor of q then 22
n+1 ≡ 1 (mod p). Therefore 2g ≡ 1

(mod p) where g = gcd(2n+1, p − 1). Now g di-
vides 2n+1 so g must be a power of 2, say g = 2m.
Moreover m ≤ n as g = 2m divides p − 1, and 2n

was defined to be the highest power of 2 dividing
any pj − 1. Therefore

0 ≡ q = 22
n

+ 1 = (22
m

)2
n−m

+ 1

≡ 12
n−m

+ 1 ≡ 2 (mod p),

so that p divides 2, which is impossible as p is an
odd prime.

This proof also yields that for any integer N ≥ 1,
there are infinitely many primes≡ 1 (mod 2N ), and
suitable modifications even allow one to prove that
for any integer m ≥ 2, there are infinitely many
primes ≡ 1 (mod m). In 1837 Dirichlet proved that
if (a, q) = 1 then there are infinitely many primes
≡ a (mod q). Far ahead of his time, Dirichlet used
analytic methods to prove this result. There is still
no known elementary proof of this fact for all pair-
wise coprime a and q, though here we have indicated
an approach that works whenever a = 1.

1.5 A proof by irrationality

Euler exhibited the inspiring identity

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

Let δ(n) = 1 or −1 as n ≡ 1 or −1 (mod 4), and
δ(n) = 0 if n ≡ 0 (mod 2). The key observation
is that if an odd integer n factors as in (1), then

δ(n)/n =
∏k

j=1(δ(pj)/pj)
ej . Therefore if there are

only finitely many primes then the right-hand side
of Euler’s identity can be separated into the contri-
butions from each prime, to obtain the identity,

π

4
=

∏
p prime

p≡1 (mod 4)

p

p− 1
·

∏
p prime

p≡3 (mod 4)

p

p+ 1
.

It is well-known that π (and so π/4) is irrational,
but under the assumption that there are only finitely
many primes, the right-hand side is a finite prod-
uct of rational numbers, so is rational, a contradic-
tion.

The function δ is periodic of period 4, equals 0
whenever (n, 4) > 1, and otherwise equals 1 or −1,
sums over its period to 0 (as 1+0+(−1)+0 = 0),
and factors much like the integers, in that δ(n) =∏k

j=1 δ(pj)
ej . For every integer m > 2 with m 6≡ 2

(mod 4), there exists such a function δ with “4” re-
placed by “m” in the definition. The sum of Euler’s
series,

∑
δ(n)/n is the “special value” of Dirich-

let’s L-function that is central to his proof that there
are infinitely many primes in arithmetic progressions.
Moreover, much like here, if m = 4k where k is not
divisible by any squares and k ≡ 1 (mod 4), then
the sum adds up to a rational multiple of π

√
|m|.

Euler’s work pre-dated Dirichlet by almost 100
years, yet he developed the theory of this same
mathematical construction without knowing how
important it would become. Such prescience can
be found in the works of great mathematicians.
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1.6 A proof by combinatorics and
arithmetic geometry

Van der Waerden’s Theorem, a deep result in combi-
natorics, states that for any given m ≥ 2 and ` ≥ 3,
if every positive integer is assigned one of m colours,
in any way at all, then there is an `-term arithmetic
progression of integers which each have the same
colour. Alpoge [3], a current Ph.D. student at Har-
vard, suggested the following clever colouring of the
integers, assuming that p1, . . . , pk are all the primes.
Each integer n factors as in (1); we write each ex-
ponent ej ≡ rj (mod 2) with rj = 0 or 1. Writing
R = pr11 · · · p

rk
k we note that n/R is the square of

an integer, and we “colour” n with the colour R.
There are 2k possibilities for R. By applying van
der Waerden’s Theorem with m = 2k and ` = 4
we deduce that there are four integers in arithmetic
progression

A,A+D,A+ 2D,A+ 3D, with D ≥ 1,

which all have the same colour R. Now R di-
vides each of these numbers, so also divides D =
(A+D)−A. Letting a = A/R and d = D/R, we
deduce that

a, a+ d, a+ 2d, a+ 3d

are four squares in arithmetic progression (a+ jd =
(A+ jD)/R is a square as A+ jD has colour R.)
However Fermat proved (and this is often covered
in a first course on elliptic curves) that there cannot
be four squares in an arithmetic progression.

Although this proof uses two far deeper theo-
rems than Euclid’s original proof, one cannot help
but be charmed by how they can be combined in
this way. Actually these ideas have come together
before in an unlikely way ([4]), in bounding the num-
ber of squares that can possibly appear in an N -term
arithmetic progression.

1.7 The construction of infinitely
many primes.

We want to construct an infinite sequence of dis-
tinct, pairwise coprime, integers a0, a1, . . .; that is,
a sequence for which gcd(am, an) = 1 whenever
m 6= n. Let pn be a prime divisor of an whenever
|an| > 1. Then the pn form an infinite sequence of
distinct primes. (For, if not, then pm = pn for some
m 6= n and so pm = (pm, pn) divides (am, an) = 1,

a contradiction.) Here a couple of ways to construct
such sequences:

• Modification of Euclid’s proof: Let a0 =
2, a1 = 3 and

an = a0a1 · · · an−1 + 1 for each n ≥ 1.

If m < n then am divides a0a1 . . . an−1 = an − 1
and so gcd(am, an) divides gcd(an − 1, an) = 1,
which implies that gcd(am, an) = 1. Therefore if
pn is a prime divisor of an for each n ≥ 0, then
p0, p1, . . . is an infinite sequence of distinct primes.

The recurrence for the an can be re-written as

an+1 = a0a1 · · · an−1 · an + 1

= (an − 1)an + 1 = f(an),

where f(x) = x2−x+1, which leads us to a differ-
ent proof that these numbers are pairwise coprime.
We use the fact that for any distinct integers r and
s, and any polynomial f(x) ∈ Z[x], r − s always
divides f(r) − f(s). Therefore if r ≡ s (mod p)
then f(r) ≡ f(s) (mod p). Therefore if p divides
an then an+1 = f(an) ≡ f(0) = 1 (mod p). Next
an+2 = f(an+1) ≡ f(1) = 1 (mod p), and then
an+3 = f(an+2) ≡ f(1) = 1 (mod p), and pro-
ceeding like this,

an+k = f(f(f(. . . f(an+1) . . .)))

≡ f(f(f(. . . f(1) . . .))) ≡ 1 (mod p),

for all k ≥ 1; and so we deduce that am ≡ 1
(mod p) for all m > n. We deduce that am and
an cannot share any prime factor p, and so are co-
prime.

• Fermat claimed that the integers Fn =
22

n

+ 1 are primes for all n ≥ 0. This is true
for 3, 5, 17, 257, 65537, but false for F5 = 641 ×
6700417, as noted by Euler.2 Nonetheless the Fn

are pairwise coprime, and so we can deduce that if
pn is a prime divisor of Fn, then p0, p1, . . . is an
infinite sequence of distinct primes. To prove this
we begin by noting that the Fn-values can be de-
termined by a simple recurrence, as follows:

Fn+1 = (22
n

+ 1)(22
n

− 1) + 2

= Fn(Fn − 2) + 2 = f(Fn),

where f(x) = x2 − 2x + 2. Hence if p|Fn then
Fn+1 = f(Fn) ≡ f(0) = 2 (mod p), and Fn+2 =
f(Fn+1) ≡ f(2) = 2 (mod p); continuing like this
we have

Fn+k = f(f(f(. . . f(Fn+1) . . .)))

≡ f(f(f(. . . f(2) . . .))) ≡ 2 (mod p),

2It is an open question as to whether there are infinitely many Fermat primes, Fn. We have listed the only Fn known to be
prime, and for 5 ≤ n ≤ 30 the Fn are composite, and for many other n besides. It could be that all Fn, n > 4 are composite,
or they might all be prime from some sufficiently large n onwards. We have no way of knowing what exactly is true.
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for all k ≥ 1, and so we deduce that Fm ≡ 2
(mod p) for all m > n. But since each prime factor
p of Fn is odd (as Fn is odd), we deduce that the
Fn are pairwise coprime.

When you see two proofs like these last two
proofs, that are so similar, you begin to suspect
that there may be some deeper unifying idea lying
not far below the surface. We explore an appropri-
ate generalization in the next section.

2 The arithmetic of dynamical
systems

2.1 Orbits, periods and pre-periods

We have shown above that the (an)n≥0 and the
(Fn)n≥0 are both examples of sequences (xn)n≥0
for which x0 is given and then

xn+1 = f(xn) for all n ≥ 0,

for some polynomial f(x) ∈ Z[x]; the an with
the polynomial x2 − x + 1, and the Fn with the
polynomial x2 − 2x + 2. Such sequences are ex-
amples of dynamical systems, in which the next
value of a function depends on its current value.
The numbers (xn)n≥0 are the orbit of x0 under
the map x → f(x). Both proofs used a period
which means that in, say, the orbit of y0, we have
yn = y0. This implies that yn+j = yj for all
j ≥ 0, which follows from induction by noting that
yn+j+1 = f(yn+j) = f(yj) = yj+1.

In our two examples, the key to proving copri-
mality is that 0 is pre-periodic (i.e. the orbit of 0
eventually becomes periodic but 0 is not in the pe-
riod): For f(x) = x2 − x+ 1 we have

0→ 1→ 1→ . . . ,

and for f(x) = x2 − 2x+ 2 we have

0→ 2→ 2→ . . . ,

One can classify the polynomials for which the
orbit of 0 is eventually periodic, and so come up
with many more proofs that there are infinitely many
primes! There is a big surprise; any period in a dy-
namical system x→ f(x) with f(x) ∈ Z[x] has pe-
riod length 1 or 2. This can be used to prove that
if 0 is pre-periodic for the map x → f(x) ∈ Z[x]
then the orbit of 0 must be one of the following four
basic possibilities (each given here with examples of
polynomials for which 0 has that orbit):

• The polynomial f(x) = x2 − ax + a, indeed
any polynomial of the form a+x(x− a)g(x) where
g(x) ∈ Z[x], has the orbit

0→ a→ a→ . . .

• The polynomial f(x) = x2 − 2 gives the case
a = 2 in the orbit

0→ −a→ a→ a→ . . .

One can find such orbits with a = −2,−1, 1 or 2.

• The polynomial f(x) = x2 − ax− 1 gives the
case with the minus sign in the orbit

0→ ±1→ a→ ±1→ . . .

• The polynomial f(x) = 1+ x+ x2 − x3 gives
the case with the plus sign in the orbit

0→ ±1→ ±2→ ∓1→ ±2→ . . .

(In the last two possibilities one can obtain the case
with the other sign by replacing f(x) with−f(−x).)

2.2 Proof that all periods have length
1 or 2.

Suppose that N is the smallest positive integer for
which aN = a0, so that aN+j = aj for all j ≥ 0
(as noted above).

Assume that N > 1 so that a1 6= a0. Now
an+1− an divides f(an+1)− f(an) = an+2− an+1

for all n ≥ 0, and so

a1 − a0 divides a2 − a1, which divides a3 − a2, . . . ,
which divides aN − aN−1 = a0 − aN−1; and this

divides a1 − aN = a1 − a0,

the non-zero number we started with. We deduce
that |aj+1 − aj | = |a1 − a0| for all j. The integers
aj+1 − aj cannot all be equal else

0 = aN − a0 =

N−1∑
j=0

(aj+1 − aj)

=

N−1∑
j=0

(a1 − a0) = N(a1 − a0) 6= 0,

a contradiction. Therefore there must be some
j ≥ 1 for which aj+1 − aj = −(aj − aj−1), and
so aj+1 = aj−1. Therefore N , the period length,
equals 2.
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3 Final remarks

There are other proofs, many other proofs, that
there are infinitely many primes. Some are quite
similar to those mentioned here, others are rather
different. Some lead to deeper, rich veins of math-
ematical thought, others are isolated gems, though
some are little more than a reformulation of the
ideas already known. But it is always a treat to
see a new proof and to think through how it fits
into the literature and where it leads. Proofs can
be found by people at different levels of their educa-
tion, for example [3] (discussed in section 1.6) was
discovered by a student, and is the most original
and interesting new proof in years.

Other sources for different proofs of the infini-
tude of primes include the very popular [2], my
own personal favourite, [6], which is a rich (though
slightly out-of-date) resource for many things about
primes, and the website

http://www.cut-the-knot.org/

proofs/primes.shtml

Once one knows that there are infinitely many
primes, one cannot help but wonder how many are
there up to a given point? For example, does the
count grow as fast as the count of the number of
squares? Or, one might want a big prime and so
ask how does one go about finding and identifying
primes, and how long should one expect to take to
do so?

One might ask whether there are infinitely many
primes in a given arithmetic progression; and since
the arithmetic progression a (mod q) can be viewed
as the values of the polynomial a + nq as n runs
through the integers, one might ask whether there
are infinitely many prime values of, say, the polyno-
mial n2 + 1, or any other irreducible polynomial.

One might ask whether there is a formula for
primes and, if so, is it is a useful formula?

We have answers to some of these questions but
not all. And even the answers beg further questions,

so that the possibilities are limitless, and always so
intriguing.
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