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Abstract

lLet G be a simple, Eulerian graph of order n and c = c(G) be
the minimum number of edge-disjoint cycles needed to partition the
edge-set E(G) . In this paper we prove that ¢ = L(n-l)/2j , for all
such graphs with maximum degree A = A(G) s 4 .

Introduction

In this paper we shall only consider graphs that are finite and
simple.

It is a well-known fact that the edge-set of an Eulerian graph
can be partitioned into simple edge-disjoint cycles. If the graph is
of order n ; Hajdés conjectured (see [l], [2]) that c = |n/2] . Dean
[3] proved that Hajés' conjecture is equivalent to the statement "If G
is a simple Eulerian graph of order n then ¢ = c(G) = [(n-l)/zj'.

Let K‘ be the complete graph of order ¢ and Tm’ m even, be
the complete graph of order m minus the edges of a perfect matching.
It is well-known (see eg. [2]) that C(K2k+1) -k - L((2k+1)-1)/2j for
kz1 and c(Tyy) = k-1 = |(2k-1)/2] for k = 2 , where in both cases
all cycles are Hamiltonian.

In this paper we prove the following.

Theorem 1: For every Eulerian graph G of order n and maximum
degree A = A(G) s 4 , c(6) s [(n-1)/2].

The theorem for graphs with Eulerian components follows
immediately from the above.
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Theorem 2: For every integer n = 3 and every integer 1 ,
1 <1 s [(n-1)/2], there exist Eulerian graphs G
maximum degree =<4 such that c(Gi) -1 .

i of order ‘n with

Theorem 2 shows that the bound [_(n-l)/2_| is best possibie for
Eulerian graphs with maximum degree =4 for every order n = 3 .

Notation. By V(G), E(G), A(G), 6§(G), C(G) we will denote the vertex
set, edge-set, maximum degree, minimum degree and a cycle-partition of
the edge-set, of a graph G respectively. Also if v, w are vertices
of G then v ~w (v#w) will mean that v is (is not) adjacent to
w , (v, w) will denote the edge between v and w , NG(v) the
neighbourhood of v in G and dG(v) the degree of v in G .

Let A be the smallest positive integer for which there exists
Eulerian graph G , with A(G) = A and ¢(G) > |[(|V(6)| - 1)/2] . Let
K be the set of Eurlerian graphs G with A(G) = A ,

e(6) > [ (|V(6)| - 1)/2] where |V(G)| = n 1is minimal and then |E(G)|
is minimal. '

The following lemmas describe some of the properties that such

graphs possess.

Lemma 1: If Ge€ X the G is 2-connected.

Proof: Suppose that G has a cut-vertex v . Let Gl' G2,..., Gk’
k 2 2 denote the v-components of G of order
. k
0<n, = |V(G,)|, 1 1<k, vhere n= = n_ - (k-1),
i i =1 i
V(G,) N V(G,) = {v) and E(G,) N E(G,) = ¢ for all
i 3 i j k
i<i<j=<k. Now, by taking €(G) = u B(Gi) we see that
i=1
k k
c(G) = T c(G,)s T [(n,-1)/2] = [(n-1)/2] .
f=1 Y qa t

Lemma 2: If G € X then G contains at most one vertex of degree

two.
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Proof: Suppose v, w € V(G) where dG(v) - dG(w) =2 . As G is
2-connected (by lemma 1) there exists a cycle C containing both v
and w (by Menger'’s theorem). Let G’ be the graph formed by
removing E(C) and vertices v and w from G . By taking

B(G) = CUFEB(G') we see that c(G) s 1 + c(G’) s 1 + L(n-3)/2j -
L(n-l)/2j .

Lemma 3: If Ge€ X and v € V(G) with dc(v) =2 and
NG(v) = {(a, b) then a-~b .

Proof: Suppose a b in G . Form the graph G’ by adding (a,b) to
the graph induced in. G by V(G) \ (v} . Then E(G’') has a
cycle-partition E(G’') into t s [(n-2)/2)] cycles. Let C be the
cycle in €(G') which contains the edge (a,b). Replacing the edge
(a,b) in C by the path a - v - b we obtain a cycle-partition of
E(G) into t =< [(n-2)/2] cycles.

Lemma 4: If Ge€ K and v € V(G) such that dG(v) -4 ,
NG(v) - {(a, b, ¢, d) and a~b then c ~d .

Proof: Suppose that a ~b and c#d in G . Let G’ be the graph
formed from G by deleting the edges (c,v) and (v,d) and adding
the edge (c,d). Then dG,(v) -2 ,'G' is Eulerian of order n where
|E(G*)| < |E(G)| and so E(G') has a cycle-partition E(G’) into

t < [(n-1)/2] cycles. Let C be the cycle in C(G’) that contains
the edge (c,d). Then C must also contain vertex Vv (and so

the path a - v - b) else by replacing the edge (c,d) in C by the
path ¢ - v - d we obtain a cycle-partition of E(G) into

t < [(n-1)/2] cycles. Let D be the cycle in T(G') that contains
the edge (a,b). By replacing the edge (¢,d) by the path ¢ - v - d,
and the path a - v - b by the edge (a,b) in C ; and by replacing
the edge (a,b) by the path a - v - b in D we obtain a cycle-
partition of E(G) into t < |[(n-1)/2] cycles.

Lemma 5: If A =4 and G € X then any edge lies on at most one

triangle in G .
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Proof: Suppose the edge (v,w) be on triangles (a,v,w} and (b,v,w)
in 6. If NG(v) = (w,a,b,c) then, by lemma 4, c ~a and ¢ ~b as
w~b and w-~ a: If Nc(v) = (v,a,b,d) then, by lemma 4, d ~ a and
d~b as v-~-b and v-~a. ‘

Thus, either ¢ = d, in which case a ~b, as w-~c , and so0
G-Ks; or c»d, in vhichcase c¢c~d as v-~w and Nc(b) -

{c,v,v,d), and 80 G =~ TG .

Proof of Theorem 1: If A = 2 then, as all cycles have length =23,
the cycle partition of G contains at most |n/3]| < [(n-1)/2] cycles.
So assume A =4 and G €K .

Suppose there exists a triangle (u,v,w}) in G . By Lemma 2 we
may assume w has &egree 4 and, by lemma 1, there exists a path from
w to u or v in G\ ((u,w), (v,w)}. Let P be a shortest such
path and assume it ends at v (so that u does not lieon P and v
has degree 4) '

. Let NG(V) = {u,w,a,b) and NG(w) = (u,v,c,d) and suppose b
and ¢ lieon P (so that a and d do not lieon P, as P 1is a
shortest such path). Let C be the cycle formed by adding the edge
(v,w) to P. As a» d and u 1is not adjacent to a or d (by
lemma 5), we can form an Eulerian graph G’ from G by replacing
the paths a - v-u and d - w - u by the edges (a,u) and (d,u),
and by removing the cycle C and the now isolated vertices v and w.
Then there .exists a cycle partition €(G’) of/ G’ of order
ts |_(n-3)/2j . But, by replacing the edges (a,u) and (d,u) by the
paths a - v -u and d - w - u, and by adding the cycle C ,
we get a cycle partition €(G) of G of order l+t s [(n-1)/2] .

Thus G has girth g2 4 and so, by lemma 3, is 4-regular. But
then G has order n 2 8 : Dirac in [4] showed that if H 1is a
simple 2-connected graph with minimum degree § and order n 2= 2§ ,
then H contains a cycle of length at least 2§ , and so G contains
a cycle of length €28 . Thus c(G) <1+ |[(2n-8)/g] =
1 + [(2n-8)/4)] s [(n-2)/2] .
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Proof of Theorem 2:
. Case 1: n =2k, k2 2. First we construct the graph G 1 let C

be a 4-cycle and CZ’ Cs, 5000 Ck-1 be (k-2) 3-cyc1esk.A Arrange t;o
cycles in sequence Cl. 02. cees ck_1 and for each 2 < j x k-2
identify one vertex, say vj-l' of cj with a vertex of cj.I and
another vertex vj of cj with a vertex of cj+1 , thus creating a
l-connected graph with (k-2) cut-vertices each of degree 4 and (k+2)
vertices each of degree 2. Thus c(ck_l) - :fi c(Cj) = k-1 . For

1 <i s k-2 we obtain the graphs G1 from G1+1 by removing the

edges of the cycle C and the two resulting isolated vertices, and

i+l

by performing 2 elementary subdivisions on an edge of C1 , thus
transforming the originally 4-cycle C1 into a (2(k-i+l))-cycle.

Clearly |V(Gy)| = 2k , A(G;) s 4 and c(Gy) -1 .
Case 2: n = 2k+l, k2 1. Take k 3-cycles and proceed as in case 1.

Remark: It would be interesting to know whether the bound

¢ < |[(n-1)/2] is sharp for Aéregular graphs: We are aware of only two
4-regular graphs, namely Rs and T6 ,-with the property

c = [(n-1)/2].
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