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0. Introduction. The First Case of Fermat’s Last Theorem is said to be
true for n > 2 when

(FLT1), If x, y, z are non-zero integers such that x"+ y" = z" then the highest
common factor of n and xyz is greater than 2.

Terjanian [13] showed that (FLT1), is true for even exponents, so we
may take n to be odd. Furthermore, if n divides m and (FLT1), is true then it
is clear that (FLT1),, is also true. Thus, it suffices to prove (FLT1), is true for
each odd prime p.

We shall prove a technical theorem, from which we deduce that (FLT1),
is true when n = p® or p®q® (where p, q are distinct odd primes and a, b are
sufficiently large). We shall also obtain other interesting results, some of
which have previously been obtained using different methods. In fact, the
technical development appears in Sections 1-3 and the main results in
Sections 4-5; these may be read without references to Sections 1-3.

We note that if n is odd and x, y, z satisfy x"+y" = 2" then x, y, —=
satisfy the equation

1), X"+Y"+Z"=0.

Moreover, we may assume that x, y and z are pairwise relatively prime.
The following results will be used: _
ABEL'S RELATIONS ([ 1]). Suppose that p is an odd prime, t 2 1, and a, b, c

are non-zero pairwise relatively prime integers such that a’ +b7 +c” =0.If p
divides a then p divides b+c and there exist integers r, s such that

a+b=r", a+c= sP.

PorLraczek's THEOREM ([11]). If p is an odd prime, and a, b, c are
non-zero pairwise relatively prime integers such that a®+bP+c? =0 then
p xYab+bc+cu.
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Actually Pollaczek’s theorem was proved under the additional condition
that p ¥abc. However, it holds also if p|abc (for if p|a then p|ab+ ca and so
p ¥ ab+bc+ca).

AzUHATA'S THEOREM ([4]). Suppose that p is an odd prime, t > 1 and

a, b, ¢ are non-zero pairwise relatively prime integers such that a? +b” +c¥
=0. If q is a prime and one of the following conditions is satisfied:

(i) gla and p ¥ a,

(i) gla*—bc and p ¥ ab+bc+ca,
then g? = g(mod p?).

Note that ab+bc+ca = (ab)” ' +(bc)” ' +(ca)” ' (mod p), so, in view
of Pollaczek’s theorem, the second condition in (ii) above is automatically
satisfied.

We also need the following easy lemma:

LEMMA 1. Let m, t = 1, and p, q be odd primes such that ¢ = 1+ mp'. For
any integer k > 0, qg° = q (mod p'**) if and only if p*|m.

Proof. If m = m' p* then g =1 (mod p***), so ¢q*> = q (mod p . qP
= ¢?~ 1 (mod p***) hence g” = g (mod p**"). Conversely, let m = m’ p" with h
>0, pfm'.So qg=1+m p'*" and therefore g* = 1+m' p"**+1 4 [p?h+2+1 |f
g°—q =up'** then m' p"" ' (p—1)+Ip?"* 2+t = yp'** Hence t+k < h+t, so
that k < h and p* divides m. =

k+t)
9 o

1. The first theorem.

THEOREM 1. Let p, q be odd primes such that p|q—1; let t > 1 be such
that p'*! yq—1. If there exist non-zero pairwise relatively prime integers

X, y, z such that xP +yP +2z7 =0 with q|x then pq|y+:z.

Proof. Let g =1+ mp" where pfm and 1 <n<t.

By Azuhata’s theorem, p|x, otherwise g” = g (mod p?), so that 1+ mp"*!
= 14+ mp" (mod p*") and p|m, contrary to the hypothesis.

Since x+y+z = 0(mod p) then p|y+z and, by Abel’s relations, there
exist r, s such that x+y =r”, x+z=s". Since g|x then qtzy and y
=r” (mod q), z = P (mod gq) and y"‘+z"' = 0 (mod g). Let k be an integer
such that kz = —y (mod g). Then k* =(—y/z)” =1 (mod q). But g—1|mp'

so y"=r"" =1(modgq), and, similarly, z"=1(modq) so that k"
= 1 (mod g). Since p fm we have k =1 (mod g) so that g|y+z. =

2. Preparation for the second theorem. For any field K and aeK let
Ngjo (@) denote the norm of a.

Let m be an even positive integer and let £ be a primitive mth root of 1;
A=Z[]

If i, j are non-negative integers, let h = h,,; ; = ged(m, i, j). Define N, ; ;
as follows: :

|
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If m*"*‘.]’ let Nm,i,j = NQ(ih)lQ (1 +§i+éj)'
If mli+j, let No;; = Ngghs gy (l+E+ &)
Let T, = {(i,j)l 1+&+& =0, 0<i,j <m). For every prime g, let

lm,q = Max -lvq(N,,,,,-,j)l 0<i,j<m,(i,j)¢T,)

(here v, denotes the g-adic valuation). Note that if (i, j)¢ T,, then N,,;; # 0;

therefore ¢,,, is a non-negative integer as (0, 0) is clearly not an element
of T,.

- Let S(m) = {gprime| ¢ =1 (mod m) and ¢,,, > 1}. Thus
Sm= ) {qprime| g =1 (mod m) and qle,,-,j},
G0 €T :
0<i,j<m

so that S(m) is a finite set.
LemMma 2. (1) If 3 ¥m then T, = Q; if 3|m then
T, = {(m/3, 2m/3), 2m/3, m/3)}.

(1) If q is any odd prime then t,_, ,> 1.

Proof. (i) If a,, a, are roots of unity such that 1+a; +a, =0 then a,
=, a; = 0% or a; = w? a, = w, where @ = cos(2n/3)+isin(2n/3). (For if
o, = x+iy and a, =a+ib then y = —b, so |a| =|x] and a+x = —1; thus a
=x=—1/2and y=-b=+ /_/2) So, if (i, j)e T,,, then 3|m and so &
—_ 5m/3 é" éZm/3, or él _éZm/i! éj ém/S

(i) We calculate N,, o, where d|m; by definition

Nmoa=Noeho(2+&) =[] (2+¢&%).
<asm
gc(li(a,m/d),:l
Then
[INmoa=I1 TI @+&9= [JI @+&)=2"-1,
dim dim 1 <a<m/d b=1
ged(a,m/d)y=1

since m is even. Taking m = g—1 there exists d such that g|N,_, ¢,, since
q127'—1; and so this implies that t,_, ,>1, as Ny 0= Npom- ®

LeMMa 3. If m is even and q is any prime, then
< [¢(m)log 3/log q].

Proof. To begin we note the general fact: if Q S K'<S K, K|Q and
K'|Q are Galois extensions of finite degree, and ae K’, then N, () divides
Ny o(a). Thus, for every (i, )¢ T, 0<i,j <m,

N,,,,,-,J: divides NQ(¢,|Q(1+Ei+§j) = 1<H (14 &% 4 £9)
acdamm 1
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and so

g < [N < 37,
Hence

vy (Nmij) < @(m)log3/logg,
so that

Imy < [@(m)log3/logq]. =

The following is well known and it is included only for the sake of
completeness:

Lemma 4. Ler m,t be positive integers and q be a prime with ¢
= | (mod m). There exist exactly @ (m) integers r, such that 1 <r < q'—1 and
order (r mod ¢') = m.

LEMMA 5. Let m, t be positive integers, with m even, and g be a prime with
g=1(mod m). Let r be an integer such that 1<r<gq—1 and order
(r mod ¢') =m. If i and j are non-negative integers and q'|1+r' +r’ then
q'l Nm.i‘j'

Proof. Since ¢ = 1 (mod m), we know that Aq is totally decomposed as
the product of ¢(m) distinct prime ideals of A; that is

@(m)
k=1
Thus
@(n1)
Aq =[] G
k=1

Now, for each k, Z/Zq ~ A/Q,, so that Z/Zq' ~ A/Q). But, by Lemma 4,
there are exactly ¢(m) elements of order m in Z/Zq', and so the same is true
for A/QL. We claim that the set of elements of order m in A/Q; is precisely
the set

€ 0<a<m,(a, m=1%L

It suffices to show that if ¢ = " (mod Q) then & = &

Now suppose that & = &“+a where «€Qj and a # 0. Then X"—1
=(X—-&Y(X—-&—a)g(X) with g(X)eA[X]. Taking derivatives at X = ¢*
we get

nk-:tl(ryi— 1) — _CXLI(L::") GQ;\
which is clearly impossible as ¢ Ym and ¢ is a unit.

Now r has order m (mod ¢'), so that there exists an integer a, 0 < a < m,
(a, m) = | such that

r =¢%(mod Q).
Thus 1+¢%+¢&9 = 14r+#7 =0 (modQ)), and so Q|1+ &%+ &Y which di-
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vides N,,; ; (in the ring A). But this holds for each k =1, 2, ..., ¢(m) and,
as the ideals Q! are pairwise relatively prime, we have:
@(m)
Aq' = [] Qi divides N, ;.
. T k=1

LEMMA 6. Let q be an odd prime and m, u > 1, t > 0 be such that m is
even, u is odd, with (q—1)q'|mu and m|(q—1). Assume that x,y,z # 0 are
such that q ¥xyz and x*+y*+z*=0. If t > t,,, then 3|m and there exists
w, 0 <w <gq such that order (w mod q) =3, (y/x)* = w (mod g), (z/x)*
= w? (mod g).

Proof. We have 14(v/x)“+(z/x)*=0(mod ¢'*!). Note that (v/x)*"
=1 (mod ¢'*!) since (q—1)q'|mu; similarly (z/x)*" =1 (mod ¢'*!).

Let r be such that 1 <r <g'*! and order (r mod ¢'*') = m; such an
element exists because m divides (g—1).

Therefore, there exist integers i,j, 0<i,j<m such that (y/x)*
=r (mod ¢'*Y), (z/x)* =1 (mod ¢'*') and hence 1+ +7r =0 (mod g'* ).

By Lemma 5, if (i, j)¢ T,, then ¢'*!|N,,; ;, that4st, , > t+1, contrary to
the hypothesis.

So (i, j) is an element of T,,. Thus by Lemma 2, 3|m, and there exists w,
0 < w < g such that order (w mod ¢g) =3 and (y/x)* = w (mod q), (z/x)*
= w? (mod q). =

3. The second theorem. The following theorem, which is rather technical,
will have many interesting corollaries.

THEOREM 2. Let n='1 be odd, and q be an odd prime such that q
= (mod n) and, if n > 1, suppose that n* yq—1. Let m = (q—1)/n.

a) If t,,, =0 and 3|m, then, for every odd prime p, such that pAm, let k
= /\(p) be the smallest positive integer such lhul 4" # ¢ (mod p): ler 1 =1(p)
=ph If x, y, z # 0 are such that x"’+y"‘+'"’ 0 then gp|x (or 4ply or 4p|z).

(B Ifty,#0o0r 3)mthen let I=q™% If x, y,z #0 are such that x™
+y"+z" =0 then q|x (or q|y or q|z) and if n>1 there exists a prime p
dividing .n such that p|x (or resp. p|y, or p|z).

Proof. Let t =1t,,, u=nl, so that u is odd. Note that ¢' divides I,
(g—1)q'|mu and m|(g—1) in both cases (a) and (b).

Assume that x, y,z#0, x*+y*+:2*=0 and q f xyz.

Since t = t,, ,, we have 3|m by Lemma 6, and there exists w, 0 < w < g,
such that order (v mod q) = 3, with (y/x)" = o (mod g), (z/x)" = w? (mod g).

In case (a), t = 0. Let a = x", b = y", ¢ = z", so that a'+b'+c' = 0. Now

(@?/bc) = (x¥/yz2)" = w? - =1 (mod q)

and

(@*/be)™ = (x*/yz)™ = (x*/zy)*"" =1 (mod g).
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But | = p* where p tm, so a’/bc = 1 (mod g); that is g|a®—bc.
But by Azuhata’s theorem ¢” = g (mod p?*), so we have a contradiction.
Thus g|xyz, say q|x. Then p|x, else by Azuhata’s theorem, g”

= g (mod p*¥).
In case (b), t >0, I=¢4'; let s=nllq, a=x°, b=), ¢ =z Then
a+b'+c1=0
gn’d
(b/a) = (y/x) = (y/)" =  (mod g),
and
(c/a) = (z/x)° = (z/)" = w0 (mod g).
Hence

ab+bc+ca = a*(w+w?*+1) = 0 (mod g);

contradicting Pollaczek’s theorem.

Thus g|xyz, say q|x.

Suppose that »n > 1 and ged(n, x) = 1. If p|n then p kx. Let | =v,(n),
and n=p'n (p ¥n), so that

(P + (P () = 0.

‘Since n is odd, so is p. By Azuhata’s theorem g¢” =g (mod p?). As
g = 14+ mn'p', we know, by Lemma 1, that p'|m, for every prime p dividing n.
Thus nim and n* divides nm = qg—1, which is against the hypothesis.
Thus there exists a prime p dividing n and x. w

4. The corollaries.

CoroLLARY 1. Let p> 3 and q be primes such that p|q—1.

There exist integers ty > 1, t, = 0 (both depending on p and q) such that if
u= p'1 qtz, and X, y, z are non-zero integers such that x*+ y*+z* = Q then pq
divides x (or y, or z).

Furthermore, if t; >t = v,(q—1) then pq divides x+y (or y+z or x+2z).

Determination of ty, t;: let m=(q—1)/p, t, =1,,.

(@) If 3|m and t, =0 let t; = [1+43t/2].

®If3fmor t,>0let t; =t. _

Proof. (a) If 3|m and t, =0, let ] =p' '. Note that 2(t,;—?) > ¢, so

20170 par g or else, by Lemma 1, p|p>'t~*|m, contrary to the definition of

m. Let n = pf. Then u=p'q'> = p'' = nl. By Theorem 2(a), pq|x (or y, or z).

(b) f 3fmort,>0let I=g?2 and n=p'. By Theorem 2(b), q|x (say)
and since n > 1 (because t; =t > 1), p|x.
Furthermore, if t, >t > 1, since g|x (say) pq|y+z, by Theorem 1. =
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CoROLLARY 2. Let p > 3. There exists an integer t =t(p), 1 <t <t,_q,,

such that if x, y, z are non-zero integers satisfying the equation x”’ + y"t +27
=0, then p|xyz.

Proof. By Lemma 2,¢,_, ,> 1. Let [=p? '?, n=1,q=pand u =nl

Then the result follows immediately from Theorem 2, (b). m
This corollary was originally proved by Maillet [10] with very different
methods, involving the theory of cyclotomic fields. In fact, this is the first

proof by elementary methods. References to other proofs of this corollary
may be found in [12], pages 205—206

COROLLARY 3. There exists an infinite sequence of pairwise relatively prime
exponents, which may be taken, for example, to be prime-powers, such that the
first case of Fermat's Last Theorem is true for each such exponent.

Proof. This follows at once from Corollary 2. =

It should be noted that using Faltings’ theorem [5], it is possible to
obtain stronger forms of Corollaries 1, 2 and 3.

We recall that, according to Faltmgs theorem, for every n >3 there
exist only finitely many trlples of pairwise relatively prime integers
x,y,z # 0, such that x"+y" = z".

In [6], Filaseta showed that for every n >3 there exists an integer
M (n) > 0 such that if m > M (n) then there does not exist integers x, y, z # 0,
such that x™+y™ = z™.

Choosing t,, t,, t such that p '17"4'2 > M(p), P~ > M(p) we obtain the
following consequence of Filaseta’s result.

CoroLLARY 1'. Let p >3, q be primes such that p|q—1. There exist

integers t; > 1, t, > 0 such that if u=p''q ‘2 then there does not exist non-
zero integers x, y, z such that x*+y*+z*=0.

CoRrOLLARY 2'. Let p >3 be a prime. There exists an integer t > 1 such

that there does not exist non-zero integers x, y, z with x¥ + y"' +z7'=0.
Once more, from Corollary 2, it follows:

CoRrOLLARY 3'. There exists an infinite sequence of pairwise relatively
prime exponents, which may be taken for example to be prime powers, such that
Fermat’s Last Theorem is true for each such exponent.

It is however important to stress that, contrary to the numbers ¢,, t,, t
appearing in Corollaries 1, 2, those appearing in Corollaries 1’, 2’ are not
effectively computable.

CoOROLLARY 4. Let m be an even integer, not a multiple of 3, and t be an
integer, t = 1.If p > 3 and q = mp' + 1 are primes such that q¢ S(m) and p ym;
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and x, y, = are non-zero integers such that x”' +y" +z" =0, then pq divides
x+y (or z+x, or z+Y).

Proof. Since q¢S(m) then t,,,=0. Let t, =0, (; =t =v,(q~1) and u
= p' so, by Corollary 1, pg(x+y (or x+z, or y+z). m

Taking t =1 in the preceding corollary, we obtain a form of the
classical Sophie Germain’s theorem; due to Krasner [9]:

COROLLARY 5. Let m be an even integer, not a multiple of 3. If p > 3 and
q = mp+1 are primes such that q¢S(m) and p¥m; und x, v, = are non-zero
integers such that xP+y?+z? =0 then pq divides x+y (or x+z or y+=z).

Using Corollary 5 and a recent improvement of the Brun-Titchmarsh
Theorem, due to Fouvry [7], Adleman and Heath-Brown [2] have shown
that (FLT1), holds for infinitely many primes p.

CoOROLLARY 6. Let m be an even integer, not a multiple of 3. Let ¢ be any
prime, such that ¢ = 1 (mod m), n = (q—1)/m is odd and ¢ > max {3°™  m?). If
X, ¥, = are non-zero integers such that x"+y"+:="=0 then gcd(n, xyz) > 3.

Proof. We have (g—1)*)/n* =m?> < q—1 so n*> > gq—1; since n is odd,
n*>qg—1, so n*fq—1. Also q > 3¢ (m), so that ¢(m)log3/logg <1 and,
therefore, by Lemma 3, ¢,,, = 0. It follows from Theorem 2(b), taking [ = 1,
that there exists a prime p dividing n and xyz; since p must be odd, we have
ged(n, xvz) =2 3. m

Using Corollary 6 and the Siegel-Walfisz Theorem, Ankeny and Erdds
[3] showed that the set of exponents n, for which (FLT1), is true, has density
one. ' '

COROLLARY 7. Let m be a multiple of 6, t > 1 and t, =[1+3t/2]. If p= 3
and q = mp'+1 are primes such that q¢S(m), p¥m; and x, y, z are non-zero

integers such that x"ll+y"tl+z‘”'l =0 then pq|x+y(or x+z, or y+2z).
Proof. Since q¢S(m) and q =1 (mod m) then ¢t,,=0. Let t, =0, 1,
=[143t/2] = ¢; so, by Corollary 1, pg|x+y (or x+z, or y+z). m
CoroLLARY 8. Let m be a multiple of 6. If p>3 and q =mp+1 are
primes such that q¢S(m), p¥m; and x,y, z are non-zero integers such that
X7 4yP? 4272 = 0 then pqlx+y (or x+z, or y+z).
Proof. We use Corollary 7 with t =1 so that r;, =[1+3/2]=2. =

Corollaries 7 and 8 are the first such results with m divisible by 6. A
subject for further research would be to reduce the exponent in Corollary 8
to p. However, that does not seem possible with the methods used here.

S. Some computations. It is important to determine S(m), where m is
even. This is relatively easy when m is small. Thus

$(6) = {7,
S(12) = {13},
S(18) = {19, 37, 73.
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From these computatlons and Corollary 8, we obtain:
CoroLLary 9. If p>3 and g = 6p+1 (or 12p+1 or 18p+1) are prime
and x,y, z are non-zero integers such that xP* +yP 2yt =0, then p|xyz.

Proof. For p =3, use Corollary 5§ with m=2. If p> 5 (and m=6, 12
or 18) p¥m and g = mp+1¢S(m). So, by Corollary 8, p divides x+y (or
x+2z, or y+2z) and thus p|z (or y or x). m

In the next result we shall use a theorem in Ireland and Rosen ([8], p.
98) on Fermat’s congruence, to conclude that certain primes belong to S(m).

Let g be an odd prime, F, be the field with g elements, and

P = # {projective solutions of X"+Y"+Z"=0 in F,}.
Then
IP—(@+1) < (n—1)(n—2)/q.

ProposiTiON 1. Let m and n be positive integers such that m > n®—6n?
+17n—3. If q = mn+1 is prime then qeS(m).

Proof. Choose r to be an integer, 0 < r < g, of order m (mod g). Define
amap E: Z - Z,, as follows. For xe Z let j be the unique integer, 0 <j <m,
such that x" =r/ (mod q). Then E(x) =j.

Let

N=#{x,y 1<x,y<q—1,(E(X), E())¢ T qll+x"+y"}
and |
N =#{x,y 1<x,y<qg—1,(E(x), EQ) €T, ql1+x"+y"}.
We have
P = N+ N'+ # {projective solutions (x, y, z) of X"+Y"+Z"=0
in F,, with x, y or z equal to 0}.
Thus, by Lemma 2, ~ '
P < N+2n*+3n.

Hence
N>P-2n*—3n> q+1 (n—1)(n—2)/q—2n*—3n
and
N—132q—(n—1)(n—2)/qg—(2n*+3n).
Since .

m>=n®—6n*+17n-3,
q= mn+1 n*—6n*+17n*=3n+1> n*—6n*+17n*—6n+4
=(n—1)2(n—2)2+2(2n%+3n).
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The discriminant of the polynomial
F(T)=T*—(n—1)(n—2) T—(2n?+3n)
is
6=(n—-1>%*(n—-22+4(2n*+3n > 0>.

If
A=n—-1)(n-2), B=2n?+3n
then
A*4+2B> A JA?+4B = A /s
SO
4q > 4(A%+2B) = A2+ (A% +4B)+2(A%+2B)
> A2+6424./6 = (A+./9)
so that
Ja=4+./9)2.
Therefore

N-1>F(/9>0

and this concludes the proof. m
For m even, define

Nn.= [ @1+&+8),
0<i,j<m—1
@.N¢T

so N,, # 0. Note that, for every (i, j)¢ T,,, the conjugates of 1+ & + ¢/ (in the
extension Q(&")|Q, or in the extension Q(&"+¢&7")|Q — see the definition of
N, ; are non-zero (else ¢, (x)|1+x'+x’) so that N,,;; divides N,,.

Now we show:

Lemma 7. (i) If q is a prime and q = 1 (mod m) then qe S(m) if and only if
q divides N,,.

(i) # {q prime| qeS(m)} < m*log3/log(m+1).

Proof. (i) If ge S(m) there exist (i, j) ¢ T,,, with 0 < i, j < m—1, such that
q divides N,,; ;. By the above remark, g divides N,,.

Conversely, suppose g divides N,,. Since N,, divides IT Nmijs

0<i,j<m-1
@¢Tm
there exist (i,j)¢ T, such that g divides N,;;. By the hypothesis g
=1 (mod m), so that ge S(m). '
(i) Let v = # {gprime| geS(m)}. If geS(m), then g =1 (mod m), so




On Sophie Germain type criteria 275

g = m+1. Also by (i), g divides N,,. Therefore [] g divides N,. Hence

geS(m)

m+1) < [] g <INJ <3
qeS(m)

We conclude that v < m?log3/log(m+1). =

The computation of N,, and of N,,;; (for (i, j)¢ T,,) is laborious when m
is not very small. ‘

If 3 /m (hence T,, = @) Wendt [14] noted that N,, is the determinant of
a circulant matrix; however, if 3|m, the corresponding, circulant is zero.

We shall recall Wendt’s result, modifying the definition when 3|m, so
that, in all cases, it is equal to N,,.

If F(X)=ao+a, X+ ... +a,_, X™ 1, it is well known that the determi-
nant of the circulant with top row ag, ay, ..., @n_y, is

a, a ... Q- 1
det [“m-1 %0 -2 |2 R
................. L

a, a, ... a,

The Wendt determinant W, is the determinant obtained from the
circulant defined with the coefficients of (1+ X)™"— X™. So

W, =[] [1+&)"—-&m1 = [T [A+&)"-11.
i=0 : i=0

As it is known, and easy to show, W, =0 if and only if 6 divides m.

So, if 6/m we shall define a modified Wendt determinant still denoted
W,.. When 6/m, X2+ X +1 divides (1+ X)™—X™; so let W, be the determi-
nant obtained from the circulant defined with the coefficients of the polyno-
mial

1T+xm-x"

Fu(X) = 1+ X+X?

We prove:

Lemma 8. (i) If 3f/m then N, = W,,.

(ii) If 3|m then N,, = m*W,,.

(ii) If q is a prime, q =1 (mod m) then qeS(m) if and only if q
divides W,,.

Proof. (i) If 3fm then T,, =@ so

m—1 m-1
N,= [l Q+&+&) =[] [1+&)"-1] = W,.
i=0

i,j=0

(i) If 3|m then T, = {(m/3, 2m/3), (2m/3, m/3)}. Now
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No= T (1+&+8)

0<i,jsm-1

,))¢T
m—1
=11 II a+&+&) [T a+&+&3): [T (1+&+3)
i=0 j#m/3,2m/3 i#2mf3 i#mf3

_m_l (1+€i)m—1 } 2mi3 _ ziy mi3 _ i

- il=—[() (1+&)?—(1+&)+1 i¢12—£/3(£ B n!:.[/s(f B

_"’1211(1+€i)'"—1_ X"—1 ) X"—1

- RS €2i+€i+1 X_éZm/3 5 X—fm/3
-1

— n F (f') Z xm-1- Jé(Zm/3)JIX c2m3’ Z xXm-1- 15<m/3nlx omi3

i=0 j=

— Wm .mg(m—l)(Zm/3) .mC(m m(3) __ m W

(i) By Lemma 7(i), geS(m) if and only if g|N,. If 3 ¥m, this is

X_sz/ X_ém/3

equivalent to g|W,,. If 3|m, this is equivalent to ¢|m?W,. But if g|m then

q<

and

(1]

21

(3]

m < g—1, which is absurd. So g|W,,. =
The authors would like to thank Dr. Paulo Ribenboim for his comments
help in the preparation of this paper.
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