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Abstract

Let p be a prime number, let Fp be the algebraic closure of F,, =
Z/pZ, let C be an absolutely irreducible curve in A"(F,) and h =
(h1,--+ ,hs) a rational map defined on the curve C. We investigate
the distribution in the s-dimensional unit cube (R/Z)* of the images
through h of the [F)-points of C, after a suitable embedding.
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1 Introduction

An arithmetic geometer lecturing on elliptic curves might draw an example

like the real locus of y? = 23 — a:
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The real locus of y?> = 2% — x

To understand the elliptic curve (for instance in defining its L-function) one
often must study it (mod p) for all primes p; and our arithmetic geometer
has been known to discuss this “reduction” (mod p) by using the same
picture. Although this may be illustrative of geometric concepts, it doesn’t
seem to reflect the true picture of the curve (mod p). For example, taking
p = 957 one has the following:

Tt g e

Points (z/p,y/p) where y?> = 23 — z (mod p) with 0 < z,y <p



It does not seem as if the points on the curve (mod p) conform to some
geometric curve, but rather they seem to be uniformly distributed across the
square (and indeed one gets a similar impression looking at the picture for
other primes p). In other words, if €2 is a subset of the unit square, it seems
as if #{0 < z,y < p—1: y* = 2°> — 2 (mod p) and (z/p,y/p) € N} is
roughly Vol(2)p. Our goal in this paper is to show that this is so in some
generality:.

One objection to what we have just suggested is that we have chosen a
particular embedding of the points mod p onto the unit square, and it may
be that a different embedding will not show such an unclear picture (that is,
that the points may then appear to lie along a geometric curve). Thus we
will allow any embedding given by a rational map, and determine whether
the embedded points are then necessarily uniformly distributed.

Sometimes one does get a clear picture: indeed, certain rational maps will
embed the points of our curve into a geometrically identifiable object in our
range. For example the map (z,y) — ((z + v?)/p,2*/p + 1/2) (mod 1) for
integers (z,y) satisfying y*> = z* — z (mod p) maps the points on our curve
into the line v = u+ 1/2 (mod 1) in our range, and this is easily recognized
in [0,1)? (or, more precisely, in the two dimensional torus (R/Z)?). Tt is not
hard to cook up further examples where points on a curve are injected into
a translate of a linear subspace of the range (that is, a surface), so that the
points could not be uniformly distributed in the unit cube, as we suggested in
the previous paragraph. However if one considers the curve to be embedded
inside the smallest such surface then one can ask whether the points are
uniformly distributed therein, and this is what we prove to be true, as the
main result in this paper.

2 Uniform Distribution in the Whole Space

Let p be a prime number, and let F, be the algebraic closure of F,. We
identify I, with the set Z/pZ = {0,1,...,p — 1} and so, given = € [F,, we
can consider the rational number t(z) = z/p € T := R/Z = [0,1); thus
we associate F, with pT N Z. In this way F injects into the s-dimensional
unit cube T® = [0, 1]°, with a point x = (z1,...,2,) € F; being sent to
t(x) = (z1/p,...,xs/p) € T".

We recall that a curve C, defined over [F, is called absolutely irreducible
if it remains irreducible over the algebraic closure F,,.



Let C be an absolutely irreducible curve of degree d, defined over IF,,

embedded in affine space A"(F,). We shall call h = (hy, ..., hs) a suitable
rational map C — A*(F,), with h; = f;/g;, where f;,g; € F,[X1,..., X,] if
C is not contained in the hypersurface g; = 0, for 1 < j < s. Define the
degree, D, of h to be the maximum of max{deg f;,degg;} for 1 <j <s. By
the above identification, the set C(IF,) of F,—points on C becomes a subset
of T", while its image t(h(C(F,))) will be a subset of T*.

Given a domain ©Q C T* let uc n(€2) be the proportion of points x € C(IF,)
for which t(h(x)) € €, that is,

(@) — HXECE,) | thx) € Q) "
#C(Fyp)

We shall say that 1, hq, ..., hs are linearly independent along C, if C is not

contained in any hyper-surface of the form

co+c1hi(X) 4+ -+ cshg(X)=0 (2)

with ¢p,c1,...,¢5 € Fp not all zero. In other words, ¢; = ... = ¢, = 0
whenever ¢1hy(X) + - + ¢shs(X) is constant along the curve C. We say
that h is L-free along C if C is not contained in any hyper-surface (2) with
¢1y...,¢s € [—L, L], and not all zero. In particular 1, hy, ..., hy are linearly
independent along C exactly when h is (p — 1)/2-free along C.

We begin by improving and generalizing results from [1, 3, 13, 16, 17]
which focus on the pe,(€2) without consideration of relations like (2) (which
we take into account in the next section).

Theorem 1. Let r > 2 and s,d, D > 1 be integers. For any domain 2 C T*
with piecewise smooth boundary, any absolutely irreducible curve C of degree

d in A™(IF,) defined over F,, and any suitable rational map h : C — A*(F,) of
degree D which is L-free along C, one has

ten(2) = 1(Q) + Oy 5.4.0.0 (Lil/s +p71/25 log L) ,
where | denotes the normalized Haar measure on T".

For I, > p'/? the error term is O(p~'/?*log p), which improves and extends
the result of [13] (obtained under the condition corresponding to L = (p —

1)/2).
In effect Theorem 1 says that if the image of C(IF,,) through (A4, ..., hy) is
not contained inside a surface of the form (2), then it is uniformly distributed
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(indeed, the discrepancy of this set is very small). Evidently if the image
is contained inside a surface of the form (2), then it cannot be uniformly
distributed. However in the next section we will show that this image does
satisfy a different, but just as natural (when explained), distribution law.

3 Uniform Distribution in a Translate of a
Proper Subspace

In this section we investigate the case when the curve C and the map h are
such that there exist integer numbers cy,cy,...,cs € {1%1’, e ’%1} not all
zero for which (2) holds. So in this case 1, hy, ..., hs are no longer linearly
independent along the curve C. We first discuss some terminology. We
look at the components hq, ..., hs of h and select a maximal subset of them
which, together with the constant function hg(x) = 1, form a set which is
linearly independent along the curve C. We may assume without any loss of
generality that {hq, ..., hs,} is such a subset. Thus in what follows we assume
that 1, hy, ..., hs, are linearly independent along C, and for any sy < i < s,
h; can be written as a linear combination of 1, hy,..., hs, along the curve
C. In other words, there are (uniquely defined) integers ¢;; € {%, e p—;l}
so+1<i<s,0< 7 < s, such that C lies inside each of the hyper-surfaces
defined modulo p by
hi(x) = ) cijhy(x).
0<j<so0

Then for x € C(FF,) the vector h(z) = (hi(z), ..., hs(z)) € F; lies inside the
subset W of I given by

W={(y,...,ys) €F, 1 yi=cio + Z cij¥j, o +1 < < s}k
1<j<so

Thus W is a translate of a proper vector subspace of IF;, and it is the smallest
translate of a proper vector subspace of I, which contains h(C(FF,)).

One would naturally like to have a geometric image of this situation, so
we are interested to see how (W), which contains the set t(h(C(F,))) whose
distribution we are investigating, sits inside the torus (R/Z)*. Now (R/Z)?
is not a vector space, but it is a Z—module. So it makes sense to consider



the subset, call it E¢y, of (R/Z)*, defined by

C; .
Een={(z1,...,25) € R/Z)° : z; = -0 Z cijzjsso+1<i<s}
p 1<j<s0
Note that E¢, is nonempty, since from the definition of the map ¢ it follows
that for any (yi,...,ys) € W one has (t(y1),...,t(ys)) € Ecn. Therefore

t(h(C(F,))) € t(W) C Ecn. (3)
Sometimes, referring to (3), we say that t(h(C)) is embedded inside a trans-
late of a proper subspace of (R/Z)*, although, strictly speaking, Ecp is a
translate of a Z—submodule of (R/Z)%. More generally, by a translate of a
proper subspace of (R/ Z)S we mean a set of the form

{(zla"'v R/Z Z Cijzj = ﬁz;l <1< l}
1<5<s
where ¢;; € Z and §; € (R/Z) for 1 <i <[, 1 < j <s. We now fix some
notation and proceed to describe our results. The set of hyper-surfaces of the

form (2) which contain C form a vector space over F,, which we will denote
V+: that is

+:={u€F:u-h(x) is constant for x € C}.

For each u € V4 we define A(u) := u - h(x), so that C lies inside the
hypersurface given by the equation

urhy(x) + - -+ + ushs(x) = A(u), (4)

for every u = (u1,...,u;) € V*.

Let V be the vector space perpendicular to V=+ in [, so that u-v =0
for all v.€ V,u € V4. Let Ay be a vector for which u- A, = A(u)/p for all
u € V*, so that

{yeF: u-y=A(u) forallu € V=-} = pA, + V. (5)

Therefore h(C(F,)) is embedded inside the translation pA,+V of the proper
subspace V' of F7; and so t(h(C(IF,))) is embedded inside Ay + (V).

Note that no proper subspace of Ay + ¢(V') can contain t(h(C)), because

such a subspace will then have an orthogonal space which is larger than V=,

and this contradicts the definition of V4. In other words, in the notation
from the beginning of this section we have

Ay + (V) = (W) C Eep.



Theorem 2. Let r > 2 and s,d,D > 1 be integers. Let E C T° be a
translate of a subspace of dimension sy of T°, and let 2 be a domain in T®
whose intersection with E has piecewise smooth boundary. For any absolutely

irreducible curve C of degree d in A"(F,) defined over [F,, and any suitable

rational map h : C — A*(F,) of degree D, for which Ecp = E,

pen(Q) = pe(Q) + O, 540,80 (p_l/zso logp) .

where pr() = pe(QNE), and pg denotes the normalized Haar measure
on L.

Thus we now have results which apply in all cases, and with better error
terms than in previous literature. Note that the error term here depends
on F. In section 11 we obtain such a result in which the error term is
independent of E, but which only holds for boxes (with edges parallel to the
co-ordinate axes).

4 Global Geometry and Distribution Ques-
tions

In the previous section we assumed that prime p was fixed. In this section
we shall assume that C is an absolutely irreducible curve of degree d, defined
over Z, embedded in affine space A"(C) and that h = (h4, ..., hy) is a suitable
rational map C — A*(C), with h; = f;/g;, where f;,g9; € Z[Xy,..., X,]. We
now define

V+i:={u€Z :u-h(x)is constant for x € C}.

For each u € V1 we define A(u) := u - h(x), so that C lies inside the hyper-
surface given by the equation

urhy(x) + - - - + ushg(x) = A(u), (6)

for every u = (u1,...,u;) € V*.

Let V be the vector space perpendicular to V+ in Q°, so that u-v = 0
for all v.e V;u € V*. Let Ay be a vector for which u- Ay = A(u) for all
u € V. Therefore h(C(Q)) is embedded inside Ay + V.

In order to simplify the presentation, let us assume in what follows that
ho :=1,hq...., hs, are linearly independent along C' and that there are ¢;; €
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Z, so+1 <1<s, 0<7j<spsuch that C lies inside each of the hyper-surfaces
given by

0<j<so
Then V+ will be generated by the vectors (cig, ..., Cis, 0,...,0,—1,0,...,0)
so+ 1 <i < s. We also consider the subspace E¢p of (R/Z)* given by

Een={(z1,..-,2) € R/Z)* : 2= Y cijzs0+1<i<s}h

1<j<so

Let us denote the reductions of C and h into F, by C, and h,, respectively.
Let
VpL = {u el :u-hy(x) is constant for x € C,}.

and let F¢, 1, have the same meaning as in the previous section. Note that
the reduction mod p of any vector from V+* lies in V;}. Note also that there
may be integer vectors u for which u - h(x) is not constant along the curve
C, while its reduction is constant modulo p. We will show hovewer that
such vectors u and such primes p are rare enough so that on average over
p, the measure pc, n, looks like the normalized Haar measure on E¢ . More
precisely, we will prove the following result.

Theorem 3. Let r > 2 and s,d, D > 1 be integers. Let C be an absolutely
irreducible curve of degree d, defined over Z, embedded in affine space A"(C)
and let h = (hq,...,hs) be a suitable rational map C — A*(C), with h; =
filg;. where f;.g; € Z| Xy, ..., X,|, of degree at most D. Let sy denote the
dimension of Ecn, and let ) be a domain in T° whose intersection with Ecn
has piecewise smooth boundary. Then

tey,hy () = pre, (€2) + O s s0.4,0,5.0m,0 (p_l/%os)

3

for all but O(v/P) primes p € [P,2P], where PEe () = pp. (2N E), and
KEc, denotes the normalized Haar measure on E.

5 Residue Races

In a “residue race” we seek to determine the number R¢y of x € C(F,) for
which

thi(x)) < ... < t(hy(x)) (7)



(we let t(h;(x)) = 1if h; has a pole at x). Theorem 2 implies an estimate for
any suitable h in terms of the measure of a certain domain. (This problem
has previously been studied for h;(x) = a;x € F,lz] in [8], for h;i(x) =
1/(z + a;) over arbitrary residue rings in [4], and for h;(x,y) € F,(z,y) with
s = 21in [15].) If 1, hy,..., hy are linearly independent along C, we can use
Theorem 1 directly to show that all the s! possible orders among the numbers
t(h1(x)),..., t(hs(x)) in (7) are asymptotically equally likely. Indeed, since
the simplex 3, = {(a1,...,a5) ET*:0<a; <...<a, < 1} satisfies the
conditions of Theorem 1 and p(X,) = 1/s!, we derive the following result:

Corollary 1. Let r > 2 and s,d, D > 1 be integers. For any absolutely

irreducible curve C of degree d in A"(F,) defined over F, and any suitable

rational map h : C — A*(F,) of degree D which is L-free along C, one has
Ren = g + Oy 5.4.0 (pL_l/s +p M log L) .

In particular if 1, A4, ..., hs are linearly independent along C we may take
L = /p and obtain an error term O, 4 p(p'~"/>* log p).

When C = F, one can imagine such a “residue race” taking place on a
stadium of unit length where the “competitors” h, ..., hs are at the points
t(hi(z)),...,t(hs(z)) after o seconds, for x = 0,1,...,p — 1. Corollary 1
may be interpreted as saying that each of the s! possible orderings of the
competitors occurs about 1/s! of the time. Moreover the condition that
L, hi(z), ..., hs(z) are linearly independent modulo p is equivalent to the
condition that the speeds h/(z),...,hL(x) of the competitors are linearly
independent modulo p.

The residue races discussed just above are “long races”; for example when
C = [F,, they are races over a complete set of representatives modulo p.
However we might also wish to consider shorter races where, instead in our
example, the race is only over a subinterval J of [0,1]; that is, for what
proportion of x € t~*(J) does (7) hold? More generally we might restrict
our attention to when z € t~1(£;) for some given region ©Q; C [0,1]". Thus
we denote by pen(1,22) the proportion of elements x € C(F,) Nt 1(£2;) for



which t(h(x)) € €9, so that

#{x € C(F,) Nt () | t(h(x)) € N}
pen(Sh; ) = #{x € C(F,) Nt ()}
_ #{x € C(F,) | t(x) € 2 and t(h(x)) € s}
#{x e C(F,) | t(x) € N}
_ peu(f2)

pcia($)’

where =  x€Qy € T""*, and H is the rational map Id xh : C — A"™"(IF,),
given by H; = x; for 1 < j <r,and H; =h;_, forr+1<j <r+s. If
Theorem 1 is applicable then

pe () = () + Oy 5.4,0,0,,00 (L_l/(r+5) 4 p~1/20r+s) logp)

and
peia(21) = (1) + Or g0, (p_l/% logp) ;

and we have p(2) = () u(€22) by definition, so that we obtain the following
result.

Corollary 2. Let r > 2 and s,d, D > 1 be integers. For any domains §2; C
T, Qy C T® with piecewise smooth boundaries, any absolutely irreducible

curve C of degree d in A"(F,) defined over F, and any suitable rational map

h:C — A*(FF,) of degree D, for which the map H := (x1,.... 2, hy, ..., hy)
1s L-free along C, one has

pen(21, Q) = 1(Q2) + Ors.a.0.01.00 (L_l/(rJrs) +p 2+ g L).

Given a domain €2 in T" with a piecewise smooth boundary, define R¢ (€2)
to be the number of points x from C(F,) which lie inside the region © and
for which (7) holds. Then from Corollary 2 we derive:

Corollary 3. Letr > 2 and s,d, D > 1 be integers. For any domain €2 C T"
with piecewise smooth boundary, any absolutely irreducible curve C of degree

d in A™(F,) defined over F, and any suitable rational map h : C — A*(F,) of
degree D, for which the map H := (xy,..., 2., hy,..., hs) is L-free along C,
one has

Ren(2) = g (1 + O,5,4.0,0 (L_l/(r“) + p Y20+ 1ng L)) i
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6 The Spectrum of (), and Lines

Let r > 2 and s,d, D > 1 be integers. For any given domain 2 C T* with
piecewise smooth boundary let I',(€2) be the set of values pen(§2), where C
and h are as in Theorem 2. Let the spectrum () := lim,_,o [',(€2) (where
we define A, = lim, ., A, for sets of points A,, by z € A, if and only
if there exists z, € A, such that lim, ., 2, = 2). Let A,(Q2) be the set of
values pz1a(€2) where £ runs over the set of lines, and Id is the identity;
and A(Q) = lim, o A,(2). We prove the following result which implies, in
essence, that all values of our measure on 2 are obtained when we simply
consider the set of lines:

Theorem 4. With the definitions as above, for any given domain € C T*
with piecewise smooth boundary, we have I'(€2) = A().

Given nonzero a,b € Z* and prime p, define the line £, := {a+tb: t €
F,}. Asin [8], one can easily show that

1
peyia(82) = /0<t<1 ldt+0O <W) '
a/p+tbe

Therefore

0<t<«1
a+tbeQ

F(Q):A(Q):{/ 1dt - aeTS,beZS}.

It is an interesting, and perhaps tractable, problem to determine A(2). By
varying a continuously , one can easily show that A(€2) is a union of intervals.
For example, in the “Residue Race” problem of the previous section we have
) = 3, and it is easy to see that A(Xs) = [0,1) simply by taking the lines
{e(0,1,2,...,s=1)+¢t(L,1,...,1): t €[0,1)} to get measure 0 if € = 0, and
l—(s—1l)efor0<e<1/(s—1).

The paper [8] considers the residue race problem for lines going through
the origin with {2 = ¥,: Define Fg])(Q) be the set of values pen(€2), where C
and h are as in Theorem 2 and 0 € h(C), and let I'P(Q) := lim,_ ().
Similarly define A (). We note in the proof of Theorem 4 that I'®(Q) =
AO(Q). Thus, [8] studied A©(X,) (= I'O(%,)) and found that it is rather
complicated (in contrast to A(X;), determined above). We quote some of the
results from there:
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It is trivial to show that A(®)(%,) = {0, 1/2} since we get 0 taking the line
t(1,1), and if b is not a scalar multiple of (1, 1), then tb € ¥, if and only if
(1—t)b & Xs.

The spectrum A©®(¥3) is also discrete. It has smallest elements 0 and
then 1/12, and largest element 1/3. The set of accumulation points,

Acc(AO(33)) ={0,1/6}U{1/6 +1/12d: d#0,—1} C {0} U[1/8,1/4].
In fact {u € AO(3) 1 u>1/4} = {1/4} U{(1/4)(1 + 1/d) : odd d > 3},
and {u € AO(X3): uw<1/8 ={1/8YU{(1/8)(1 —1/d): odd d > 1}

The spectrum A©)(3) is also discrete. It has largest element 1/4 and
smallest elements

0
46274207 3907 3367 3307 3127 30872887 286’
11 1 1 1 1

27372707 266" 264 260" 255

One can completely determine Acc(A® (X)), and show {u € A©(Z3) : u >
1/6} ={1/6}U{(1/6)(14+2/d): d >4 and d=1 (mod 3)}.

It is also shown that 1/s is the largest element of Acc(A©) (X)) for s > 42
(and this is probably true for all s), though little else is known about these
spectra. One interesting question is to determine the smallest element of the
spectrum other than 0: these are 1/2,1/12,1/462 for s = 2,3, 4 and at most
1/47475 for s = 5.

7 A Discussion of Discrepancies

For a finite set A C T* and domain Q C T*, we define the discrepancy

#laeA: a€Q}

N e L
and the box discrepancy of A,
D(A) := sup A(A,B),
BCT*
where the supremum is taken over all boxes B = [ay, 8] X ... X [ay, Bk]-

We define the distance between a vector u € T* and a set I' C T* by

dist(u,I') = inf |ju — w||
wel

12



where ||v]| denotes the Euclidean norm of v. Given ¢ > 0 and a domain
Q) C T* we define the sets

QF = {ueTMQ| dist(u,Q) < e}

and
Q7 = {ueQ|dist(u, T"\Q) <e}.

Let b(e) be any increasing function defined for ¢ > 0 and such that
lim.ob(e) = 0. Following [10, 11], we define the class M, of domains
Q) C T* for which

p(QF) <ble)  and  p(Q0) <b(e).

A relation between D(A) and A(A, Q) for Q € M, is given by the fol-
lowing inequality from [10] (see also [11]).

Lemma 1. For any domain ) € My, we have
A(A,Q) = Oy, (b (K2D(A)YF)).

The Koksma-Sziisz inequality [9, 12] (see also Theorem 1.21 of [6]), which
generalizes the Erdds-Turan inequality, provides an important link between
box discrepancy and exponential sums:

Lemma 2. For integer L > 1, and a set A C T* of N points, one has

1 1 1
I'NY X maran
L'N [T, (1 e

c=(c1,...cr, ) EZF\{0}
lc;|<L for each j

D(A) =0

Ze(c-a)

acA

For brevity, we define e,(z) = e(z/p) in this section.
The following statement is a generalization of the bound (17) of [13]:

Lemma 3. Let r > 2 and s,d,D > 1 be integers. For any absolutely irre-

ducible curve C of degree d in A" (IF,) defined over F), and any suitable rational

map h : C — A*(F,) of degree D, define H = {t(h(x))| x € C(F,)}. Ifh is
L-free then the box discrepancy

D(H) = Os,r,d,D (Lil -+ pil/Q logs L) .
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Proof. As in [13] we remark that Theorem 6 of Bombieri [2] implies the bound

Z €p (Z thj(x)> = Okrd,0 (pl/Z) . (8)

x€C(Fp)

whenever the function ¢1hy+. . .4+csh, is nonconstant along the curve C. Since
h is L-free along C, the sum in Lemma 2 only contains terms for which (8)
applies, and so we obtain the desired result. O

Proof of Theorem 1. We have picn(B) = p(B)+ Oy 5008 (L‘1 + p~1/?10g* L)
whenever B is a box, by Lemma 3. Now, since {2 has a piecewise smooth
boundary, one has, for any small € > 0, that u (QF) <q €, see [14] for a more
precise statement. Therefore |pen(Q) — p(Q)] < A(H,Q) <0 D(H)V* <
L~Ys 4 p=1/2s1og L by Lemma 1, which is Theorem 1. O

8 The Non-free Case: Proof of Theorem 2

Let r,s,s0,d, D, E,€),C and h be as in the statement of Theorem 2.

We select a maximal subset of {hq, ..., hs} which, together with the con-
stant function ho(x) = 1, form a set which is linearly independent along C.
We assume in what follows that {hy, ..., hy,} is such aset. Thus 1, Ay, ..., hy,
are linearly independent along C, and there are integers ¢;; € {1; . ;1 1
so+1<i<s,0<75 < s, such that C lies inside each of the hyper-surfaces
given by

hi(x) = Y cijhy(x).
0<j<so
Let Proj : T* — T*° denote the projection on the first sq coordinates, that

is, Proj((y1,.--,¥s)) = (y1,---,Ys,) € T, for any (yi,...ys) € T°.
Consider also the linear map A : T*0 — T given for any (21, ..., 2z,,) € T*°

by A((z1,...,25)) = (21,...,25) € T?, where for any sp +1 < i < s, 2 is

defined by
Z; = Z Ciij-

0<ji<so

Note that for points y = (y1,...,ys) € T® of the form y = ¢(h(x)) with x on
the curve C, one has

A(Proj(y)) =y

14



Also, if we denote

h = (hy,...,hs) = Projoh,
then for any point z = (21, ..., z,) € T% of the form z = t(h(x)) with x on
the curve C, we have

Proj(A(z)) = z. )

Since 1,hy, ..., hs, are linearly independent along C, the image t(h(C)) of
h(C) in T* will not be contained in any translate of a proper subspace of

Tso. Therefore A(t(h(C))), which coincides with t(h(C)), will be contained
in A(T#°) but will not be contained in any proper subspace of A(T*°). This
says that A(T*) = E¢p = E.

Next, by the definition of ¢ and the fact that the F,—points on C are
sent through the map h inside £, we see that for any domain 2 € T*,

pen(§2) = pen(2N E).
Also, if we denote
Q:=Proj(QNE)=AQNE),

then by the definition of y j we find that

pen() = pen(QN E).

Therefore .

ten(§2) = pe p(82). (9)
Now, when we send objects via the map A : T — E C T*, the measure
gets multiplied by a constant factor (given by the Jacobian of the linear map

A). However, the normalized Haar measure on T*° corresponds via A to the
normalized Haar measure on F. Hence

preo (§2) = pp(Q2 N E). (10)

At this point we apply Theorem 1 to C, h, Q and L = (p — 1)/2. Tt follows
that

e (Q) — prso (Q)] < Cp~/* logp, (11)

where the constant C' depends on 7, s, so. d, D and the region €. The region
Q depends in turn on A, Q and E. Here A is a linear map from T* into
T* which sends T*° to F, and so A depends on the given subspace E of T*.
Theorem 2 now follows from (9), (10) and (11). O
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9 Averaging Over p: Proof of Theorem 3

Let 7, s,50,d, D, E,€,C and h be as in the statement of the theorem. Take
a large P, and for any prime p € [P, 2P], consider the reductions C, and h,
of C and h into F,. By Theorem 9.7.7 of SGA IV [5] it follows that C, is
absolutely irreducible for p large enough.

We now claim that for any a € Z*\ V* with each |a;| < v/P, there are
at most log N/log P <¢n 1 primes p € (P, 2P| for which a € V.

Indeed, a curve C in A"(Q) that is defined over Z, can be assumed to be
written as (the intersection of) r — 1 polynomials in z1,...,z,. By taking
resultants to eliminate variables, this can be rewritten as (the intersection
of) r — 1 polynomials wj(x;,z1) € Z[xj, 1] for 2 < j <r.

For given a € Z*\V+ let fa/ga = h-a with fa, ga € Z[z1,- -+, z,]. Taking
the resultant of f, — Aga with each w; in turn, to eliminate zo,...,2,, we
obtain a polynomial F'(X\ x1) € Z[x;,A]. Note that deg fo and degg, can
be bounded independently of a, and thus so can deg F'. Write F'(\, z;) =
S ci(N)z’, and then let I, be the ideal generated by the c;(\) over Z[\]. We
claim that I, contains a non-zero integer, for if not then all the ¢;(\) are
divisible by a common factor over Q[A] and thus have a common root, say
Ao, so that h-a = Ay on C and therefore a € V. Let N be the smallest
positive integer in Iy, which evidently can be bounded in terms of the degree
and coefficients of F'(A, x;), and thus by a power of max; |a;| times a constant
depending only on C and h.

Suppose P is sufficiently large (depending only on C and h), so that C,
is absolutely irreducible for all primes p € (P, 2P]. If, for a given integer A,
the polynomial F'(\, z1) is not identically zero mod p, then there are at most
deg F' values of x; satisfying F'(A,z1) = 0 (mod p). For each such z; there
are at most degw; values of z; with w;(z;,21) =0 (mod p) (since p is larger
than the coefficients of any of the w;), and thus there are O¢ (1) points on
the intersection of C and h - a — A. Therefore a ¢ V;,L else this intersection
contains C(F,), which has p + Ocn((p*/?)) > p points (by Weil’'s Theorem),
giving a contradiction as p > P is sufficiently large.

Therefore if a € V;,L then the polynomial F'(A, z;) is identically zero mod
p for some integer A\. But then each ¢;(A) = 0 and so p divides N. Thus for a
given a € Z°\V+ with each |a;| < v/P, there are at most log N/ log P <y, 1
primes p € (P,2P] for which a € Vpl. This proves the claim.

Let now L = P'/?*. Then the number of vectors a € Z* \ V* with each
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la;| < L is O4(v/P). For each of these vectors a we know that there are
Ocn(1) primes p € (P,2P] for which a € V;,l. Therefore, for any prime
number p € [P, 2P] outside an exceptional set having O¢n(v/P) elements,
we may assume in what follows that for any a € V- with each |a;] < L we
have a € V.

In order to finish the roof of the theorem, we proceed as in the proof of
Theorem 2. Thus we consider the projection Proj : T® — T and the linear
map A : T — E C T*. Note that A is independent of p. At the same
time we should remark that the maps Proj and A do not have exactly the
same meaning as in the proof of Theorem 2 for any given p, since F and
FEe, n, may be distinct. What we know however is that for any p outside the
above exceptional set of primes, if we denote flp := Proj o h, then the map
h, is almost L—free. Actually, the linear map A may increase or decrease
the lengths of our vectors a € V;f. But, since A is kept fixed, these lengths
increase or decrease by at most a factor which is independent of p. Therefore
flp is caL—free, for some constant c4 > 0 depending on A. We may then
apply Theorem 1 for C,, flp, Q= AT QN FE) and c4 L, for each p not in the
exceptional set, in order to finish the proof as in the proof of Theorem 2. [

10 Boxes and parallelepipeds

Here by a box we mean a rectangular parallelepiped. Thus a box in R?
or in T® will be a subset of the form B = [y1,d;] X «-+ X [y5,ds], while a
parallelepiped is any set that can be sent to a box by a linear map.

Note that the error term in Theorem 1 for a general region {2 with
piecewise smooth boundary is significantly worse than the error term from
Lemma 3, which corresponds to the case when €2 is a box.

One may then naturally expect that the error terms in Theorems 2 and 3
could also be substantially improved in the particular case when the region
() is a box.

One easy way to obtain such an improvement in Theorem 2 is to let €2
be any parallelepiped in T® whose image in T*° via our projection Proj, is a
box. In this way one obtains a result as accurate as the one from Lemma 3.
This result, however, will only concern a particular class of parallelepipeds
in T*, and, depending on the position of the given subspace E inside T?, this
class of parallelepipeds may or may not contain any boxes.

Below we describe a general method, which does apply to general boxes.
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The method works in the context of Theorem 2, and then can also be used
in combination with averaging over p, in the context of Theorem 3. In the
process we also investigate the Fourier expansion of our measures, which can
also be used as a tool to understand the given measures.

For any integer vector a = (ay,...,as) let p, denote the Borel complex
measure on the torus T*® with density function given by x — e(a-x) (where,
here and henceforth, e(z) = exp(2inz)), that is, for any domain 2 C T*

a(£2) :/ e(a- x)dx. (12)
x€eN
In particular pg = p, our normalized Haar measure. Then

i) (= Ax) = Y e(Ma)/p) pal®) (13)

acV+t

(see (10) and (12) below). We remark that if 1, by, ..., hy are linearly inde-
pendent along C then the sum on the right side of (13) consists of only the
a = () term, so we obtain our normalized Haar measure p.

We now proceed to investigate the measure from Theorem 2 in the case
when () is a box.

As above we associate F,, with pT NZ and we also use e,(z) = e(z/p).
We may suppose V+ has basis uy,...,u,_, where all coordinates of these
vectors are integers, and we will think of V' as a subspace of T*. For any box
B = [v1,01] X+ X[, 5] define py (B) = p(BNV'), an {—dimensional volume
(which is vy, or ug after a translation, in the statement of Theorem 2).
Then

#(pBNpV NZ°) =#{(a1,....a;) €Z°: (a1/p....,as/p) EBNV}

¢ -1 ¢ o1y (14)
=puBNV)+O0v(p ) =puB)+O0v(p ),

by a simple lattice point counting argument. Therefore, by (5),

#{x€pBNZ* :x-u= \u) for all u € V-1 = p'uy (B — Ay) + Oy (p'™).
(15)
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The characteristic function to determine whether x € F, belongs to pB is

Xpp(X) = Y H Z e, (a;(z; — uy )

py1<u1<pd j=1 ag—o
PYs<us<pds (16)
1 S
D DIRY) | ) SRR AL
lat],...,|as|<p/2 J=1 py;<u;<pd;
Therefore
#{xepBNZ :x-u=Au) forallue V*+} = Z XpB(X)

x€(pT)sNZs
x-u=A(u),ucv+

RS Y @[] Y el-auw).

lail,....Jas|<p/2 x€lFy J=1py;<u;<pd;
x-u=\(u),uev=-

We now study the internal sum:

If a € V* then a-x = A(a) so the summand is always e,(\(a)). The
number of terms in this sum is #{x € F : x-u = A(u) for all u € V*} = p".
If a ¢ V1 then the internal sum runs freely through at least one variable
(perhaps after a suitable change of basis) so that the sum is 0. Therefore

1
R#{prBﬂZs:x-u:)\(u) for all u € V+}

1 > (17)
=— > Q@] X el-au).
p acV=InFg J=1 pyj<u;<pd;
which should be compared to (15).
Now, under the hypothesis we have, by (16),
#{y €C(F,) :h(y) epBNZ} = > xu(h(y))
yeC(Fp)
1
Loy (Y awne) T Y etcaw
lail,....las|<p/2 \y€C(Fp) J=1py;<u;<pd;
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If a € V4 then the internal summand is always A(a) and so these terms
contribute

#C;f”) S 0@ S en(—amu).

acVFs J=1pv;<uj<pd;

The contributions of those terms with a ¢ V+ is, by Bombieri’s bound (8),

1 P’ s
O\ 2, P Gl e |~ PR,

|a1],--|as|<p/2

since
e(—ad) — e(—avy) ..
1 1 f
- Z ep(—au):O(—)+ —2mia a7
py<u<ps p o — ¥ if a=0 (18)
1
if < p/2.
< G if |a] < p/
Therefore
) _ #1y €C(E,) - h(y) € pBN 27}
pen(B) = #C(F,)
p
1 u log” p
= — Z e, ()\(a))H Z ep(—a;u;) +O< 1/2 ) (19)
p acVLnFs J=1 pyj<u;<pd;

log”p
V(B_A)\)+O<pl/2 ),
by (15) and (17). This gives the desired improvement of Theorem 2 in the
case when () is a box.
11 Truncating the “Fourier Expansion”

By (12) and (18) we see that

1 H S e(—ajuy) — a(B) + O(1/p)

7=1 py;<u; <pé;
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where u,(B) satisfies

S

pa(B) < H

j=1

L+ |ay|

Therefore

real® = Y e (@) () +0 (52)

acVLinry

(20)

(21)

by (19). In Theorem 1 we saw that it was advantageous to assume that a
curve is L-free, which means that there is no non-zero a € V+ with each
la;| < L. Inspired by this we now seek to estimate picn(B) by truncating the

sum in (21):

We may assume that the ith unit vector e; ¢ V* for all i, else v; = 0 for
all v.€ V so we can pass to T*~ ! (moreover if e; € V1 then h;(x) is constant
for x € C). We write a = (a4, ..., as) with each |a;| < p/2. We shall consider
the contribution to the sum in (21) of those a € V* with max; |a;| € (L,2L],
for which |a;| = max;|a;|. Note that any given values of {a; : j # i} give
rise to at most one a;. Therefore, by (20) these terms contribute at most

1 1 (log 2L)5~1
> folerin i< 1
laj|<2L for j#i Hj#z(|aj| + )

Summing up over ¢t = 1,2, ..., s and L,2L,4L, ..., we deduce that

S e )| < 2T

aeV+nF;
la;|>L for some 1

which with (21) gives

eal® = 5 e @)(®) +0 (LE)

aeV+LNF;
laj|<L for all j

for 1 < L < /p/logp.
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12 Averaging Over p in the case of boxes

We work in the context of Theorem 3, in the case when the domain €2 is a
box. With notations as in Theorem 3, let us fix a box B in T*. By (19) we
know that

pe,hy(B) = > e, (A@)) pa(B) + Orap (7 /*logp) .

acV;-

and we ask whether this is close to

Henp(B) = D e(Ma)y) pa(B), (23)

acVLt

for most primes p (where integer A(a), = A(a) (mod p))? We proceed to
prove that

e, m, (B) = picnp(B) + O(p~*(log p)°), (24)

for all but O(v/P) primes p < P.

We assume that P is large enough so that for any p > P, the reduction
of C is absolutely irreducible in F, By the argument used at the end of the
last section to obtain (22) we get

)

penslB) = 3 ey (N ua() + 0 (122

acV+
a;|<L for all j
J

and combining this with (22) for L = ,/p/logp implies that

(log p)*
Heph,(B)—pensB) = D e (M@) pa(B)+O (=) . (25)
ac(VzH\VH)NF3 ( \/ﬁ )

laj|<+/p/2 for all j

Therefore, if P is the set of primes p € [P,2P] for which C, is absolutely
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irreducible then

> > e, (\(a)) pta(B)

PEP | ac(V;H\VL)NFs

laj|<+/p/2 for all j
< ). pB#peP:acVt)

aczZs\V+
laj|<VP for all j
< (logP)* max  #{peP:acV,},
aczZs\v+
laj|<VP for all j

IN

by the bound (20).

Now recall from the proof of Theorem 3 that for a given a € Z*\ V*+ with
each |a;| < V/P, there are at most log N/log P < 1 primes p € (P,2P]
for which a € V- So (25) and (26) imply that (24) holds for all but O(VP)
primes p € (P,2P].

13 Lines Instead of Curves

In this section we prove Theorem 4. We start with a simple lemma:

Lemma 4. Let U be a subspace of F,, of dimension { < s—2. There exists a
subspace W of 5 of dimension £ + 1, containing U, such that if w € W\ U
then max; |w;| > L := p*/*/3.

Proof. There are (2L + 1)* vectors r € F; such that max;|r;[ < L. For
each such r there are p‘*! — pf vectors u in (U,r) \ U, and thus there are
< (2L+1)*p**1(1—1/p) vectors u such that (U, u)\U contains a vector r with
max; |r;| < L. For any vector w that is not included in any of these (U, u)
we may take W = (U, w), and such a w exists since (2L +1)*p*™1(1 —1/p) <

p* = -

Proof of Theorem 4. Given p,C and h we obtain a vector space V+ C Fy,
as at the start of section 3. By lemma 4 there exists an (s — 1)-dimensional
subspace W of Fy, containing V+, such that if w € W\ V+ then max; |w;| >
L := p'/?/3. Let u,...,us_; be a basis for W (extending the basis for V+
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given at the start of section 8), and define A(u;) =0 for s—¢+1 < j < s—1.
Let £ be the line {b € F5 : b-w = A(w) for all w € W}. Note that V- = W,
and that the set of a € V* for which max; |a;| < L for all j, is the same as
the set of a € V7 for which max;|a;| < L for all j. Thus by (22) we have
that pen(B) = peia(B) + O((logp)*~t/p'/*), and the first part of the result
follows.

If there exists x € C such that h(x) = 0, then A\(v) =0 for all v € V-,
so 0 € L. That is, our line goes through the origin. O

Acknowledgement. Our thanks to Henri Darmon for a useful discussion con-
cerning the geometry in Section 9.
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