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1. Introduction

1.1. The Fundamental Theorem. The positive integers are the integers 1, 2, 3, . . . .

The prime numbers are those integers larger than 1 that can be factored into two positive

integers in exactly one way (not paying attention to order). Thus 2, 3, 5, 7, 11, . . . are

primes, whereas 1, 4, 6, 8, 9, 10, . . . are not primes. These non-prime integers > 1 are

called composite numbers: to see that 10 is composite note that we can factor it in two

distinct ways, as 1 × 10 and as 2 × 5.

When one studies questions involving integers one quickly finds that it is useful to

break integers down into their smallest component parts, that is to factor them into

prime numbers. Thus 35 is 5 × 7, and 90 is 2 × 3 × 3 × 5, and so on; in fact, every

positive integer can be factored in such a manner. A factorization into primes cannot

be decomposed any further since none of the component primes can be factored again.

From calculations it appears that there is only one way to factor a given integer, though

this does not seem to be so easy to prove. However if true then it does give a solid

foundation to any study of the positive integers, and so the result is considered to be

the most fundamental in arithmetic:

The fundamental theorem of arithmetic. Every integer > 1 may be factored as a

product of primes in a unique way.

It must be stressed that the primes involved in a factorization are not necessarily distinct

(as in 12 = 2 × 2 × 3), and that we consider the same primes written in two different

orders as the same factorization (that is, 30 = 2×3×5 and 5×2×3 are considered to be

the same factorization). The easiest “canonical” way to display n as a given product of

primes is to write n = pe1

1 pe2

2 . . . pek
k for primes p1 < p2 < · · · < pk and positive integers

e1, e2, . . . , ek.
1

Many ancient authors were interested in perfect numbers (integers equal to the sum

of their proper divisors, like 6 and 28) and pairs of amicable numbers (each equal to the

sum of the other’s proper divisors, like the pair 220 and 284), which meant that they

L’auteur est partiellement soutenu par une bourse du Conseil de recherches en sciences naturelles et

en génie du Canada.
1Sometimes, though, it is convenient to allow some of the eis to be zero.
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needed to be able to determine the divisors of a given integer: In fact if n = pn1

1 pn2

2 . . . pnk
k

for primes p1 < p2 < · · · < pk and positive integers e1, e2, . . . , ek, then we can deduce

from the fundamental theorem of arithmetic that the divisors m of n are the integers

of the form pm1

1 pm2

2 . . . pmk
k where mj is an integer with 0 ≤ mj ≤ nj.

Another consequence of the fundamental theorem of arithmetic is that we can eas-

ily determine the greatest common divisor of any two given integers m and n, for if

m =
∏k

i=1 pmi
i and n =

∏k
i=1 pni

i then their greatest common divisor, denoted by (m, n),

equals
∏k

i=1 p
min{mi,ni}
i (note though that this is only really “easy” if we have the fac-

torizations of m and n). What the ancient Greeks realized is that it is possible to

determine the greatest common divisor of two non-negative integers without knowing

their factorizations — the method is now called the Euclidean algorithm. We start

with two integers n ≥ m > 0 and then let ` = n − m so that ` is also a non-negative

integer and a multiple of the greatest common divisor of m and n, for if (m, n) = g

with m = gM and n = gN then ` = g(N − M). Therefore (m, n) is a common divisor

of both ` and m, and hence (m, n) ≤ (`, m). On the other hand, since n = ` + m, the

greatest common divisor of ` and m divides n and so (`, m) ≤ (m, n) by the analogous

reasoning. Putting these two facts together implies that (m, n) = (`, m), so that the

greatest common divisor of m and n is equal to the greatest common divisor of two

smaller integers, ` and m. The Euclidean algorithm consists of repeating this process

finishing only when one of the integers is 0, and it must finish in a finite number of steps

since there are only finitely many non-negative integers up to any given n. As an exam-

ple we see that (22, 8) = (14, 8) = (8, 6) = (6, 2) = (4, 2) = (2, 2) = (2, 0) = 2; evidently

this can be speeded up by writing (n, m) = (m, r), where r is the least non-negative

residue of n (mod m), and therefore (22, 8) = (8, 6) = (6, 2) = (2, 0) = 2.

But there is more: We see that ` and m are both integral linear combinations of m

and n; and indeed the next two integers in the Euclidean algorithm are integral linear

combinations of ` and m, and thus of m and n. Continuing like this we deduce that the

greatest common divisor of m and n is also an integral linear combination of m and n;

that is, we have integers u and v for which

(m, n) = mu + nv.

For example 2 = 22 × (−1) + 8 × 3.

This surprising observation allows us to give an elegant though unintuitive proof of

the fact that if a prime p divides the product of two integers a and b then it divides at

least one of them. For if p does not divide a then (p, a) = 1,2 and therefore there exist

2Since (p, a) must be a divisor of p, and so either 1 or p, and yet it is not p as p does not divide a.
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integers u and v for which pu + av = 1. Therefore pbu + (ab)v = b and so p divides b

since p divides both p(bu) and (ab)u. We next deduce, by induction, that if a prime p

divides a product of integers then it divides at least one of them.

Finally we are ready to prove that there is only one factorization of any given integer:

if p1p2 . . . pk = q1q2 . . . q` is the smallest counterexample (where two of the pis, or two

of the qjs, may be equal) then q` divides p1p2 . . . pk so must divide one of them, say pk,

so we have a smaller counterexample p1p2 . . . pk−1 = q1q2 . . . q`−1, a contradiction.

This collection of ideas has inspired many developments in number theory, algebra

and beyond, as we will discuss.

1.2. A confused history. The key ideas in the fundamental theorem of arithmetic

have probably been recognized by any society that thought deeply about mathematics,

and it was the genius of mathematicians in ancient Greece (and possibly Mesopotamia),

and then Egypt, Turkey, India, North Africa and beyond, to realize that such state-

ments, arguably “self-evident”, would be best justified by proofs deduced from even

more transparent propositions. Most of these older mathematical cultures recognized

the fact that integers can be factored into primes as an essential step in determining all

of the divisors of a given integer (as we did above). In so doing they almost certainly

must have assumed, perhaps unknowingly, that their given factorization of an integer

is the only one; it was the genius of the young Gauss to realize that this fundamental

observation needs proof and then becomes the cornerstone of the theory of numbers.

This has subsequently been celebrated as some of the most agile and deft reasoning in

the history of human thought.

Those parts of Euclid’s Elements that survive from ancient times are among the

earliest known mathematical texts. Much is remarkable about these books, and the

effort therein to put mathematics on a sound axiomatic footing was not truly surpassed

until about two thousand years later. We will perhaps never know which parts of these

books were original to Euclid, though I believe that the succinct, irrefutable proofs

given, indicate that Euclid must have been a leading participant in a sophisticated

mathematical culture. When reading Euclid’s work today we must be careful of (at

least) two cultural issues:

• Euclid’s objectives reflected the questions and thinking of his day, not ours, at a time

when “publishing” was, by today’s standards, unimaginably expensive. Hence what he

chose to present cannot properly be judged by what we would choose to present today.

• The notation of those times was far less flexible than that of today, so that the astute

reader necessarily had to deduce the full content of the statement of a theorem, or of

a proof, from what was written, and could not necessarily learn all that was meant
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from what was actually written.3 Looking back it may seem unimaginable that the

finest minds of that time could not recognize this limitation in their notation and do

something about it, yet even in the Renaissance, Fermat and Descartes recognized this

difficulty and deplored those who could not navigate it adroitly.

Euclid’s number theory begins with the Euclidean algorithm, which gives him a notion

of two integers being relatively prime. From this he deduces (in Book 7, proposition

30) that if p divides the product of two integers a and b then it divides at least one

of them,4 and deduces (in proposition 31) that every integer has a prime factor. Then

much later, in Book 9, proposition 14, almost as an afterthought, he proves that a

product of distinct prime numbers is not divisible by any other prime number, that is

he proves the unique factorization theorem for squarefree numbers.

It is easy to deduce the fundamental theorem of arithmetic from these propositions in

Euclid, and there can be little doubt that had he recognized this result as fundamental

he would have proved it. Euclid was more interested in being able to list (with proof)

all of the divisors of certain integers. For example, a perfect number is an integer which

equals the sum of its proper divisors and Euclid observed (in Book 9, proposition 36)

that 2p−1q is a perfect number whenever q = 2p − 1 is prime.

The oldest surviving text with a clear statement that every positive integer can be

written as a finite product of prime numbers was given by al-Farisi in Persia around

1300. In his text on amicable pairs, he exhibited the pair 2kpq, 2kr whenever p =

3 · 2k−1 − 1, q = 3 · 2k − 1 and r = 9 · 22k−1 − 1 are all prime, k ≥ 2.

Even Renaissance mathematicians such as Euler and Legendre failed to note the

importance of the uniqueness of factorization, and it was not until the streamlined

beauty of Gauss’s [5], where in article 16 we finally read

A composite number can be factored into prime factors in one and only one way,

where he fully credits Euclid for all of the essential ideas that go into this statement.

See [3] and [8] for further discussion.

1.3. Continued fractions. We shall re-work Euclid’s algorithm and its generalizations

in various ways to highlight different ideas. Perhaps the most ancient is by determining

the continued fraction of m/n, for positive integers m and n. For example if m =

30, n = 13 then in Euclid’s algorithm we begin by noting that 13 × 2 ≤ 30 < 13 × 3

3For example, when Euclid proves the infinitude of primes (Book 9 proposition 20), he gives a proof

by contradiction assuming that there are just three primes. The reader is evidently meant to infer that

the same proof works no matter how large a finite number of primes we assume there to be.
4Actually he proves what is now known as Euclid’s lemma: if d divides ab with (d, a) = 1 then d

divides b.
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so that we take 4 = 30 − 13 × 2. Thus we go from considering the fraction 30/13 to

considering the fraction 4/13, which comes up as:

30

13
= 2 +

4

13
.

Note that 2 = [30/13], where [t] denotes the largest integer ≤ t. In Euclid’s algorithm

we want the larger number first, so we consider the fraction 13/4 instead of 4/13; that

is we invert the fraction under consideration:

30

13
= 2 +

1

13/4
.

Now we repeat the above process: First we have 3 = [13/4], then 13/4 = 3 + 1/4, and

so we have the continued fraction

30

13
= 2 +

1

3 + 1
4

.

If Euclid’s algorithm takes many steps for a particular pair m, n then the continued

fraction will be long, and difficult to typeset, so we use the more convenient notation

30/13 = [2, 3, 4].

There is one ambiguity in this notation in that we could equally have written [2, 3, 3, 1],

but we make the choice never to end a finite continued fraction with a ‘1’.

One can create a continued fraction for any real number α: one has α = [a0, a1, . . . ]

where a0 = [α] and [a1, a2, . . . ] = 1/(α−a0). Typically we write pn/qn = [a0, a1, . . . , an],

and one can show from the definition that p2k/q2k ≤ α ≤ p2k+1/q2k+1 for all k ≥ 0.

There is another, rather useful, way to represent continued fractions, in terms of 2-

by-2 matrices, which was discovered surprisingly recently (in the 1940s). We begin by

considering our pair as a point (m, n) in the plane, and then determine all of our pairs

of integers as such points, via linear transformations of the corresponding point. Thus
(

1 −2

0 1

)(

30

13

)

=

(

4

13

)

and
(

0 1

1 0

)(

4

13

)

=

(

13

4

)

,

which together yield
(

0 1

1 −2

)(

30

13

)

=

(

0 1

1 0

)(

1 −2

0 1

)(

30

13

)

=

(

13

4

)

.
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Multiplying through by the inverse of our 2-by-2 matrix yields
(

30

13

)

=

(

2 1

1 0

)(

13

4

)

;

and therefore
(

30

13

)

=

(

2 1

1 0

)(

3 1

1 0

)(

4 1

1 0

)(

g

0

)

,

where g = (30, 13) = 1. In fact
(

30 7

13 3

)

=

(

2 1

1 0

)(

3 1

1 0

)(

4 1

1 0

)

where 30/13 = [2, 3, 4] and 7/3 = [2, 3]. Taking determinants of these matrices we see

that 30 · 3 − 13 · 7 = −1, that is we have the integral linear combination of 30 and 13

that gives 1.

For any real α this argument generalizes to give
(

pn pn−1

qn qn−1

)

=

(

a0 1

1 0

)(

a1 1

1 0

)

. . .

(

an 1

1 0

)

so that pnqn−1 − pn−1qn = (−1)n−1, and therefore |α − pn/qn| ≤ |pn+1/qn+1 − pn/qn| =

1/qnqn+1 ≤ 1/anq2
n.

All of the steps from this example generalize directly to any m/n provided m, n ≥ 0.

It is worth understanding the geometry involved in this representation. The points all

belong to the upper right quadrant of the complex plane. We begin with a point on or

to the right of the line y = x. The first step described, subtracting a suitable integer

a, translates our original point horizontally, by an integer multiple of y, to the unique

such point with the same y-value, but with x-value to the left of the line y = x while

remaining in the same quadrant. This step, which can be thought of as a copies of the

basic step of size y to the left, is written in matrix form as

(

1 −a

0 1

)

=

(

1 −1

0 1

)a

.

The second step begins with a point to the left of the line y = x. We reflect this point

in the line y = x which creates a point with a smaller y-value; this step is written in

matrix form as

(

0 1

1 0

)

. With each such pair of steps we find a new point that is

both lower and nearer to the origin than the point we started off with, and we keep on

going until we reach the origin. The last point before we reach the origin will be on the

x-axis with co-ordinates (g, 0), where g = gcd(m, n). This interpretation, and the two

basic transformations involved, will come in useful again later when we work with more

complicated numbers.
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1.4. Square Roots. We can use the fundamental theorem of arithmetic to show that if

an integer n is the square of a rational number then it must be the square of an integer:5

If m =
∏k

i=1 pmi
i then m2 =

∏k
i=1 p2mi

i , and so n =
∏k

i=1 pni
i with p1 < p2 < · · · < pk is

the square of an integer if and only if each ni is even. Thus we ask whether we can write

n =
∏k

i=1 pni
i as the square of a rational number when at least one of the exponents

ni is odd, say nj. If that rational number is a/b or −a/b, we have n = (a/b)2 so that

a2 = nb2. If the exact power of pj dividing a and b are aj and bj, respectively, then we

deduce that the exact power of pj dividing a2 is 2aj which is even, and the exact power

of pj dividing nb2 is nj + 2bj which is odd. This contradicts the fundamental theorem

of arithmetic. Thus we have proved that
√

2 is irrational and, in fact,
√

n is irrational

where n is any squarefree positive integer.

The number
√

2 arises naturally in many contexts in mathematics (for instance as

the hypotenuse of the right-angled triangle with smaller two sides both of length 1);

hence it is of interest to understand the arithmetic of numbers of the form a + b
√

2

where a and b are integers. We can ask whether some analogy of the fundamental

theorem of arithmetic holds for such numbers? When one attempts to again copy over

our original proof, one reaches an unexpected barrier: For the usual integers we used

the fact that there are only finitely many positive integers less than a given integer,

and for polynomials that there are only finitely many possible degrees less than a given

degree. In either case this comes from the fact that there is a smallest positive integer.

Here we would need that there is a smallest positive number of the form r + s
√

2 with

r and s integers, but this is not true! To exhibit this fact we use an elegant argument

due to Dirichlet: For any given real number t we define {t} to be the fractional part

of t, in other words {t} = t − [t]. Note that 0 ≤ {t} < 1 for every real number t.

Now suppose that there is a smallest positive number of the form r + s
√

2 with r and

s integers, and select integer N sufficiently large that r + s
√

2 > 1/N . The numbers

0, {
√

2}, {2
√

2}, {3
√

2}, . . . , {N
√

2} all lie between 0 and 1, so two of them, say {i
√

2}
and {j

√
2} with 0 ≤ i < j ≤ N , must lie a distance no more than 1/N apart. We can

write i
√

2 = ri + {i
√

2} and j
√

2 = rj + {j
√

2} for some integers ri and rj, so that for

a = rj − ri and b = i − j we have

|a + b
√

2| = |{i
√

2} − {j
√

2}| ≤ 1

N
< r + s

√
2,

so that either a + b
√

2 or −a − b
√

2 contradicts the minimality of r + s
√

2.

5This result is credited to the young Theaetetus in Plato’s dialogue of that name, dating from around

390 B.C.
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Euclid did recognize the importance of the fact that there is a smallest positive

integer6, but it was not until the nineteenth century that anyone found out how one

might extend such ideas beyond this barrier.

2. Unique factorization in other domains?

2.1. Polynomials. One learns early in mathematics that once one finds the roots

of a given polynomial, then one can completely and uniquely factor the polynomial.

This statement is more subtle than it might seem at first sight for it presupposes that

there is just one way to factor a polynomial (that is, it is impossible to find more than

one way to factor a polynomial). We have to be careful with such a harmless looking

statement for if we consider the very simple polynomial x2 − 1 = (x − 1)(x + 1), not

in its usual context but rather working (mod m) for various integers m,7 then we see

that this simple assumption fast breaks down since it has the additional factorizations

(x−3)(x+3) (mod 8), (x−4)(x+4) (mod 15), etc. Nonetheless, in the usual context,

we do have the following fundamental theorem: Every polynomial with coefficients in C

may be factored as a scalar times a product of monic,8 linear polynomials in a unique

way.

We can prove this in much the same way as we proved the fundamental theorem

of arithmetic, by demonstrating that a suitably modified Euclidean algorithm works

in this context. Here the greatest common divisor of two polynomials is the monic

polynomial of highest degree which divides both of the two original polynomials. Thus

if we begin the Euclidean algorithm with two polynomials f and g which have leading

terms axd and AxD, respectively, where d ≥ D and a and A are non-zero, then we

define h = f − (a/A)xd−Dg and prove that (f, g) = (g, h). As the degrees of g and

h are smaller than those of f and g we see that this process will terminate in finitely

many steps. This is a useable analogy to the Euclidean algorithm for integers, and the

fundamental theorem in this context is then proved entirely analogously.

The same algorithm, suitably modified, also works for pairs of polynomials mod p

where p is prime, though not modulo composites. The key issue being that we need to

be able to invert the leading non-zero coefficient A above, which cannot necessarily be

6See, e.g., Book 7, proposition 31 in which he proves that every integer has a prime factor.
7Two polynomials f and g with integer coefficients are congruent (mod m) if f − g is m times a

polynomial with integer coefficients.
8By leading coefficient we mean the coefficient of the power of x of highest degree in the polynomial.

A polynomial is monic if its leading coefficient is 1. Therefore monic linear polynomials are those of

the form x − α for some α ∈ C.
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done if the ring of integers modulo m contains zero divisors (e.g. 4 · 2 ≡ 0 (mod 8) and

5 · 3 ≡ 0 (mod 15)).

2.2. Where there is no unique factorization! We have already seen that the poly-

nomials mod 15, and other non-prime moduli, do not all have an unique factorization.

This is not so surprising when we are working in situations in which there are zero

divisors (in this case 3× 5 ≡ 0 (mod 15)), that is where there are non-zero integers r, s

such that rs ≡ 0 (mod m). So do we have unique factorization in domains in which

there are no zero divisors?

The set of numbers {a + b
√
−6 : a, b ∈ Z} is a ring but we have two factorizations

of 6, namely −1 ×
√
−6 ×

√
−6 and 2 × 3, where

√
−6, 2 and 3 are all irreducible in

our ring; in other words they cannot be written as a product of two other numbers in

the ring, neither of which is 1 or -1. To see that neither 2 nor 3 can be so written note

that if an integer equals (a + b
√
−6)(c + d

√
−6) then ad + bc = 0; that is there exist

coprime integers r, s such that a + b
√
−6 = t(r + s

√
−6) and c + d

√
−6 = u(r− s

√
−6)

for some integers t and u, so that our integer is tu(r2 + 6s2) and thus evidently not 2

or 3 unless r = ±1 and s = 0 which does not give rise to a factorization. So the ring

{a + b
√
−6 : a, b ∈ Z} does not have unique factorization! If we are going to be able to

study its arithmetic we are going to need a way around this deficiency.

2.3. Proving Fermat’s Last Theorem. On March 1st, 1847 Lamé claimed, at a

meeting of the Académie des Sciences in Paris, that he had proved Fermat’s Last The-

orem, that there are no non-zero integer solutions to

xn + yn = zn

with n ≥ 3. We can assume that x, y, z are pairwise coprime (else we can divide through

by any common factor) and that n is an odd prime (since Fermat proved the case n = 4,

and as an rsth power is also an rth power). Moreover, since n is odd we may permute

x, y and −z to guarantee that n does not divide z.

Now note that if a1, a2, . . . , ak are pairwise coprime integers whose product is the

nth power of an integer then, using the unique factorization theorem we can deduce

that each aj is the nth power of an integer. Lamé’s idea was to reproduce the same

argument for the Fermat equation. First he factored zn = xn +yn as (x+y)(x+ζy)(x+

ζ2y) . . . (x + ζn−1y) where ζ = e2iπ/n is a primitive nth root of unity, and then proved

that (x+ ζ iy, x+ ζjy) = 1 whenever i 6= j. He therefore deduced that each x+ ζ jy is an

nth power, and from such a wealth of surprising information deduced a contradiction.

Liouville spoke immediately after Lamé at the meeting and noted that there seemed to

be a gap in the above proof. The assertion that whenever one has a product of pairwise
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coprime integral polynomials in ζ equalling an nth power, each of the polynomials is

itself an nth power, requires proof. The analogous statement for integers relied on

the unique factorization of integers, and it seemed to Liouville necessary to prove an

analogous result in this case. Liouville also noted that even if unique factorization does

hold, then all one can deduce is that each factor is a unit times an nth power where,

by a unit, we mean a number that divides 1. There are just two units in the integers,

namely 1 and −1, and these are both nth powers since n is odd. However there are other

units in our setting; for example ζk for each k, 1 ≤ k ≤ n − 1, and more complicated

examples like ζ + ζ since (ζ + ζ)(ζ + ζ5 + ζ9 + · · ·+ ζ2n−1) = 1, and these can often be

shown to not be nth powers.

In fact the unique factorization assumption is false; Cauchy showed a couple of months

later in 1847 that it fails for n = 23. Similar discussions had taken place at the Berlin

Academy a year or two earlier, involving Dirichlet and Kummer, though the precise

details of who thought what when, are not preserved. What we do know is that these

discussions led Kummer to the development of an appropriate alternative theory of

ideals, as we shall see in the next section, and he was able to use that to resurrect Lamé’s

proof of Fermat’s last theorem for certain prime exponents n, the regular primes, as we

will discuss a little later.

3. A general theory

3.1. Ideals. Again start with two integers n ≥ m > 0 and let ` = n − m. If r and s

are any two integers then mr + ns = `s + m(r + s), and if t and u are any two integers

then `t + mu = m(u − t) + nt, so that the set of integral linear combinations of m

and n is the same as the set of integral linear combinations of ` and m. Using this

observation at each step in the Euclidean algorithm we discover that the set of integral

linear combinations of m and n is the same as the set of integral multiples of the greatest

common divisor of m and n.

This development led Kummer to a rich generalization of the notion of greatest com-

mon divisor. An integer can be identified by its set of multiples, and thus the greatest

common multiple of m and n can be identified with the set of integral linear combi-

nations of m and n. This is what can be generalized to other situations: instead of

searching for the largest integer that divides every integer in a given set, we work with

the set of integral linear combinations of our given set. Thus if A is our ring of inte-

gers (for examples, Z, Z[t] and Z[
√

2] := {a + b
√

2 : a, b ∈ Z}) then for any given

m1, . . . , mr ∈ A we define the ideal

(m1, . . . , mr) := {a1m1 + · · ·+ armr : a1, . . . , ar ∈ A}.
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The simplest example of an ideal, a principal ideal, is one that can be generated by

just one element, in other words it is of the form (m) for some m ∈ A. We saw above

that in Z any ideal generated by two integers can be written as an ideal generated by one

integer, and is thus a principal ideal. Now any ideal in Z is of the form (m1, . . . , mr)

so, by induction on the number of generators, we can deduce that any ideal in Z is

principal, and thus Z is a principal ideal domain.

Ideals in Z[
√

d] are not always principal, for example the ideal (2,
√
−6).9 However,

every ideal in Z[
√

d] can be written in terms of at most two generators and, in fact, all

elements of the ideal are integral linear combinations of those two generators: Let r+s
√

d

be an element of our ideal with s > 0 minimal. We claim that s divides n for every

other element m+n
√

d of the ideal, for if not then write n = qs+r where 1 ≤ r ≤ s−1

and so (m + n
√

d) − q(a + s
√

d) = (m − aq) + r
√

d is in our ideal, contradicting the

minimality of s. Hence every other element of the ideal is an integral multiple of r+s
√

d

plus some integer, that is an integral linear combination of r + s
√

d and the greatest

common divisor of those integers, call it m. Now sd + r
√

d =
√

d(r + s
√

d) is also in

the ideal, as is m
√

d, so that s divides both r and m. Writing m = as and r = bs we

find that the elements of the ideal are precisely s times the integer linear combinations

of a and b +
√

d.

An ideal containing a unit must be the whole ring. We multiply two ideals I and J

by taking IJ = {ij : i ∈ I, j ∈ J}; a set of generators for IJ can be obtained by

multiplying together the generators of I and of J . Note that IJ is a subset of both I

and J (as an example in Z, note that the set of integer multiples of 15 is a subset of

the integer multiples of 3, and of 5). A prime ideal is an ideal which cannot be factored

into two strictly larger ideals.10

Kummer’s remarkable result is that, even though there is not a unique factorization

theorem for the ring of integers of every field,11 there is in fact a unique factorization

theorem for the set of ideals of the ring of integers of every field. In other words every

ideal may be written in a unique way as a product of prime ideals. This notion is

essential to be able to work with the arithmetic of number fields. In our example above

note that

(2,
√
−6)2 = (2 · 2, 2 ·

√
−6,

√
−6 ·

√
−6) = (4, 2

√
−6, 6) = (2, 2

√
−6) = (2),

9For if this equals (a + b
√
−6) then a2 + 6b2 divides 2, which implies a = ±1, b = 0, which is

impossible since 1 is not a linear combination of 2 and
√
−6.

10In Z we artificially ignore factorizations like 5 = 5 × 1; working with ideals this corresponds to

(5) = (5) × (1) = (5) × Z but here only one of the two ideals is strictly larger than (5).
11We will define “the ring of integers” of a number field in the next section.
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and similarly (3,
√
−6)2 = (3), and hence we have factorization of the ideal (6) in

Z[
√
−6] into prime ideals:

(6) = (2) · (3) = (2,
√
−6)2 (3,

√
−6)2.

On the other hand the ring Z[
√

6] has unique factorization and therefore the ideal (6)

factors into prime ideals as

(6) = (2 +
√

6)(2 −
√

6)(3 +
√

6)(3 −
√

6);

but note that we cannot deduce that the product of the numbers (2 +
√

6)(2−
√

6)(3+√
6)(3 −

√
6) equals 6; in fact it equals −6. What explains this difference of a minus

sign? In general if we have two principal ideals (α) = (β) then β ∈ (α) and so β is a

multiple of α, and vice-versa. So we have α = uβ where both u and 1/u are in our ring.

If the ring is Z then the only possibilities for u are 1 and −1, and this is the same for

Z[
√
−6]. However there can be many more possibilities in a more complicated number

field: for example in Z[
√

6] we can have u = 5+2
√

6 since 1/u = 5−2
√

6, and indeed if

u = ±(5 + 2
√

6)k for some integer k then 1/u = ±(5 − 2
√

6)k. Such numbers are units

and we need to better understand them.

3.2. Number fields, algebraic integers and units. We have used the term “ring

of integers” without definition, something we now need to correct. A fraction can be

thought of as a root of a linear equation with integer coefficients; what distinguishes

integers is that the linear equation is monic. This viewpoint generalizes nicely: An

algebraic number α is the root of an irreducible polynomial with integer coefficients

(which is called the minimum polynomial for α), and an algebraic integer is an algebraic

number for which the minimum polynomial is monic. It is worth noting that if α is an

algebraic number then there exists a positive integer m such that mα is an algebraic

integer. Also that the sum and the product of two algebraic integers is also an algebraic

integer.

For a given finite set {α1, α2, . . . , αk} of algebraic numbers, the set of rational func-

tions, with integer coefficients, involving α1, α2, . . . , αk is called a number field, denoted

Q(α1, α2, . . . , αk).
12 Thus Q(

√
d), the set of rational functions in

√
d, is a number field,

called a quadratic field. We can assume that d is squarefree since
√

b2d = b
√

d. The

integers of this field are the algebraic integers in the field. Note that by multiplying

top and bottom of (r + s
√

d)/((u + v
√

d) by u − v
√

d we may assume that all of the

elements of Q(
√

d) take the form (r + s
√

d)/t for integers r, s, t with (r, s, t) = 1 and

t > 0. This is a root of t2x2−2rtx+r2−ds2; and is thus an algebraic integer if and only

12A rational function is the quotient of two polynomials.
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if t2 divides (2rt, r2 − ds2). In this case no odd prime p can divide t, or else p divides

r and p divides s as d is squarefree; and similarly 4 cannot divide t. Therefore t = 1,

or t = 2 with r and s odd and d ≡ 1 (mod 4), and so the ring of integers of Q(
√

d) is

Z[
√

d], the set of integer linear combinations of 1 and
√

d, if d ≡ 2 or 3 (mod 4), and

Z[1+
√

d
2

], the set of integer linear combinations of 1 and 1+
√

d
2

if d ≡ 1 (mod 4).

To determine the units we must find those algebraic integers u such that 1/u is also an

algebraic integer, in other words the units are the roots of irreducible monic polynomials

with constant term 1 or −1. Therefore in Q(
√

d) we are looking for r + s
√

d with r, s

integers such that r2 − ds2 = 1 or −1, and, if d ≡ 1 (mod 4) for those r+s
√

d
2

with r − s

even such that r2−ds2 = 4 or −4. For examples 5+2
√

6, 1+
√

2, 1+
√
−3

2
and 1+

√
5

2
. We

deduce that there cannot be a unit in Q(
√

d) other than 1 or −1 when d < 0, except

for when d = −3 and d = −1. We will see later that there is always a unit other than

1 or −1 when d is positive and squarefree.

If u and u′ are units then uu′ and u/u′ are also units, so that the units in a given

number field form a multiplicative group. The units of finite order are roots of unity,

the rest have infinite order. The unit group is therefore of the form T ⊕ Zr where T ,

the torsion subgroup of elements of finite order, is a finite cyclic group, and r is the unit

rank, which describes the set of units of infinite order in the field. The units of finite

order in quadratic fields are 1 and −1, as well as ±i ∈ Q(
√
−1), and ±1±

√
−3

2
∈ Q(

√
−3).

Imaginary quadratic fields have unit rank zero, and real quadratic fields have unit rank

one; thus for example the elements of the unit group in Q(
√

6) are ±(5+2
√

6)k, k ∈ Z,

which has the structure Z/2Z ⊕ Z.

3.3. The Gaussian integers. The Gaussian integers are the set of algebraic integers

in Q(i) where i =
√
−1, which turns out to be Z[i], the integer linear combinations of

1 and i. This is a ring with unique factorization (up to units), and one might ask how

each prime in Z factors here? The first thing to note is that if p = (a + ib)(a− ib) then

p = a2 + b2. Since squares can only be 0 or 1 mod 4, it is evident that p 6≡ 3 (mod 4).

We have that 2 = 1 + 1 = (1 + i)(1 − i) so that 2 factors, hence the question remains

only for the primes ≡ 1 (mod 4). Fermat showed that every such prime is the sum of

two squares; we will do so assuming the easily proved fact that −1 is a square modulo

prime p whenever p ≡ 1 (mod 4):13 Suppose that t is an integer for which t2 + 1 ≡ 0

(mod p). The set {i + jt : 0 ≤ i, j ≤ [
√

p]} has ([
√

p] + 1)2 > p elements, and so two

must be congruent mod p, say i + jt ≡ I + Jt (mod p). Taking a = i− I and b = j − J

we have that a and b are not both 0, and |a|, |b| <
√

p, so that 0 < a2 + b2 < 2p.

13Let x = ( p−1
2 )! so that (p − 1)(p − 2) . . . (p − p−1

2 ) ≡ (−1)(p−1)/2x ≡ x (mod p), and therefore

x2 ≡ (p − 1)! ≡ −1 (mod p) by Wilson’s theorem.
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Moreover a ≡ −bt (mod p) so that a2 ≡ b2t2 ≡ −b2 (mod p) and thus p divides a2 + b2.

These two facts imply that a2 + b2 = p.

One thing is left to investigate: if p does factor into two parts in Z[i], are these parts

distinct? In other words, if p = (a + ib)(a − ib) is it possible that a + ib = u(a − ib) for

some unit u? The only units of Z[i] are 1,−1, i,−i leading to b = 0, a = 0, a = b, a = −b

respectively. We deduce that 2 = i(1 − i)2 is the only prime that has repeated factors.

So, to summarize, we have proved that prime p factors into two primes in Z[i] if and

only if p ≡ 1 (mod 4), in which case the prime factors are distinct, or p = 2 in which

case the ideal (2) is the square (1 − i)2.

This all generalizes rather nicely to Q(
√

d). The ideal (p) for odd rational prime p

factors into two prime ideals in Q(
√

d) if and only if d is a square mod p. In fact, d is

a square mod p if and only if p belongs to certain arithmetic progressions mod 4d. If p

does not divide 4d then the two prime ideals in the factorization of (p) are distinct. In

this case if p divides d then the ideal (p) is the square of a prime ideal.14

3.4. Factoring a prime p in a given number field. So how do we factor p in a

ring of integers, say Z(α) (which is the set of polynomials, with integer coefficients, in

algebraic integer α)? Kronecker made the surprising observation that this is tantamount

to factoring f(x) (mod p), where f(x) is the minimum polynomial of α (and remember

that minimum polynomials are irreducible): Suppose that the (unique) factorization of

f(x) (mod p) is

f(x) ≡ g1(x)e1g2(x)e2 . . . gk(x)ek (mod p)

where the gj(x) are distinct irreducible polynomials mod p, and the ej are positive

integers. Then p divides g1(α)e1g2(α)e2 . . . gk(α)ek , and (gi(α), gj(α), p) = 1 for i 6= j,

and so

(p) = (p, g1(α)e1g2(α)e2 . . . gk(α)ek) = (p, g1(α)e1)(p, g2(α)e2) . . . (p, gk(α)ek).

If p does not divide the discriminant15 of f then all the ejs equal 1 and so

(p) = (p, g1(α))(p, g2(α)) . . . (p, gk(α)),

the desired factorization into prime ideals. A similar, but more complicated, result

holds when p divides the discriminant of f .

14Otherwise, how the prime 2 factors, requires an unenlightening case-by-case analysis.
15The discriminant of a polynomial f(x) is more-or-less the greatest common divisor of f(x) and

f ′(x) in the ring Z[x] (which is defined to be the minimum possible outcome of the Euclidean algorithm

in this setting). Note that this value must be divisible by any prime p for which f(x) (mod p) has

repeated roots.
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One beautiful example comes in taking the pth cyclotomic field, Q(ζp), where ζ =

ζp = e2iπ/p is a primitive pth root of unity. This has minimal equation (xp − 1)/(x− 1),

which is ≡ (x−1)p−1 (mod p) since (x−1)p ≡ xp−1 (mod p). Thus (p) = (p, (1−ζ)p−1)

and one can deduce that (p) = (1 − ζ)p−1; that is (p) factors into principal ideals, and

so the two sides differ multiplicatively by a unit. Finding a nice presentation of that

unit, for example its minimal polynomial, is not an easy task. The same proof yields

that (p) = (1− ζk)p−1, for any integer k, 1 ≤ k ≤ p−1 and so (1− ζk)/(1− ζ) is a unit.

In Lamé’s putative proof of Fermat’s Last Theorem, discussed above, he determined

(x+ζ iy, x+ζjy) where (x, y) = 1: This ideal contains the elements (x+ζ iy)−(x+ζjy) =

(ζ i − ζj)y and ζj(x + ζ iy) − ζ i(x + ζjy) = (ζj − ζ i)x, and therefore (ζ i − ζj)(x, y) =

ζj(ζ i−j − 1). We just saw that (1 − ζ i−j)/(1 − ζ) is a unit, and so our ideal contains

the element (1 − ζ) as well as (x + ζ iy) + (1 − ζ)y(1 − ζ i)/(1 − ζ) = x + y, and so we

deduce that (x + ζ iy, x + ζjy) = (1− ζ, x+ y). As 1− ζ divides p thus our ideal divides

(p, x + y) which equals 1 if p does not divide z.

4. Groups

4.1. Constructing units. Suppose that d is a squarefree integer > 1. If d ≡ 2 or 3

(mod 4) then Z[
√

d] is the ring of integers of Q(
√

d), so if u = a + b
√

d is a unit then

a2 − db2 = 1 or −1, and hence (2a)2 − d(2b)2 = 4 or −4. If d ≡ 1 (mod 4) then Z[ 1+
√

d
2

]

is the ring of integers of Q(
√

d), so if u = (a + b
√

d)/2, with a − b even, is a unit then

a2 − db2 = 4 or −4. Either way we are searching for solutions to the Pell equation

x2 − dy2 = ±4,

where x and y are integers with x− y even. We are not interested in the solutions with

y = 0 (which correspond to the units ±1). Let (u, v) be the solution with εd = u+v
√

d
2

smallest but > 1; we claim that every solution with x+y
√

d
2

> 1 takes the form

(

x + y
√

d

2

)

=

(

u + v
√

d

2

)k

for some integer k ≥ 1. If not, let x+y
√

d
2

be the smallest counterexample. We must have
x+y

√
d

2
> u+v

√
d

2
by definition of u, v, but then ±x+y

√
d

2
· u−v

√
d

2
where the ‘±’ is chosen to

have the same sign as u2−dv2, is a smaller counterexample, giving a contradiction. The

solution u, v is known as the fundamental solution to Pell’s equation and every unit of

Q(
√

d) can be uniquely written in the form ±εk
d for some integer k.

A real number α has a continued fraction of finite length if and only if α is rational.

A real number is in a quadratic field and thus of the form (b +
√

d)/2a where a, b

and d are integers if and only if its continued fraction is eventually periodic (see, e.g.
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[1]); that is, there exists an integer m such that an+m = an for all sufficiently large

n. When α = [a0, a1, . . . ] is purely periodic, that is an+m = an for all n ≥ 0, then

α = [a0, a1, . . . , am−1, α] and so for some λ 6= 0 we have

λ

(

α

1

)

=

(

a0 1

1 0

)(

a1 1

1 0

)

. . .

(

am−1 1

1 0

)(

α

1

)

=

(

pm−1 pm−2

qm−1 qm−2

)(

α

1

)

,

from which we deduce that qm−1α
2+(qm−2−pm−1)α−pm−2 = 0. The continued fraction

for
√

d + [
√

d] is purely periodic (see the end of section 6.4 of [1]), and thus an+m = an

for all n ≥ 1 in the continued fraction for
√

d. Therefore if αr = [ar, ar+1, . . . ] we find

that αm+1 = α1 = 1/(
√

d − [
√

d]) and, proceeding as above,

( √
d

1

)

= λ

(

pm pm−1

qm qm−1

)(

αm+1

1

)

= λ′

(

pm pm−1

qm qm−1

)(

1√
d − [

√
d]

)

.

Expanding out and comparing the (rational integer) coefficients of 1 and
√

d in the

resulting expression, we deduce that

pm−1 = qm − [
√

d]qm−1, and dqm−1 = pm − [
√

d]pm−1,

so that

p2
m−1 − dq2

m−1 = pm−1(qm − [
√

d]qm−1) − qm−1(pm − [
√

d]pm−1) = (−1)m,

yielding a solution to Pell’s equation. This technique can be dated back to Brah-

magupta, an Indian mathematician who lived at the end of the 6th century, and was

perhaps known even earlier.

Archimedes’ cattle problem, is a 22 line epigram, which he sent to the mathematicians

of Alexandria, in 251 B.C. It begins by asking the reader to find the numbers of white,

black, blue and spotted bulls and cows, where these numbers satisfy eight given linear

equations. Archimedes writes “if you can solve the problem up to this point no one will

call you ignorant, but this does not yet make you an expert”. He then gives two further

equations: In one a certain sum of the variables equals a square; in the other a different

sum of the variables equals a triangular number. Archimedes then adds: “if you can

solve this now, then you win the prize for supreme wisdom”. It can be shown by the

theory of Pell’s equation that Archimedes’ cattle problem is equivalent to finding the

2329th smallest solution to x2 − dy2 = 1 with d = 4729494 and y divisible by 9314, so

that the total number of cattle is an integer with 206545 decimal digits. Presumably

Archimedes’ understood the difficulty of his problem because he had a firm grasp of the

mathematics behind Pell’s equation (see [10] for more on this charming question).
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4.2. Irreducibles. The ideal (5) factors in the field Q(
√

19) as (3−
√

19, 5)(3+
√

19, 5),

that is into two non-principal ideals. If we restrict our attention just to the algebraic

integers of the field then 5 cannot be factored, that is 5 is irreducible but not prime in

Q(
√

19).

One might ask whether there are irreducibles in a given number field that can be

split into arbitrarily many prime factors, or whether there is a bound on the possible

number? If there is a bound then this is some kind of measure on how far the given

number field is away from having unique factorization. In fact there is a bound, and

understanding this leads us into our next topic, the class group:

4.3. The class group. We wish to measure how far away ideals are from being principal

in a given field K. To do this the modern algebraist studies “ideals modulo principal

ideals”; by this we mean that two ideals are considered to be the same in this setting if

they differ, multiplicatively, by a principal ideal. More precisely we say that ideals I and

J are equivalent if there exist algebraic integers α and β, of K, for which (α)I = (β)J .

Thus any two principal ideals are equivalent. Any set of ideals that are equivalent to

one another is an ideal class; so the principal ideals form the principal ideal class.

For example in the field Q(
√
−5) we have

(1 −
√
−5) × (2, 1 +

√
−5) = (2(1 −

√
−5), 6) = (2) × ((1 −

√
−5), 3)

so that the ideals (2, 1 +
√
−5) and ((1 −

√
−5), 3) are equivalent.

Notice that if ideals I and J are equivalent to ideals A and B, respectively, then IJ is

equivalent to AB. Thus we can define multiplication of ideal classes via multiplication

of ideals, and this multiplication is commutative. Evidently the principal ideal class is

the identity in this multiplication. If K = Q(
√
−d) then the product of any ideal with

its complex conjugate16 gives a principal ideal, so that every ideal class has an inverse,

and hence the ideals form an abelian group, called the ideal class group. If K = Q(
√

d)

then we obtain the conjugate ideal via the map
√

d → −
√

d, and an analogous, though

more involved, construction of an inverse ideal class works for ideal classes in any ring

of integers.

How many distinct ideal classes are there in the ring of integers of a given number

field? (The class number is defined to be the number of distinct ideal classes.) That is,

how large is the class group? If there is just one ideal class, that is the class number

h(K) = 1, then all of the ideals are principal, and thus we have a principal ideal domain

which implies that we have unique factorization. If h(K) 6= 1 then factorization is not

unique. The first question to address is whether h(K) is bounded, or whether it can

16The complex conjugate of an ideal I is the ideal I := {z : z ∈ I}.
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ever be infinite? If d > 0 is squarefree then we can use Gauss’s algorithm, modelled on

Euclid’s algorithm, to prove that the class number of Z[
√
−d] is finite:17

In Euclid’s algorithm we have two possible actions given integers n and m:

(i) Unless n < m replace n by the least non-negative residue, n′ of n (mod m), that

is, the residue in [0, m). Evidently (n, m) = (n′, m). In the continued fraction algorithm

for n/m this amounts to subtracting [n/m] from n/m to obtain a number in [0, 1).

(ii) If n < m then we simply swap the two numbers, comparing m and n. Evidently

(n, m) = (m, n). In the continued fraction algorithm for n/m this amounts to inverting

n/m, replacing it by m/n.

In Gauss’s algorithm we begin with two generators a and b +
√
−d of an ideal in

Q(
√
−d), for squarefree −d < 0: note again that a divides b2 + d. Here are Gauss’s two

analogous actions:

(i) Unless −a/2 < b ≤ a/2 replace b by the least residue, in absolute value, of b

(mod a), that is the residue b′ in (−a/2, a/2]. Evidently (a, b +
√
−d) = (a, b′ +

√
−d)

(ii) If −a/2 < b ≤ a/2 then we invert (b +
√
−d)/a, writing b2 + d = ac for some

integer c, to obtain a/(b+
√
−d) = (b−

√
−d)/c. Evidently (b−

√
−d)× (a, b+

√
−d) =

(a(b−
√
−d), b2 +d) = (a)×(b−

√
−d, c) so that the ideals (a, b+

√
−d) and (c, b−

√
−d)

are equivalent.

Note that if a >
√

4d/3 then ca = b2 + d < a2, that is c < a; in other words Gauss’s

algorithm, like Euclid’s algorithm, reduces the size of the numbers involved, at least if

the numbers are large enough. Moreover this shows that each equivalence class of ideals

contains an ideal (a, b +
√
−d) with |2b| ≤ a ≤

√

4d/3, and so there are only finitely

many possibilities; that is the class number is indeed finite.

The norm of the ideal (a, b +
√
−d) is |a|; Gauss’s proof shows that every ideal class

contains an ideal of norm ≤
√

4d/3. This proof generalizes to establish that in any

number field every equivalence class contains some ideal with norm beneath a certain

bound that depends on the field, and therefore the class group is finite.

How big is h(K) typically? Much depends on what type of field K is. For K of

the form Q(
√

d) we have that h(K) is typically around
√

|d| when d is negative, but is

typically bounded when d is positive. Gauss asked an important question in each case:

• Is it true that there are infinitely many squarefree d > 0 for which the class number

is one?

• Are there negative squarefree d for which the class number is one, other than the

nine values given in the list −1,−2,−3,−7,−11,−19,−43,−67,−163?

17This is the ring of integers of Q(
√
−d) if −d ≡ 2 or 3 (mod 4), and a subring if −d ≡ 1 (mod 4).

This algorithm can easily be modified for ideals in the full ring of integers, in the latter case.
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The first question remains completely open. The quest to resolve the second question

set the tone for twentieth century number theory perhaps more than any other problem.

In the 1930s it was shown that there are no more than ten elements on the list, though

the proof, by its very nature, cannot be modified to determine whether there is indeed a

missing tenth d. In the 1950s, Heegner showed that there is no tenth field by a proof that

was not fully believed at the time; though nowadays we know that Heegner was correct

and the technique he created to prove this result is now central to arithmetic geometry.

In the 1960s Baker and Stark came up with quite different, and widely accepted proofs

that there is no tenth field. In the 1980s Goldfeld, Gross and Zagier showed how one

can find all squarefree −d < 0 with any given class number, be it 1, 2 or whatever.

Armed with the class group we now show that, for any number field K, an irreducible

α in K can have no more than B(K) prime factors, for some bound B(K) depending

only on K. We use Lagrange’s result that if G is a finite group and g ∈ G then g#G = 1,

where 1 is the identity in G. If the factorization of the ideal (α) into prime ideals is

P1P2 . . .Pk then we claim that there are no more than h(K) − 1 of Pj in any given

ideal class, for if there are h(K) then the product of these ideals is principal, say, (β)

and we can write α = βγ for algebraic integers β, γ, so that α is reducible. Therefore

B(K) ≤ (h(K)−1)2, and Davenport asked the still open question as to the best possible

such bound B(K) for each number field K. In fact B(K) = B(G) where G is the class

group, and B(G) is the largest possible number of elements of an abelian group G such

that their product is the identity but the product of the elements of any proper subset

is never the identity.

4.4. Equations as examples. We will now find all integer solutions to the equation

x2 + 2 = y3.

Note first that y is odd, or else x is even and we have 0 + 2 ≡ 0 (mod 4) which is

impossible. We have already seen that Q(
√
−2) has class number one, and thus has

unique factorization, and that its only units are 1 and −1 which are both cubes of

themselves. Now x2 + 2 = (x +
√
−2)(x−

√
−2) and the two factors are coprime (since

(y, 2) = 1); therefore x+
√
−2 and x−

√
−2 must both be cubes of elements of Z[

√
−2].

Now if x +
√
−2 = (u + v

√
−2)3 for some integers u and v then 3u2v − 2v3 = 1 so that

v = ±1 and therefore 3u2 = 2 + v. This yields v = 1, u = ±1 and therefore x = ±5

and y = 3.

Let us now apply the same procedure to find all integer solutions to the equation

x2 + 19 = y3.
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First note that 19 cannot divide y (or else it divides x and the equation is impossible

mod 192), and that 2 cannot divide y as there is no solution possible to x2 + 19 ≡ 0

(mod 8). Now x2 +19 = (x+
√
−19)(x−

√
−19) and the two factors are coprime (since

(y, 38) = 1) so, as ideals, must each equal the cube of an ideal. Now the class number for

the ring of integers of Q(
√
−19) is one, and therefore all ideals are principal. Moreover

the only units are 1 and −1 and thus both cubes. Therefore if x+
√
−19 = (u+v

√
−19)3

for some rational integers u and v then the coefficient of
√
−19 is 1 = 3u2v − 19v3, so

that v = ±1 and therefore 3u2 = 19 + v which is impossible. Therefore there are no

solutions to our equation. However this is wrong since 182 + 19 = 73.

So where does our purported proof go wrong? One version of what went wrong is

that the ring of integers is not Z[
√
−19] but rather Z[ 1+

√
−19

2
], whence we should have

written x +
√
−19 = (u+v

√
−19

2
)3 for some integers u and v with u − v even. Then

8 = 3u2v − 19v3 to which we find the unique solution u = 3, v = 1 and recover the only

solution (18, 7) to the equation displayed above.

If we had chosen to solve the equation via the arithmetic of the ring Z[
√
−19] instead,

then we would have run into another problem; the class number of this ring is 3 which

means that the cube root of a principal ideal may well not be principal, and thus new

complications arise.

We will work with other Diophantine questions below.

5. Quadratic forms, Ideals, and Transformations

5.1. Different perspectives on reduction. Suppose that d ≡ 1 (mod 4). By the

method developed earlier one can prove that all ideals of Z[ 1+
√

d
2

] can be written as

(a, b+
√

d
2

) where a is the norm of the ideal and b2−d = 4ac for some integer c, and all the

elements are integral linear combinations of the two generators, that is {ax + ( b+
√

d
2

)y :

x, y ∈ Z}. Now we can associate to any conjugate pair of such forms ax + ( b+
√

d
2

)y and

ax + ( b−
√

d
2

)y, their product divided by their norm a, that is ax2 + bxy + cy2.

Thus there is a 2-to-1 map from the ideals of Z[ 1+
√

d
2

] to the binary quadratic forms

f(x, y) = ax2 + bxy + cy2 of discriminant b2 − 4ac = d. We shall be interested in

understanding the set of integers n represented by f , that is for which there exists

integers u and v such that n = au2 + buv + cv2. Now let b′ = b + 2ak be the least

residue, in absolute value, of b (mod 2a), let c′ = f(1, k) and g(x, y) = ax2 +b′xy+c′y2.

Then f(u, v) = g(u − kv, v) so that f and g represent the same integers, and thus f

is equivalent to g. Transforming from f to g is analogous to the first step in Gauss’s

algorithm discussed above. The second step in Gauss’s algorithm has a much better

description in this context, simply by mapping f to h where h(x, y) = cx2 − bxy + ay2,
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10−1 x

y

Figure 1. Fundamental domain of SL(2, Z) in the complex upper half plane.

since f(u, v) = h(v,−u), and thus f is equivalent to h. This algorithm is what actually

appeared in Gauss’s [5]; the description given above, with ideals, first appeared in

subsequent work of Dirichlet.

For a third equivalent description when d < 0, consider the complex number z = b+
√

d
2a

in the upper half of the complex plane. For the first part of Gauss’s algorithm we map

z → z′ = z + k so that − 1

2
< Imz′ ≤ 1

2
. For the second part of Gauss’s algorithm, if

|z| < 1 then we map z → z′ = −1/z so that |z′| > 1. The algorithm terminates when z

is in the fundamental domain − 1

2
< Imz ≤ 1

2
with |z| ≥ 1 (as in Figure 1). Note that

the two steps of the algorithm are equivalent to applying the matrices

(

1 1

0 1

)

and

(

0 1

−1 0

)

to

(

z

1

)

,

much like we saw when we discussed the Euclidean algorithm. In fact these two matrices

generate multiplicatively SL(2, Z), the group of 2-by-2 matrices with integer entries of

determinant one.

5.2. Quadratic Forms. In the previous section we saw how understanding what inte-

gers are represented by binary quadratic forms is tied in with unique factorization. It is

a question of some interest to determine which integers are represented by a given qua-

dratic form. For example Lagrange proved that every integer is the sum of four squares,
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and Ramanujan asked which quadratic forms represent all integers. Quite recently Bhar-

gava and Hanke gave the easily applied criterion that a quadratic form with integer co-

efficients represents all the positive integers if and only if it represents each of the twenty-

nine integers 1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145,

203 and 290.

6. Diophantine equations

6.1. Fermat’s Last Theorem, revisited. In 1847 Kummer wrote to Liouville that

he could prove Fermat’s last theorem for prime exponent n assuming two properties of

n. If we follow the discussion of Fermat’s last theorem above, then we have that each

ideal (x + ζjy) is the nth power of an ideal, call it Bj. This implies that if Bj is in the

ideal class I then In = 1. Now consider only those primes n which do not divide the

order of the class group of the ring of integers of Q(ζn); we call these regular primes.

Evidently if In = 1 then I = 1 and so Bj must be a principal ideal. This means that

there exists an algebraic integer αj such that (x + ζjy) = (αj)
n; and therefore a unit

uj for which x + ζjy = ujα
n
j . The second assumption that Kummer made implied that

uj = vn
j for some other unit vj, and he was subsequently able to show that this second

assumption always holds for regular primes n. Thus he deduced that each x+ ζ jy is the

nth power of an algebraic integer, with which he was able to resurrect Lamé’s argument

and produce a contradiction. That is, Kummer proved Fermat’s last theorem for regular

prime exponents.

6.2. Elliptic curves. Suppose that f is a monic polynomial of degree 3 with integer

coefficients, and no repeated roots. An elliptic curve E is the set of points on the curve

y2 = f(x). We denote the points on E from the field K by E(K). Poincaré proved that

the points of E(K) form an abelian group, three points summing to zero if they lie on

a line, and asked whether the abelian group is finitely generated? That is, whether it is

of the form T ⊕Zr where T is a finite torsion subgroup and r is some integer. This was

proved by Mordell in the 1920s and we will now describe the part of his proof pertaining

to unique factorization. We begin with the elliptic curve y2 = x(x − a)(x − b) where a

and b are integers, and suppose that (r/t2, s/t3) is a rational point on E, where (r, t) = 1.

Therefore r(r−at2)(r−bt2) = s2. Now d1 := (r, r−at2) = (r, a), d2 := (r, r−bt2) = (r, b)

and d3 := (r − at2, r − bt2) = (r − at2, b − a) are divisors of a, b and b − a, respectively,

so that r = d1d2u
2, r − at2 = d1d3v

2, r − bt2 = d2d3w
2 for integers u, v, w.

More generally, suppose that f has no more than one rational root. Let K be the

smallest field which contains all the roots of f . If we attempt to imitate the proof of

the previous paragraph then we run into issues of unique factorization for the field K:
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That is, the ideal generated by one of the factors linear in r and t2 equals some ideal

that is a divisor of the discriminant of f times the square of an ideal. Let us write this

as (α) = DI2. Let I0 be the ideal of smallest norm in the ideal class of I so that II0 is

principal, call it (β). Hence (α(NI0)
2) = DI2

0 (β)2. Therefore DI2
0 is a principal ideal,

say (γ), coming from a finite set. Thus α = uγδ2 for some algebraic number δ and some

unit u. If u1, . . . ur is a basis for the units of K then for any unit u there is a subset

S of {1, 2, . . . , r} such that u is
∏

i∈S ui times the square of a unit; and so α = γ ′ρ2

where γ′ comes from some finite, computable set. We have proved a generalization of

the result we had in the case that f splits into linear factors over Q. This is essentially

the argument that Mordell used in his proof of Poincaré’s conjecture. Weil realized

that Mordell did not work with the unit group U in the last step but rather with the

finite quotient U/U 2, and that earlier he could have worked with C/C2 rather than the

class group C, and in fact one could have even started by working with E(Q)/2E(Q).

By doing so, Weil massively simplified Mordell’s complicated proof, and ushered in the

methods of modern arithmetic geometry.

7. Unique factorization, in practice

7.1. Factoring. The unique factorization theorem tells us that every integer can be

factored into primes in a unique way, but it does not tell us how to do this in practice.

As Gauss wrote in article 329 of [5]:

“The problem of distinguishing prime numbers from composite numbers,

and of resolving the latter into their prime factors is known to be one of

the most important and useful in arithmetic. It has engaged the industry

and wisdom of ancient and modern geometers to such an extent that it

would be superfluous to discuss the problem at length. Nevertheless we

must confess that all methods that have been proposed thus far are either

restricted to very special cases or are so laborious and difficult that ...

they try the patience of even the practiced calculator. And these methods

do not apply at all to larger numbers ... The dignity of the science itself

seems to require that every possible means be explored for the solution

of a problem so elegant and so celebrated ... It is in the nature of the

problem that any method will become more complicated as the numbers

get larger. The techniques ... known ... require intolerable labor even

for the most indefatigable calculator.”

What Gauss wrote two hundred years ago is still true today. But now, more than for

just the “dignity of the science itself”, we study factoring because the seeming difficulty
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in factoring long integers is what keeps our electronic communications safe; that is, the

impenetrability of the most commonly used cryptography is based on the fact that no

one can factor 200 digit numbers quickly.

Since any composite number has a prime factor no larger than its square root,

one can factor n by testing whether it is divisible by any number up to its square

root. This is easily done for, say, n = 1001 or n = 11041, but how about for

n = 1234567890123456789? This requires over a billion test divides, and if one were

to try to factor a given 100 digit integer, which is the product of two 50 digit prime

numbers, in this way then it would take longer than the remaining lifespan of our uni-

verse, even on an impossibly fast computer! One therefore needs a more sophisticated

approach to handle large numbers.

Fermat came up with a method that is better suited to integers that are the product

of two roughly equal primes, which he exhibited on the example n = 2027651281. First

note that r = 45029 = [
√

n] and that n = r2 + 40440. Fermat’s idea is to find j such

that (r+j)2−n is itself a square, say s2, so that n = (r+j+s)(r+j−s). He tried each j

successively, and efficiently, as follows: (r+1)2−n = (2r+1)−40440 = 49619 and this is

not a square as it is ≡ 19 (mod 100). Next (r+2)2−n = (2r+3)+49619 which he again

ruled out mod 100. With each successive j he augmented the number by two more than

the previous time, and ruled out the non-squares by modular arithmetic, eventually

finding that (r + 12)2 − n = 10202, and deducing that 2027651281 = 44021 × 46061.

Unfortunately Fermat’s algorithm is very slow in the worst cases, as is a variant using

binary quadratic forms, due to Gauss.

Modern factoring algorithms are mostly geared to working fast even in the worst

case. Often they have the drawback that they are not guaranteed to always work, in

that they may depend on a random number generator and the factorer might just be

unlucky, but usually this can be organized in such a way that we would not expect to

ever be so unlucky within the lifespan of the universe! The most efficient algorithm

known is called the number field sieve,18 which is a variation on the quadratic sieve,

itself a variant of Fermat’s original algorithm.

If n is composite and y is coprime to n then there are at least four solutions x

(mod n) to x2 ≡ y2 (mod n), and so for at least half of these solutions we have that

(x−y, n) (x+y, n) provides a factorization of n. In the different factoring algorithms we

try to find such integers x and y (with x2 ≡ y2 (mod n)) by various methods. Typically

18I should perhaps say “publicly known”. Most wealthy countries and corporations employ mathe-

maticians secretly working on these problems, because of the cryptographic implications, and it may

be that significant advances have been made behind closed doors!
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one selects a1, a2, . . . (mod n) and then takes bj to be the least positive residue of a2
j

(mod n). One hopes to find a sequence of values j1 < j2 < · · · < jk such that bj1bj2 . . . bjk

is a square, say y2, so that we have our solution above with x = aj1aj2 . . . ajk
. Once

one has a process for generating the ai, the key issue is to determine a subsequence of

the bj whose product is a square. We do this by working only with the bj that have

no prime factors > B, for some well-chosen B, and storing the factorizations of such

bj. Indeed if bj =
∏`

i=1 p
cj,i

i then bj1bj2 . . . bjk
is a square if and only if

∑k
h=1 cjh,i is even

for i = 1, 2, . . . , `. In other words if we create the matrix where the row corresponding

to bj is the vector of exponents (cj,1, . . . , cj,`), each taken mod 2, then we require a

non-trivial subset of such rows whose sum is zero mod 2. This can be found efficiently

using Gaussian elimination mod 2. Next we have to consider how to select the aj. One

way is to pick random integers, another, the values of polynomials. Early researchers

found that numbers related to the continued fraction of
√

n worked well. Each of these

algorithms work in roughly e
√

d steps, where d is the number of decimal digits of n, a

marked improvement on earlier algorithms that took more like ed steps.

In the number field sieve one tries to imitate the quadratic sieve in number fields that

are cleverly chosen to make the algorithm much more efficient. The above argument

can be translated into this setting giving a running time of around ed1/3

steps. Most

interesting for us is the step in which we factor bj into small primes: First we factor

the ideal (b) into prime ideals of small norm, and then we create a factorization of the

algebraic integer b, proceeding much as we did in the previous section, taking account

of the class group and unit group of the field. Moreover, just as in Weil’s work, we

can restrict our attention to C/C2 and U/U2, an observation that makes this algorithm

practical.

7.2. Cryptography. Cryptographic protocols used to be based on complicated combi-

natorial schemes, and the safety of the secret message rested on keeping the key secret,

because whoever had the key could easily invert it. In the mid-70s interest grew in

finding one-way functions in which knowing the function did not help, in practice, in

finding its inverse. Thus, a cryptographic protocol based on such a function would mean

that one’s enemy knowing the key would not, in practice, help them determine how to

decode an encoded message. A candidate for such a one way function is multiplication:

It is easy to multiply together two large primes, but not so easy to recover the two large

primes from their product, as we discussed in the previous section. Rivest, Shamir and

Adleman came up with a simple cryptographic protocol which we believe can be broken

when properly implemented if and only if one can factor large numbers rapidly.
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Is this a safe way to keep secrets? There is something re-assuring to me that the

difficulty of breaking a code depends not on obfuscation and misdirection, but on a

deep mathematical problem that has eluded the talents of many of history’s greatest

minds (see, e.g., Gauss’s quote above!). Other difficult mathematical problems are also

used to hide secrets, some based on quite different questions, though one of my favorites

is based on a problem that we now show to be just as difficult as factoring:

There are quick algorithms for taking square roots mod p when p is prime [4]. To

extend these to composite n we need the factorization of n, since then we can find the

square root modulo each of the prime power divisors of n, and then recover the square

root mod n using the Chinese Remainder Theorem. Thus a fast factoring algorithm

will give a fast algorithm for extracting square roots modulo composite integers n.

On the other hand suppose that we have a fast algorithm for extracting square roots

modulo the composite integer n, and we wish to factor n. Then we can simply select

a number y (mod n) at random, feed the least residue of y2 (mod n) to our algorithm,

which will return one of the square roots of y2 (mod n), say x. Then we have an at least

50% chance that (x − y, n) (x + y, n) provides a factorization of n. If we are unlucky

we do this again and again until we succeed. The probability that we fail after doing

this 100 times is negligible, no more than 1 in 2100. Therefore we have proved that a

fast algorithm for extracting square roots modulo composite integers n will give a fast

factoring algorithm. Combining the last two paragraphs we see that these two problems

are thus equally difficult.

7.3. Primality testing. Fermat’s little theorem states that ap ≡ a (mod p) for every

integer a whenever p is prime. Conversely if an 6≡ a (mod n) for some integer a then

n is composite. One can compute an (mod n) quite rapidly,19 and so one can quickly

prove that a given integer n is composite if 2n 6≡ 2 (mod n). It is perhaps a little

surprising that this gives a proof that n is composite without producing any factors of

n! If this test fails then we can check whether 3n 6≡ 3 (mod n), 5n 6≡ 5 (mod n),etc.

Most composite n will be revealed in this way; if every composite were to be revealed in

this way then the test would also serve as a primality test, primes being those numbers

that are not revealed as composites. Unfortunately there are composite n for which

an ≡ a (mod n) for every integer a, for example 561 and 1729, and these Carmichael

numbers, though rare, are infinite in number.

One can modify the above test through the following development of Fermat’s little

theorem: If (a, p) = 1 then ap−1 ≡ 1 (mod p), so that a
p−1

2 ≡ ±1 (mod p), as a
p−1

2 is the

square root of ap−1. If a
p−1

2 ≡ 1 (mod p) then we can take the square root again, and

19By the method of successive squaring.
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again, up to as many as r times where 2r divides p − 1 but not 2r+1. This sequence of

residues must either be all 1’s, or all 1’s until we reach a −1. Anything else and we know

that n is composite. There are no composite numbers n for which an−1 (mod n) and

all its square roots have this property for all integers a which are coprime to n. In fact

at least three-quarters of such values of a do not have this property if n is composite;

these a are called witnesses to the compositeness of n. Thus we can distinguish primes

from composites by looking for such witnesses, though there is no guaranteed quick way

to find a witness. If we test 100 values of a chosen at random then the combined test

will misidentify a composite number as prime, that is, it will fail to find a witness, with

probability under 1 in 2200, something that will never occur in practice. If we assume

the Generalized Riemann Hypothesis we can prove that by picking just the first few

values of a (up to 2(log n)2) then we are guaranteed to find a witness for any composite

n, and so we will have a true primality test.

However what was long wanted was a method that could be unconditionally proven

to always work in a fast time. Such a test was found in 2002 by Agrawal, Kayal and

Saxena (see [6]), based on the following theorem:

For given integer n ≥ 2, let r be a positive integer < n, for which n has order

> (log n)2 modulo r. Then n is prime if and only if

• n is not a perfect power,

• n does not have any prime factor ≤ r, and

• (x + a)n ≡ xn + a mod (n, xr − 1) for each integer a, 1 ≤ a ≤ √
r log n.

8. Further directions

In the absence of unique factorization one might desire a close analogue to the Eu-

clidean algorithm: A ring of integers, R, in Q(
√

d) is Euclidean if for any α, β 6= 0 ∈ R

there exist γ, δ ∈ R such that α = βγ + δ where |δ| < |β|. See [9] for a charming

discussion of this question.

Gauss explicitly showed how to “compose” two quadratic forms, the equivalent of

multiplication of ideals in the appropriate quadratic field, which was written down

explicitly by Dirichlet. Recently Bhargava came up with a fascinating new viewpoint

on this: Consider eight integers ai,j,k, 0 ≤ i, j, k ≤ 1. For ` = 1, 2, 3, let M`, and N`,

be the 2-by-2 matrices formed from the ai,j,k by letting the `th coordinate of the index

equal 0, and 1, respectively. Let f`(x, y) be the determinant of the matrix M`x − N`y;

then the quadratic forms f1, f2, f3 all have the same discriminant and satisfy f1f2f3 = 1

in the class group. See [2] and its sequels for extraordinary developments of these ideas.
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[12] André Weil, Number theory: An approach through history from Hammurapi to Legendre,
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