Limitations to the Equi-distribution of Primes IV

John Friedlander * and Andrew Granville **

Abstract: We construct polynomials of given degree which take
either significantly more or significantly less prime values than ex-
pected.

1. Introduction.

Gauss observed that “the density of primes around z is 1/logz”, which allowed him
to predict the Prime Number Theorem:

Todt
5 logt

(1) m(x) ~ as T — 00,
where 7(x) is the number of primes < z. Similarly, one might predict that the asymptotic

formula
(2) m(x+y)—7(x) ~y/logx as z — o0

should hold for any y larger than log® ™  (and for other such predictions, see [2]). However,
in 1985, Maier [8] showed that (2) fails when y is any fixed power of logx. Similarly,
under the belief that the primes should be equally distributed amongst those arithmetic
progressions a (mod ¢) with a coprime to ¢, one predicts the Prime Number Theorem for
arithmetic progressions:

g )~ ™)
(3) m(2; ¢, a) e
as x — oo for all (a,q) = 1, where 7(z; ¢, a) is the number of primes < z that are = a (mod
q) and ¢ is Euler’s function. One might also expect (3) to hold uniformly for x larger than
d(q) log**¢ ¢; however, in [3], (3) was shown to fail for all sufficiently large primes ¢, for
some a coprime to ¢, when z/q is any fixed power of log g. Moreover, in [5], (3) was shown
to fail for any fixed non-zero integer a, for infinitely many ¢ with z/q any fixed power of

log q.
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More generally, it has been conjectured [1,7] that the number of prime values assumed

by any irreducible polynomial F'(X) is given by the formula

T

(4) mr(z) = {CF+0(1)}W

as x — 00, where wp(x) is the number of integers n < z for which |F(n)| is prime and Cp
is the following, rather complicated, constant:

o IL0-52) /6

p prime

and wp(p) counts the number of integers n, in the range 1 < n < p, for which F(n) =
0 (mod p). (It is easy to deduce both (1) and (3) from (4).) Elementary results on
prime ideals guarantee that the product in (5) indeed converges if the primes are taken in
ascending order.

As with 7(x) and 7(x; g, a), one might have expected that the asymptotic formula (4)
holds whenever x is some fixed power of log |F’| or larger, where |F'| is the product of the
absolute values of the non—zero coefficients of F(X). We prove here that this is false for
infinitely many polynomials of any given degree.

Theorem 1. Let d be a fixed positive integer and let N > 2 be real. There exist infinitely
many irreducible polynomials F(X) of degree d with non-negative integer coefficients, such

that for some 6y > 0 depending only on N, and some x > log" |F|, we have

6 mp(xr) — Cp——— _ .
© )= Cr g @) log 1F(2)

We should like to get both upper and lower bounds for 7 as was done in the case of
linear polynomials. There is some technical difficulty with this however and we only prove

Theorem 2. Assume that the Riemann Hypothesis holds for the Dedekind zeta—functions
of number fields. Let d be a fixed positive integer and let N > 2 be real. Then, for some
dny > 0 and all x > w¢(d, N) there exist irreducible polynomials Fy of degree d with
non-negative coefficients such that

z < logV |Fy| < 2z,

T
Tr () > (1+5N)CF+Ma
and p (z) < (1—5N)CF_W.

It seems likely that the above assumption of the Riemann Hypothesis can be substan-
tially weakened, by replacing it with a zero density theorem for the zeros of the Dedekind
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zeta—functions of a certain family of number fields. Such a theorem might well be suscep-
tible to current techniques.

We mention also that one can show by an almost identical argument, the curious
unconditional result that if either of the bounds, for 7, of Theorem 2 fails to hold then
for some F' the asymptotic formula (4) already fails at the much “safer” value

z = exp((log |F|)?).

2. Good and bad moduli.

Fix ¢ > 0 and call the modulus ¢q good if L(s, x) has no real zeros 8 with § > 1—¢/loggq
for each Dirichlet character x (mod ¢) (and call ¢ bad otherwise). A result of Gallagher
[6] implies that, for some ¢, if ¢ is good and (a,q) = 1 then

(X +x5q,a) — 7(X5q,a) ~ w(z)/d(q)

provided that logq = o(logx) and x > X. An immediate consequence of [5] Proposition
21is

Lemma 1. Choose ¢ > 0 sufficiently small. For all sufficiently large y and z with logy <
212 and P(z) := [l,<.p
(i) q divides n for every bad modulus nP(z) withn <y, or
(ii) q divides P(2), ¢ < 22, q/¢(q) = 1+ O(1/loglog 2) and q divides n for every bad

modulus nP(z)/q withn < y.

there exists an integer q > z such that either

3. Sieving with most of the small primes.

Define ®,(x, z) to be the number of integers < z, free of prime factors < z which do
not divide ¢. In Lemma 2 below we will see how this function may be estimated smoothly
in terms of Buchstab’s function, w(u), which equals 0 for v < 1, and is determined by the

equation
u—1
w(u) = 1 + / w(t)ydt  for u > 1.
0

We shall need the following well-known properties of w(.) (see [8]): First that 1 > w(u) >
1/2 for uw > 1, and second that w(u) — e~ tends to 0 as u — oo (where v is Euler’s
constant), changing sign at least once in every unit interval. As a consequence we may
deduce that for each N > 1 there exist M4 in the range N < My < N + 1 such that
w(My) > e > w(M_): note that My < 2N for each N > 2.

An immediate consequence of [3] Lemma 5 (see also [4], end of §3) is
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Lemma 2. The estimate

0 = 1 (25) mgs {eon-o (25}

plg,p<z

holds uniformly for z > 2, M > 2, and integers ¢ with no more than log? z distinct prime
factors < z.

4. An irreducibility criterion.

We shall use the following criterion in the proofs of the Theorems:

Lemma 3. Fix the integer d > 2. The polynomial F(X):=aX? + bX + 1 is irreducible
in Z[X], for any integers a and b satisfying |a| < |b] — 1.

Proof: Noting that |az?| < |bz + 1| for z on the unit circle, we may apply Rouché’s
Theorem to deduce that F(X) and bX + 1 have the same number of zeros inside the unit
circle. Therefore F/(X) has exactly one zero, call it «, inside the unit circle, and the rest
are outside the unit circle.

So now suppose that F(X) = G(X)H(X) is reducible, where H(a) = 0. But |G(0)|
equals the absolute value of the leading term of G(X) (which is a non—zero integer, and
so of absolute value > 1) times the product of the absolute values of the roots of G(X)
(which are all > 1); thus |G(0)| > 1. On the other hand G(0) divides F'(0) = 1, giving a
contradiction.

(Thanks are due to a referee for the simplification, given above, of our original proof
of Lemma 3.)

5. The Proof of the Theorem 1.

Select M = M asin Section 3, so that N < My < 9N/bandw(M_) < e <w(My).
Given z, let y = exp(2?/1°) and R = exp(zM/N)
holds, ¢ if (ii) holds, and take P = P(z)/qo.

For each integer r, let F}.(X) = PX9 + (rP + 1)X + 1. If 2 is sufficiently large then

F,.(X) is irreducible for each R < r < 2R, by Lemma 3. Moreover

. Pick ¢ as in Lemma 1, let ¢o = 1 if (i)

(7) log |F.| =log R+ 2log P4+ O(1) = z2M/N 4 O(2)
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whenever R < r < 2R. Now, for any given z,

ILSEES SEED DRI ED DD DI

r~R r~R n<z r~R

F.(n) is prime Fr(n) is prime
(8) = Z w(Fo(n) + 2RPn; Pn, Fy(n)) — w(Fo(n) + RPn; Pn, Fy(n))
n<z
(n+1,P)=1

as (Pn, Fy(n)) = (P,n+1). Here r ~ R denotes summation over r in the range R < r < 2R.
A significant restriction on the bad moduli Pn in (8) is given by Lemma 1 and we
estimate these restricted terms using the Brun—Titchmarsh Theorem:

RPn

m(Fo(n) +2RPn; Pn, Fo(n)) — w(Fo(n) + RPn; Pn, Fo(n)) < ¢(Pn)log R’

For the remaining moduli Pn, which are all good, we may use Gallagher’s Theorem (see
Section 2), to get

RPn

m(Fo(n) + 2RPn; Pn, Fo(n)) — m(Fo(n) + RPn; Pn, Fo(n)) ~ #(Pn)log R’

if (Pn+1)=1.

Substituting these estimates into (8) we obtain

RPn RPn
Crn@={1to} X sEirm 0l X Smniew

r~R = n<x
(n+1,P)=1 (n+1,P)=1

q|n
RZ |a (x,2) [ x H 1-— E
logR | %™ P

N r . (logx
) RlogRe “ <logz) '

Here we have used the fact that ¢ > 2z, Lemma 1, and then Lemma 2, for the last two
equations; see also §5 of [5].
Now, if for each 7 ~ R, (6) fails to hold for z = z, = zM+, then

L4
20 ”

Z(Wr(xﬁ-) - Crﬁ)

r~R
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where, for ease of notation, we have written 7p = . and Cr = C,. for F' = F,.. By (9), if
5]\] < %,
(1= 355)Rew(My) < Y Cr < (14 30n)Rew(My).
r~R

Similarly, if for each r ~ R, (6) fails to hold for + = x_ = zM- then

(1-35n)Re"w(M_) < > C\p < (1+30y)Re"w(M_)
r~R

which is a contradiction if § is chosen so small that (14 30y )w(M_) < (1 —3dy)w(M}),
for example, any dy < %(w(MQ — w(M_)). This completes the proof of Theorem 1.

6. Proof of Theorem 2.

We give the proof for F, the proof for F being entirely analogous. We choose

/M

M = M, as before and, for given z, we define z = /. We choose y = eXp(zg/lo) and

M/NY as in the proof of Theorem 1. By the Riemann Hypothesis (for quadratic

R = exp(z
fields) the bad moduli of section 2 do not occur so we may take go = 1, P = P(z). We

recall from the proof of Theorem 1:

(9) Z m(x) ~ R g B ew(M).

r~R
In section 7, we will show, assuming appropriate Riemann Hypotheses, that
(10) S0~ R,
r~R

for the constants defined by (5). From (7), (9)’, and (10),

D (@)~ w(M) 3 o

r~R r~R

so that for some r ~ R we have

x
m(z) > (e"w(M)+ o(1))Cp ————.

(z) = (e"w(M) +o(1)) og |F.(2)]
For this value of r we take F'. = F)., obtaining the result for any dy in the range 0 <

Oy < eYw(M) — 1. This completes the proof of Theorem 2, subject to the demonstration
of (10).
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7. On the sum ), _,C.

Throughout this section fix ¢ > 0 and let 2 < N < M < 9N/5, P = P(z) and
R = exp(zM/N); the implied constants throughout may depend on d and .

For each » ~ R, fix a number field K., obtained by adjoining a zero (3 of Fi. to the
rationals, and define A = A, to be the absolute value of the discriminant of K,, and
wr(p) = wr, (p). Let w,(p) + a(p) be the number of prime ideals of K, having norm p, so
that |a(p)| < d, and a(p) = 0 for all primes p that do not divide AP. Now

wom2) /() - 5

where a, =3}, pf(m)wy(m) and wy(m) =[], wr(p). Therefore the Dirichlet series

A(s):= — = A1(s)Aa(s),

where ¢, is the Dedekind zeta-function of K = K,, Ai(s) = [, ar (1 - %), and

As(s) is a correctional factor corresponding in part to the prime ideals of K having norm

p’, j > 2, and in part to the ratio (1 — MW) / (1 — “’T—(Sm) <1 — %) for each

P P
prime p dividing AP. Therefore

(11) As(s) <1 for o> % te,

and, as |a(p)| < d,

1 1
Ai(s) < exp|d Z — | < exp|2d Z —
p|AP p<log(AP) p

(12) < exp(cd(log(AP))' ™),

for o > €.
As K, =Q(3 1), and because the reciprocal polynomial of F,. is monic, we can bound
A by

(13) A < |discriminant X¢F,.(X~1)| < (3dRP?),

which follows from:
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Lemma 4. The discriminant of an irreducible polynomial f(X) = X% + bX9! 4+ a is
(—1)@a?2(ad? + b%(1 — d)?1).
Proof. If f(X) = [[",(X — 8) then [[~, 8 = (—1)%a, and
f(8;) = B +(d—=1)8% = —dB;™ (b(%d) - ﬁi)

for each 7. Thus the discriminant, Ay, is given by

d
0®a; = [T = Carvta2 ()

= a® 241 — ) + bdb? (1 — )4t + ad?} = a¥%{ad? +b%(1 — d)¢71Y,

giving Lemma 4.

Returning to the main argument, we write

W YG-Y Yy T ey S s

r~R r~R n>1 r~R n<lz r~R n>x

where z is to be chosen; note that = has a different meaning than in the earlier sections.

Now, for given m and n (mod m), the congruence F.(n) = 0 (mod m) is linear
in r; therefore, the number of integers r ~ R, for which F.(n) = 0 (mod m), equals
(R/m+0(1))(P,m) if both (n,m) = 1 and (P, m) divides n+ 1, and equals zero otherwise.
Thus

Sotm=em{Zioml ¥

r~R
(n,m)=1
n+1=0 ( mod (P,m))

I R e R (R

plm plm

PP P

by the Chinese Remainder Theorem. Therefore

Si=30 3 S plmenm) = 323 ulm) S wn(m)
m|n

r~R n<x  m|n n<zx r~R
:RZ%Zu(m) H (1—%) + O(x).
n<x  m|n p|m

pl/P
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Now m has < logz/log z prime factors > z, as it is < z, and so

log @

D) = () o)

p\m

Therefore

2
(15) S = R+0(x)+ fllsggjz ;1 - R+O(x)+0(ill(;ggzw).
We estimate So by contour integration, under the assumption that the Riemann Hy-
pothesis holds for the Dedekind zeta—functions of each field K = K, with r ~ R (though
an appropriate zero density theorem would suffice). Actually, with this assumption, we
estimate not only the sum Sy, but the individual sums ) . a,/n: From [10, Lemma
3.12] we have

" 1 U+ZT S I3
In _ 2 As+)Zds+o (2,
n 21 )i 5 T
n<z
for c =1/logz, 1 < T < x. Now, shifting the contour to ¢ = —0( (which remains to be

chosen), we pass a simple pole at the origin with residue anl ap /n. Therefore
a 1 —og—1tT" —oo+T o+1T (-:
(16) = = ——= / + / + / A(s+1)= ds—l—O( )
nog 1 2wt \ Jo—it —oo—iT —oo+iT T

For o > % + e, 7 = |t| + 2, we have, on the Riemann Hypothesis for ((s),
((s) < exp((logr)*1=7Fe)

by Theorem 14.2 of [10]. Similarly using the argument in the proof of that theorem (take
(s — 1), in case |t| < 2) together with the bound |¢. (s)| < (ATH4/|s — 1|, cf. [9,
Theorem 4] valid for o > %, we have, for o > % + ¢, on the Riemann Hypothesis for (, (s),

1/C,c () < exp((log(Ar?))>1=9)+),

These bounds together with (11), (12) and (13) show that the horizontal integrals in
(16) are
< T~ 'exp(cd(log(dRPx))%7°T),

for a suitable ¢, while the vertical integral is

< 279 exp(cd(log(dRPx))?70+¢),
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Choose T' = z°° and 0 = € so that Sy < Rx~¢exp(2cd(log R)*¢) for R > dPx. This,
together with (14) and (15), gives

(17)

1 log?z x  exp((2cdlog R)%)
- C, —1 = .
R Z < zlog z * R * i

Recall that R = exp(zM/V) where N < M < 9N/5: therefore, if we choose = = exp(z'/9)
and £ < 1/100 then

Y Co = R(1+0(:72)),

r~R

which gives (10), and completes the proof of Theorem 2.

1]

[10]
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