Limitations to the Equi-distribution of Primes III

John Friedlander * and Andrew Granville **

Abstract: In an earlier paper [FG] we showed that the expected
asymptotic formula w(z;q,a) ~ 7(x)/¢p(q) does not hold uniformly

in the range ¢ < z/ log" z, for any fixed N > 0. There are sev-
eral reasons to suspect that the expected asymptotic formula might
hold, for large values of ¢, when a is kept fixed. However, by a new
construction, we show herein that this fails in the same ranges, for

a fixed and, indeed, for almost all a satisfying 0 < |a| < z/log" z.

1. Introduction.

For any positive integer ¢ and integer a coprime to ¢, we have the asymptotic formula

v o T@

as © — oo, for the number 7(z;q,a) of primes p < x with p = a (mod ¢), where 7(z)
is the number of primes < z, and ¢ is Euler’s function. In fact (1.1) is known to hold

uniformly for
(1.2) q < log"x

and all (a,q) = 1, for every fixed N > 0 (the Siegel-Walfisz Theorem), for almost all
q < 22 /1og®" x and all (a, q) = 1 (the Bombieri-Vinogradov Theorem) and for almost all
q < x/log”™® z and almost all (a,q) = 1 (the Barban-Davenport-Halberstam Theorem).
It is widely believed that (1.1) should hold in a far wider range than (1.2) and, partly
because of the large number of applications that would follow, this question has received
much attention.

Recently, however, the error term

(1.3) m(z;q,a) — —

has been given lower bounds (in [FG| and [FGHM]) that are larger than had been ex-
pected ([Mo]), provided that ¢ is fairly large. These bounds even suffice to show that the
asymptotic formula (1.1) cannot hold uniformly in the range

(1.4) q < x/ log"a
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for any fixed N. However, in those arithmetic progressions constructed in [FG] and
[FGHM], the value of a grows with x so that one can not use them to disprove the asymp-
totic formula 7(x; ¢, 1) ~ 7(x)/p(q) in the range (1.4). By a different method, we are now
able to do this and indeed much more:

Theorem. For any given real number N > 2 there exist positive constants yy,dy and
Qn, such that, for all Q > Qy, and for all non—zero integers a with |a| < @ and having
fewer than (log Q)N distinct prime factors, there are at least Q'~1/1°812 @ integers q.
with

Q < g+ <2Q, (q+,a) =1

for which
logN
(1.5) (qy log"™ g1 ¢i,a) > (1+6n) matlog_g4)
P(q4)
and
_log™ q_
(1.6) oo tog” g g-a) < (1 dy) TS,

In fact, we shall only give the proof of (1.5) as the modifications required to prove
(1.6) are minor. It is possible to extend this result so as to provide strong lower bounds
in (1.3) for much larger values of = (indeed this is why we give our proof of Proposition 2
rather than the shorter proof indicated by the remark at the end of Section 4); however
this would be rather complicated, and we do not pursue it here. We shall actually prove
the theorem for all non—zero integers a satisfying |a| < @ and

logp
1.7 < 2y loglog Q;
(1.7) p§|a » YN

all the values of a satisfying the hypothesis of the theorem clearly also satisfy (1.7). Ac-
tually the theorem implies that (1.1) cannot hold uniformly in the range (1.4), for almost
all integers a with |a| < ) — see the remark after the proof of the theorem. Moreover, an

immediate consequence is

Corollary. For any fixed integer a # 0 and real N > 0 the asymptotic formula (1.1)
cannot hold uniformly in the range (1.4).
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2. A discussion of the main ideas.

It had long been believed that an estimate such as

(2.1) m(x+y) — w(x) ~ y/logx

holds uniformly as z — oo, for all y < x, with y/ log? 2 — 0o. Not only does this follow
from the heuristic assumption that a ‘randomly chosen’ integer n is prime with probability
1/logn, but Selberg [Se] had even shown that such a result is ‘almost always’ true. It thus
came as a surprise when, in 1985, Helmut Maier [Ma] introduced a simple, but effective,
new idea to show that (2.1) is false for y equal to any fixed power of log .

Maier started by crossing out those integers that are divisible by a ‘small’ prime (< 2)
from the interval (z,x + y|, leaving b integers. Now, as a ‘randomly chosen’ integer is
divisible by a given prime p with probability 1/p, the probability of a ‘randomly chosen’

integer n being prime, given that it has no prime factors < z, is 1/ {Hp<z (1 — %) } log n.

Thus the ‘expected’ number of primes in (z,z + y| is b/ {Hp<z (1 — %) } log z, and this
agrees with (2.1) only if

(2.2) bwa(l—%).

Maier used a result of Buchstab to find intervals (x, z 4+ y] where (2.2) does not hold (with
z a small, fixed power of logx). Then he was able to show that (2.1) cannot hold in some
of these intervals, by invoking a deep theorem of Gallagher on the distribution of primes.

We note here Buchstab’s result: Define ®(y, 2) to be the number of integers < y that
are free of prime factors < z. There exists a continuous function w such that, for any fixed
u > 0,

D(y,2) ~ e w(u)y H(l—%) for y = 2%, as y — oc.
Maier took x to be divisible by the product of the ‘small’ primes (< z) and so b = ®(y, z). If
(2.2) were true then we should expect w(u) = e~ 7; however, in truth, w(u) —e~ 7 oscillates,
crossing zero either once or twice in every interval of length 1, though it does tend to zero
as u — oo. (We also note here that 1 > w(u) > 1/2 for u > 1.)

In [FG] we modified Maier’s idea to study the distribution of primes in arithmetic
progressions. Just like (2.1), the estimate (1.1) had been widely believed to hold uniformly
for the range (1.4) for any fixed N > 2. However, by constructing arithmetic progressions
that do not contain the expected number of terms free of ‘small’ prime factors, we were
able to show that for almost all ¢ in the range (1.4), there is some a, with (a,q) = 1, for
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which (1.1) fails. Like Maier, we used Buchstab’s result, although now with a divisible by
the product of the ‘small’ primes.

Actually these results were obtained with sufficient uniformity to establish that, for
arbitrarily large values of z, for certain values of a and for Q = z/ log? z,

() m(x

(2.3) Q;w m(x;q,a) — m >N Q;QQ W .

(g,a)=1 (q,a)=1

The proofs of the above results gave values of a that grow larger as © — oo, and so
did not resolve whether (1.1) could hold uniformly for fixed a. There are, perhaps, good
reason to guess that (1.1) may hold with larger ¢ than otherwise in the case that a is kept
fixed. First, although the Bombieri—Vinogradov Theorem has not been extended beyond
x'/2, the estimate (1.1) has been shown [BFI] to be true for any fixed a and almost all
g < z'/?T°(M) coprime to a. Second, it follows from the Barban-Davenport—Halberstam
Theorem that, for almost all a, (1.1) cannot be false for as many arithmetic progressions
a (mod q) as it is in (2.3), where a grows in a certain way with .

In this paper we give a new construction that allows us to prove that (1.1) cannot
hold uniformly, for fixed a, in the range (1.4) (although not sufficiently often to give (2.3)).
We again use Buchstab’s Theorem to construct arithmetic progressions that do not have
the expected number of terms free of ‘small’ prime factors. However, a is now fixed and so
cannot be divisible by many ‘small’ primes; instead, we ensure that this is true of a + g,
and so consider only those integers ¢ that belong to the arithmetic progression —a modulo
the product of the ‘small” primes not dividing a.

In the next two sections we prove results needed for the proof of the main Theorem.
In Proposition 1 we construct a suitable analogue of Buchstab’s result. In Proposition
2 we are careful to minimize the effect of possible Siegel zeros, so as to efficiently apply
Gallagher’s Theorem.
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3. A poorly sifted interval.

For given positive real numbers x and z > 1 and integer b, we define

Pp(z,2) = #{n <z : pln = p>zorp|b},

o) = 3 B2

p
plb
Hp, Py(z Hp, and b, Hp (2)/ Py(2)).
sz pp<V72 pp<\bz

Our first result provides us with an interval ‘poorly sifted’ by the primes < z:

Proposition 1. Fix M > 2 and € > 0. For all sufficiently large z, for y satisfying
22t <y < 2M~2 and for integers a and ¢ where b(: = af) has < 3zlog® z distinct prime

factors, there exists an integer h, coprime to P,(z), for which
G(h) := #{r:1<r<y,(r,a)=(r+h,Py(2)) =1}
satisfies

(3.1) G(h) >

S0 ez €D +00)]),

1/2
L o(b)+loglog 2z
where 0:=1 (#> :

log =
To prove Proposition 1 we shall need two lemmas. We start by quoting a consequence
of the “Fundamental Lemma” of sieve theory (cf. [HRi, Theorem 2.5]), which we shall use
repeatedly:
The estimate

(3.9) #lnett+al: (n,m)=1} = @az {1+O(logz>}

log

holds uniformly for any t > 1 and x > z, where z denotes the largest prime divisor of m.

Lemma 1. For M, z,b and 0 as in Proposition 1, we have

b M
: Op(zM,2) = M 0)}.
(3.3 (:M,2) = s S (O + 00))
Proof: In [FG,Lemma 5] the estimate
M logv + loglog 2
o,(:M,z) = = = M
DS 50 Teg {w( >+O( log 2 >}
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is proved for integers r with v(= z"(l)) distinct prime factors (see also the end of §3 of
[FGHM] where a gap in the proof was filled); in fact, that proof applies, verbatim, to give
this estimate for all integers r with v < z. Therefore, if d is the product of the prime
divisors of b that are < 2®, where a = 3 (0(b)/log 2)!/2, then

M
By(M,2) = L 2 {M(MHO(Q N bglﬂ)}
log 2

Now

(3.4) 3 ]1) < lgg(’;)a — 4a (< 0),

and so ﬁ = % e9(®); thus the right hand side of (3.3) is an estimate for ®4(2, 2).
Finally, by (3.2),

M
Dy(2M,2) — 04(2M,2) <« Z Dy, (%,z)

plb,z>p>z>
b, M

< 5(b.) logz

1
plb,z>p>22 P
and the result then follows from (3.4).
We also require
Lemma 2. There exists a vy such that, for any integer m with no more than v distinct

prime factors, the estimate

(3.5) #{ne(tt+z]: (nm)=1} = @ z {1+ 0()}

holds uniformly in the range v > vy, x > v?, t > 1, where a = 1 (o(m)/logv)*/2.

Proof: Let mj, ma, mg be the product of the prime factors of m in the ranges [1, %],
(v, vlogv], (vlogv, ), respectively. Then

(3.6) > 1= Y 1+0 > 1l +0| > 1

t<n<t+zx t<n<t+zx t<n<t+ax t<n<t+tz
(n,m)=1 (n,mq)=1 (n,m1)=1, (n,mg)>1 (n,mgz)>1

Now mi/¢p(m1) <[[,<,« p/(p—1) < alogv and so the last error term of (3.6) is

x v x m
<<Z —+1) <=z +V<<—<<¢( 1)3304.
| P vlogv logv mq
pima3
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As & > pv® for each prime p dividing ms, we can use (3.2) to show that the first error
term in (3.6) is

my) x m a(m m
< Z Z 1 < Z ¢( 1)_ < ¢( 1)$ ( ) _ 4¢( 1)3305.
mi p my log(v®) my
plma t/P(fznnSlit)ji)/p plm,p>ve

By again invoking (3.2), we see that the main term on the right hand side of (3.6) is

Ay Lo (2] - 2 1+ oy

mi log my

and so, collecting the estimates above, we have

(3.7) #{ne (t,t+z]: (n,m)=1} = (ma)

z {1+ 0O(a)}.

°
3

Now

m my 1 o(m)
0 <log ( / ) < - < = 4o,
s/ ) € 2 5 S gy
which implies that ¢(m_m11) = %{1 + O(a)}, and the result follows from the substitution
of this into (3.7).
Proof of Proposition 1: Let H = [2M] v = 4zlog? z and ¢ = 2°® log® 2. By taking
7 =7+ h in the first sum below, we get

H H
> Gy = > >, 1+0Y
h=0 j=0 r<y
(h,Pp(¢))=1 (4, Pp(2))=1 (ra)=(—rPy(¢))=1
H ti+y
(3.8) = Y Y1+ 0
=0 n=t;+1

GPy(2)=1 (n,aPy(C))=1

where t; is any integer such that t; = 0 (mod a) and t; = —j (mod P,(()); such an integer
exists by the Chinese Remainder Theorem. Applying Lemma 2 (note that aP,(¢) has < v
distinct prime factors and that y > v?) and then Lemma 1, we get

> G = w s 2y o) + o)

h=0
(h,Pp(¢))=1

(L) AR L Ly
‘H(l p) B () Togz WD UL FOO)
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Note that Hp|a7p>z (1 — l) =140 <M>’ as a has < 3zlog? z distinct prime factors,

P log z
and so
3 GG
(3.9) Z G(h) = B0 HWZ) g 2 (M) {1+ 0(8)}.
(h,Py(¢))=1

Now, by Lemma 2 (with v = 2),

H

_ o(P(€))
; 1 = 7Pb(o H{1+0(0)},
(h, Py (C))=1

and so, comparing the last two estimates, we deduce that there exists an integer hy, 0 <
hi1 < H, coprime to Py((), such that

l, Y
3.10 G(hy) > —— M)+ 0O(0)}).
(3.10) () 2 S ol {w(M) + 0(6))

The hypothesis of Proposition 1 is almost satisfied by hi; the only possible problem
occurs when hy has some illegal prime factors between ¢ and z. If so, let g = (h1, Py(2)).
Since g < hy < 2M and every prime factor of g is > ¢, thus g has < M log 2/ log  prime
factors. Now let A be chosen to satisfy the congruences

h = hi(mod Py(2)/g), h = 1(mod g);

again such a choice is possible by the Chinese Remainder Theorem. Therefore (h, Py(2)) =
(h1, Py(z)/g) = 1, and finally

Gh)y=#{r<y:(ra)=(r+hPz)/g)=1}+0| > 1
(rihe)>1

=#{r<y:(ra)=+h,P(2)/g)=1}+0 > y/p

plg

> G(h1) + O(ylog z/(log (),

so that Proposition 1 follows from (3.10).

Remark: It is possible to obtain essentially the same results based on a somewhat different
version of Proposition 1 wherein, rather than specifying z and showing the existence of h,

one does the opposite.
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4. Good moduli and bad moduli.

We fix ¢ > 0 and call a modulus ¢ good if the L-function L(s, x) has no real zeros 3
with 8 > 1 — ¢/loggq, for every Dirichlet character y(mod ¢). Landau showed that if ¢ is
sufficiently small then for any modulus ¢ there is at most one exceptional character and
one real zero; we assume that ¢ has been fixed this small. Siegel proved that, for any fixed
e > 0, there exists a constant c. > 0, such that the exceptional zero (3 of any bad modulus
q satisfies # < 1 —c.q~¢ (bad means ‘not good’). The above results may be found in [Da].

Gallagher [Gal, building on ideas of Linnik, gave a result which immediately implies

(X +z;q,a) — 1(X;q,a) ~ 7(x)/9(q),

if ¢ is good and (a,q)=1, provided loggq = o(logz) and x < X. In order to use this
estimate, we require a result which allows us to avoid having too many bad moduli:

Proposition 2. Choose ¢ > 0 sufficiently small. For all sufficiently large y and z satisfying

/2 and non—zero integers a for which ola,) < ilog z, there exists an integer

logy < 2
k > z such that (k,a) = 1 and one of the following conditions holds:

(i) k divides r for every bad modulus rP,(z) with r < y.

(ii) k divides P,(z), k < 2%, k/¢(k) = 1+ O(1/loglog 2), and k divides r for every bad

modulus r P, (z) with r < y.
We first note a technical lemma, for which the proof is straightforward:

Lemma 3. Suppose that n and ¢ are positive integers such that every prime < z, which

divides n, also divides /.
n 1+log(14-18n
(&) IfletbenW:1+O(%)
(b) Ift/p(f) = 14+0(1/loglogz) andlogn < zlog® z then n/¢p(n) = 14+0(1/loglog 2).

Given this we proceed to the
Proof of Proposition 2: If every rP,(z) is good with respect to some sufficiently small
constant ¢; > 0, then (i) holds. So assume 7 P,(z) is bad with exceptional character x,
of conductor d, with zero 3. Note first that we may assume d > z4 for any fixed A and
z > 20(A) since, if not, choosing ¢ = 1/2A in Siegel’s Theorem we would obtain

B < 1—cdV/?4 < 1—c.271/?
contradicting the estimate
B > 1—cy/log(riPa(2)) > 1—c272/3,

which holds for all sufficiently large z. (Note that o(a,) < 1logz implies log(P,(2)) >
2B for any fixed power B < 3/4.)
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Next observe that, provided ¢; < ¢/3, any bad modulus m (with character ) of the
form 7P,(2) or 7P, (z) with k < 22, r <y, must be divisible by d. To see this, note that
both ¢ and x yield bad characters modulo g, where ¢ = rry P,(z), with real zeros

> 1—3c1/logg > 1—c¢/logg.

By Landau’s Theorem these characters coincide and so the modulus of 1 is divisible by d,
which is its conductor.

Now let g = (d, P,(2)) and write d = gk;.
(i) If ky > z then k; = d/g divides rP,(z)/g and so ki|r for any bad modulus rP,(z).
Choose k = k.
(ii) If k1 < 2 then, taking A = 4 above, g = d/k; > 23. Since g is a squarefree divisor of
P,(z) we may pick k to be the smallest divisor of g that is > z and free of prime factors
< logz; thus k < 22. Also, as k is free of prime factors < logz and k < 22, we have
k/p(k) = 14 O(1/loglogz), by Lemma 3(a). Finally, as any bad modulus rP,(z) is
divisible by d which is divisible by k, and as (k, P,x(z)) = 1 by definition, thus k divides
r. This completes the proof of Proposition 2.

Remark: If we fix any N then, in the smaller range y < 2V, there exists a value of
k < yz such that every modulus rPyi(z) with » < y is good. For, if there exists a bad
modulus rP,(z) then, as in the proof above, we may show that d, the conductor of the bad
character, satisfies d > 22N*2 for all sufficiently large 2. Thus g = (d, Pu(2)) is > 2N *1

2N +1, giving a contradiction.

else, as d|rP,(z) for some r < y, so d|rg and then d < rg < z
Now choose k to be the smallest divisor of g, greater than y; therefore it is < yz as all the
prime divisors of g are < z. But, if rP,;(2) is bad then k divides d which divides r Pyx(z),
and so k divides 7, as (k, P,x(2z)) = 1. But this implies that y < k < r < y, giving a

contradiction.
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5. Proof of the Theorem.

Given @ and N as in the statement of the theorem, choose M > N such that w(M) >
eV and let § = 6y = (e?w(M) —1)/7. Let y = log" @, and z = log Q/(loglog Q). For
each non-zero integer a, with |a| < Q and o(a,) < 1logz, select k as in Proposition 2
and set £ = 1 or k according as to whether (i) or (ii) holds. Let b = af and P = Py(z);
note that log P < z.

Now, by Proposition 1, there exists an integer h, coprime to P, for which the interval
(h, h + y] has at least

l, Yy o(b) + loglog = 1/2
o(l,) logz {W(M) +0 (( log z ) )}

integers j satisfying (j — h,a) = (4, P) = 1. Select vy > 0 sufficiently small and Qun

sufficiently large, so that if o(b) < 3yx log z, then the above quantity is

b,y

(5.1) > (14 66)e™” 00 Tog 2

for Q > Qn.
Let s be the least positive residue a/h (mod P). Define

D:={q:Q<q¢g<20Q, g=s (mod P)}
= {nP+s:(Q—s)/P<n<(2Q—s)/P}.

Therefore
> wlay;g,0) = > > 1 + O(Q/P)
q€D Q/P<n<2Q/P a+r(n1§f§’) e
(5.2) = > {m(2rQ+ ap;7P,ey) — 7(rQ + ay; TP ay)} + O(Q/P),

r<y

where, for convenience, a,.: = a + rs.
We consider now those values of r for which » < y and (rP, «,.) = 1. For those r for
which rP is a good modulus we have, by Gallagher’s Theorem,

rQ
5.3 w(2rQ + ap;rP,ay) — m(rQ 4+ ap;rPoay) o ——————.
(53) ( ) — )~ P g0
For those r for which rP is a bad modulus we use the Brun—Titchmarsh estimate
rQ
(5.4) 7(2rQ + ap;rPyay) — m(rQ + ap; P ay) K

¢(rP)logQ’
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Inserting (5.3) and (5.4) in (5.2) we deduce that

(5.5)
B rQ Q rQ
q; m(qy;q,a) = {1+o(1)} Z: sopgo TPt Z: o(rP) log Q
(rPap)=1 r=0(mod k)

(rP,ar)=1

where the condition 7 = 0 (mod k) in the last sum follows since k was selected as in
Proposition 2.

We next study the condition (rP,a+rs) (= (rP,«a,)) = 1. This is clearly equivalent
to the conditions (r,a) = (P,a + rs) = 1. However, a + rs = s(h + r) (mod P) and
(s,P)=1so0

(5.6) (rP,a+rs) =1 if and only if (r,a) = (P,h+71) = 1.

Note that r¢(P)/p(rP) = r'/é(r"), where r' is the largest divisor of r that is coprime
to P. Now, for those r satisfying r < y and (rP, ..) = 1, we have v’ <r <y, and (r,a) =1
so that all prime factors of r’ are > z or divide ¢. Therefore, using the estimate ¢/¢(¢) =
1+ O(1/loglog z) from Proposition 2, we deduce that r'/¢(r") = 1+ O(1/loglog z) by
Lemma 3(b). Substituting this estimate and (5.1) into (5.5), we get on using Mertens’

estimate,

> wlqyig,a) > (1+50)

qeD

e’ Q y Q Q y
o(P) logQ logz O(ﬁJr ¢(P)1OgQE)

Ppla.) yQ

(5.7) > (1+40) 0. DPlogQ’

for sufficiently large Q, since k > z and y > log® Q.
Suppose now that there are fewer than Q'~1/1°81°8Q values of ¢ satisfying (1.5). Then
using the trivial bound 7(qy; q,a) <y + 1 for these ¢, and

7(qlogh
m(qy;¢,a) < m(qlog" g;q,a) < (1+0) % < (1+26) @ 105
for the other ¢, we have
(5.8) Y mlayigia) < (1+20) Y =+ Oy@' sl

logQ e <b()

eD
a (g,a)=1
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Now if ¢ € D and (g,a) = 1 then all prime factors of ¢ are > z or divide ¢ and so, as
logQ/log z ~ zlog z, we get q¢/d(q) = 1+ O(1/loglog z) by Lemma 3(b). Also

Pla.) Q
1 < 1 ~ —
quD a Q;2Q az P

(g,a)=1 g=s ( mod P)
(q,az)=1

by the “Fundamental Lemma” of sieve theory. Therefore, by (5.8),

) Pla.) Y@

; 1436

qeD

which contradicts (5.7) and thus completes the proof.

Remark: It is easy to show that the number of integers a, with |a| < @ and with > log” @
distinct prime factors, is < @/ exp(log” @): A famous result of Hardy and Ramanujan
[HRa| asserts that the number of integers < z with exactly k + 1 distinct prime factors,

k
s < 125 Uoglogz+e)” ¢ some constant ¢ > 0. Thus we can deduce that the number of

k!
integers < 2 with more than & distinct prime factors, for any k > 30loglogz, is < ze™2F.

6. Concluding remarks.

In Theorem 3 of [FG] we were able to show that (1.1) is false for almost all moduli
q; the exceptions including those integers ¢ with many small prime factors. Although we
were able to obtain larger than expected lower bounds in (1.3) for these exceptional moduli
q, in Theorem A2 of [FGHM], it still remains to determine the truth of (1.1) when, say, ¢
is the product of the first k£ primes.

Similarly, we have shown here that (1.1) is false for almost all a, with |a| < @, for
some ¢ in the range Q) < ¢ < 2Q); the exceptions including those integers a with many
small prime factors. On the other hand it is not difficult to modify the method for those
exceptional integers a that are the product of the first & primes. The really difficult values
of a come from the set of those a with o(a) around % log log Q.

In order to prove a result like (1.5) for all such a, one could suitably modify our
method if one could show:

For any fixed N > 0 there exists a constant dy > 0 such that, for all sufficiently large
Q, and all integers a, with |a| < @, there exist integers P and h, with (P, ha) =1 and

#{r<log" Q: (ra)=(r+h P)=1} > {140y} 200 1ogv g
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In our theorem, we obtain only Q!~1/108108Q moduli ¢, with Q < ¢ < 2Q, because

of the restriction of ¢ to a suitable arithmetic progression. By taking z = log®* @ in the

proof (and making suitable alterations throughout) we can improve this to @/ exp(log® Q)

values of q.

It would be interesting to know how often (1.1) fails, for arithmetic progressions

a (mod ¢) with (a,q) = 1 in the range (1.4). From our theorem (and the improvement

noted above), (1.1) fails for > 22/exp(log® ) such arithmetic progressions and, by the

Barban-Davenport-Halberstam Theorem, for no more than O(z2/log" ' z).

[BFI]
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