DECAY OF MEAN-VALUES OF MULTIPLICATIVE FUNCTIONS
ANDREW GRANVILLE AND K. SOUNDARARAJAN

1. INTRODUCTION

Given a multiplicative function f with |f(n)| <1 for all n, define

ot = [T (14712 + 1201 ) (1- ),

p

p<z

We are concerned with understanding the mean value of f up to z, that is > <o f(n).
For real-valued f it turns out that

(1.1a) —Zf ) — O(f,00) as x — oo.

n<x

In 1944 Wintner [19] proved this when O( f, 00) # 0, which is equivalent to the hypothesis
that > (1 — f(p))/p converges. In 1967, Wirsing [20] settled the harder remaining case
when O(f, 00) = 0, thereby establishing an old conjecture of Erdés and Wintner that every
multiplicative function f with —1 < f(n) <1 has a mean-value.

On the other hand not all complex valued multiplicative functions have a mean value
tending to a limit; for example, the function f(n) = n'®, with a € R\ {0}, since
Ly e ~ z/(1 +ia). In the early seventies, Gadbor Haldsz [8,9] brilliantly real-
ized that the correct question to ask is whether > (1 — Re (f (p)p~'®))/p diverges for all
real numbers «. His fundamental result states:

(T) I3, (1 = Re (f(p)/p"*))/p diverges for all a then 1 =D <z f(n) = 0 as z — oco.
(II) If there exists o for which > (1 —Re (f(p)/ p'@))/p converges then

(1.1b) - Z f(n

n<ac

O(fa> )
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where f,(n) := f(n)/n'®. Now |O(fa, )] — |O(fa,00)| as  — oo so we can rewrite
the above as

1 e .
Z ~ ir(x)
. n;f(m 70 |0(fas 00)le
where 7(x) = arg O(f,, ) (which varies very slowly, for example 7(22?) = r(x) + o(1)).
Also note that if )7 [1— f(p)/p**|/p converges then (II) holds and ©(fa, ) — O(fa, 00)
as T — 00.

In case (I), Haldsz also quantified how rapidly the limit is attained. His method was
modified and refined by Montgomery [15], and Tenenbaum [18, p.343] recently deduced
the following, easily applicable, version of the result: Throughout define

1—Re (f(p)p ™) _
p<z p

1.2 M(z,T) := mi
(1.2) (x,T) i,

Theorem (Haldsz-Montgomery-Tenenbaum). Let f be a multiplicative function with
|f(n)] <1 foralln. Let x > 3 and T > 1 be real numbers, and let M = M (xz,T). Then

i\ > i) < (1+M)e—M+o(\%).

n<z

Here and throughout the constants implied by “<” and “O(.)” are absolute unless
otherwise indicated and, in particular, independent of the function f.

Our first Theorem leads to an explicit refinement of this result, replacing the “<” by a
constant. For any complex number s with Re(s) > 0, let

F(s) = F(s;x):= H (1+%+%+...),
and define
(1.3) L=L(e,T) = o ( ma [F(1+ iy)|).

Theorem 1. Let f be a multiplicative function with |f(n)| <1 for all n. Let x > 3 and
T > 1 be real numbers. Then

L3 s < 2 +2) o] + k)

n<zx

We can deduce from this the promised explicit refinement of the Haldsz-Montgomery-
Tenenbaum result.
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Corollary 1. Let f be a multiplicative function with |f(n)| <1 for all n. Let x > 3 and
T > 1 be real numbers, and let M = M(x,T). If f is completely multiplicative then

| S atn] < (ar+ ) w0+ ST,

n<x

If f is multiplicative then
1 2 4N 1  loglogx
Y ST ) (s ool ),
x’;f(n)‘_g( +p(p—1) +7 c +0 T+ log =

As we will discuss after Theorem 5, Corollary 1 (and so Theorem 1) is essentially “best
possible” (up to a factor 10) in that for any given sufficiently large mg, we can construct
f and z so that M = M(x,00) =mo+ O(1) and | > . f(n)] > (M +12/7)e? Mz /10.

If the maximum in (1.3) (or, the minimum in (1.2)) occurs for y = yo then one might
expect that f(n) looks roughly like n*¥°, so that the mean-value of f(n) should be around
size |2%° /(1 +dyg)| < 1/(1 + |yo|). Our next result confirms this expectation.

Theorem 2a. Let f be a multiplicative function with |f(n)| < 1 for all n. Suppose that
the maximum in (1.3) with T = logx is attained at y = yo. Then

1+2(1-2)

(loglog x)
‘Zf ) 1+|?/0‘ " (logz)t =

The constant 4/7 which appears here and frequently in the rest of the introduction,
does so because it is the average of |1 — z| for z on the unit circle.

Taking f(n) = n'° we see that Theorem 2a is best possible in terms of yq. However,
in this case M = 0, so we might guess that one can obtain a hybrid bound of Corollary 1
and Theorem 2a, of the shape < (M + 1)e= /(1 + |yo|).

Theorem 2b. Let f be a multiplicative function with |f(n)| < 1 for all n. Suppose that
the maximum in (1.3) with T' = logx is attained at y = yo, and let M = M (z,logzx). If f
1s completely multiplicative then

1 ‘ 12 e ™M log log x
| rm)| = (a4 ) S r o ().
v % [ERVARST: (log z)2- V3
If f is multiplicative then

45 s <11 ) (v + ) o 25255)

n<zx

The key constituents of the main term are the 1/4/1+ y2 which corresponds to the
best approximation of f(n) by a function of the form n’®, and the (M + 1)e=™ which
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corresponds to how much f(n) differs from n'®, Note that the size of the right hand side
of (1.1b) is [2**O(fa, z)/(1 +ia)| < e™™ /(14 |yo|), which implies that there is little room
to reduce the bound in Theorem 2b. In fact for any given a and sufficiently large mg we
can determine f, such that M = mg + O(1), yo = o and the bound in Theorem 2b is too
big by a factor of at most 10.

The maximum in (1.3) and the minimum in (1.2) can be unwieldly to determine, so it is
desirable to get similar decay estimates in terms of > _ (1 —Re f(p))/p (or equivalently
|F(1)]). However, in light of case (II) above, this is only possible if we have some additional
information on f, since the Zp(l —Re f(p))/p may diverge while the absolute value of the
mean value may converge. One can avoid case (II) altogether by insisting that all f(p) lie
in some closed convex subset D of the unit disc U (this is a natural restriction for many
applications, such as when f is a Dirichlet character of a given order), as in Haldsz [8, 9], R.
Hall and G. Tenenbaum [13], and Hall [12]. The result of Hall is the most general, perhaps
qualitatively definitive. To describe it we require some information on the geometry of D:

Throughout we let D be a closed, convex subset of U with 1 € D, and define v = v(D) =
maxsep(1 — Re d). For a € [0, 1] define

. 1 27

(1.4) h(a) maxRe (1 — §)(a — e™")d6,

27T 0 deD

which is a continuous, increasing, convex function of a. Note that h(0) = A\(D)/27, where
A(D) is the length of the boundary of D. Define xk = k(D) to be the largest value of
a € [0,1] such that h(a) < 1, which exists since h(0) < 1. When 0 € D, Hall showed that
k(D) = 0 only when D = U, and k(D) = 1 only when D = [0, 1]. He also proved

Lemma 1.1. For any closed, convex subset of U with 1 € D we have
k(D) > min (1, ﬂ) > min (1, L (1 - @))
h(1) — h(0) v(D) 2m
Moreover k(D)v(D) <1 for all D, with equality holding if and only if D = [0, 1].

Theorem (Hall). Let D be a closed, convex subset of U with 1 € D, and define k(D) as
above. Let f be a multiplicative function with |f(n)] < 1 and f(p) € D for all primes p.
Then

(1.5) i‘ S fm)] <o exp <_K(D) 3 Lef(m).

p

n<z p<zx

Hall states this result under the additional constraint that 0 € D, but this is unnecessary.
Hall proved that the constant (D) in (1.5) is optimal for every D, in that it cannot be
replaced by any larger value. For completely multiplicative functions, we have obtained
the following more explicit version of Hall’s theorem. Let

27

(1.6) C(D) = —kv7y + min min(0, 1 — x — maxsep Re §(e® — H))d
. i e=*1 J "

x.
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Theorem 3. Let D be a closed, convex subset of U with 1 € D, and define k = (D), v =
v(D) and C(D) as above. Let f be a multiplicative function with f(p) € D for all primes

p, and put y = exp((logx)%). If kv < 1 then

Y 1] <le¢ () e (—r 3 AR o) 41— )

1 y<p<z p

+O< ! lexp(Z”}ﬂ)).

(logz)h  \&

If D =[0,1], that is kv = 1, then

_Zf )= elO(f,x )|+O(10ga:>

n<x

The error term in the first part of Theorem 3 can be bounded using

Z |1_ (210glogmz %ﬁﬁ(m)%-{—O(l).

A version of the second statement in Theorem 3 was first proved by Hall [12]. Theorem
3 is essentially “best possible” (up to the constant of multiplication), for every such D, as
noted in [12] and [13].

The first statement of Theorem 3 gives an explicit, quantitative and useful version of
Hall’s theorem, so long as > _ (1 —Re f(p))/p <p loglogz. However if this fails then
Hall’s original theorem shows that > __ f(n) <p z/(logz)BP for some constant Bp > 0,

so we have the following Corollary:

n<$

Corollary 2. Retain the notation and variables of Theorem 3. Let f be a multiplicative
function with f(p) € D for all p. If kv < 1 then

US| <02 e (< n 3 LRI 0y 40— )

1 p

00 (gams )

where Bp = ((1+ k/3) — /1 +2k/3)/k.

Lastly, we apply our ideas to study how averages of multiplicative functions vary. One
would like to be able to say that

(17) S -2 Y s < ()

n<x n<z/w

y<p<w
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for all 1 < w < z, with as large an exponent ( as possible (thus showing that averages of
multiplicative functions vary slowly). However (1.7) is not true in general, as the ubiquitous
example f(n) = n'® reveals. On the other hand P.D.T.A. Elliott [3] proved that the
absolute value of the means of multiplicative functions does vary slowly. He showed that

S s 2] 5 s (222)"

n<z/w

for all multiplicative functions f with |f(n)] < 1, and all 1 < w < z. By applying
Theorem 1, and the ideas underlying it, we have obtained the following result which leads
to an improvement on Elliott’s theorem.

Theorem 4. Let f be a multiplicative function with |f(n)| <1 for all n. For any x > 3
there exists a real number yy such that for all 1 < w < x/10, we have

ED SN S

n<z n<z/w

14+2(1-2)

log2w>1—%1 < log x ) (loglog x)
log log 2w

< 2
(log )12

If the mazimum in (1.3) with T' = logx is attained at y = yo then we can take y, = yo if
lyo| < (logx)/2, and y; = 0 otherwise.

Note that 1 — 2 = 0.36338... and 2 — v/3 = 0.267949.. . ..
Corollary 3. Let f be a multiplicative function with |f(n)| < 1 for all n. Then for

1 <w < z/10, we have
2
log 2w == log log log x
1 )
< ( log ) 8 (log2w> * (log z)2-Vv3

In the special case that f(n) is non-negative we can improve the 1 —2/7 in Corollary 3
to 1 —1/m, see [7]. There we apply this idea of slowly varying averages to refine the upper
bound of e7O(f, z) in Theorem 3.

Another application of estimates such as Corollary 3, as Hildebrand [14] observed, is
to extend slightly the range of validity of Burgess’ famous character sum estimate. For
characters x with cubefree conductor ¢, one gets > _ 5 x(n) = o(N) for N > g'/4=o()

rather than N > ¢!/4+e(1),

We shall give a third application, of a kind first observed by Elliott [4], and improving
results of Davenport and Erdés [2]. For integer k > 2 define 7 to be the infimum of those
real numbers 7 such that for all primes p there exists a representative of each coset of the
kth powers mod p, which is < p7. We expect nx = 0 for all k, but the best result to date,
due to Elliott, is that n, < 1/4 — ¢/k'? for some constant ¢ > 0. Using our Corollary 3 in
Elliott’s argument we may replace 19 here with any constant > 1/(1 —2/7) = 2.752....
We also work out bounds for n explicitly for £ = 2 and k£ = 3, and modify the argument

n<zx
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of Davenport and Erdés to get np < 1/4 —e7/(4k?) + O(k~3) for prime values of k. These
results are collected together in Corollary 4 below.

The problem of estimating 7, may be reduced to the following (difficult) optimization
problem. Given k > 2 consider the class of all completely multiplicative functions f which
take values on the kth roots of unity (like a character of order k), such that for a given
large x, and for each kth root of unity &, there are ~ z/k integers n < x with f(n) = &
(to be precise, we mean that for some given function € = ¢(z) — 0 as x — oo, there are
between (1 — €)x/k and (1 + €)x/k integers n < x with f(n) = ¢). Define 74 (x) to be the
smallest real number 7 such that for every kth root of unity &, there is an integer n < 7
with f(n) = ¢£; and then 74 := limsup,_, . 7x(x). Bounds for 7 give bounds for 7 since
using Burgess’ theorem we have 7, < 7,/4. We determine below 19 and 73, but the value
of 7, for k > 4 remains an open question.

Corollary 4. For all k > 2 we have

1 c
< Z _
k=47 log k)/(—2/m)

for some ¢ > 0. If k is prime then n, < 1/4 — €7 /4k*> + O(1/k%). Further o = e=1/2 =
0.60653. .., and 73 = 0.765423 ..., so that ny < 1/(4y/e) and n3 < 0.191355....

Our proofs of Theorems 1, 2a,b, and 4 are based on the following key Proposition (and
its variant, Proposition 3.3, below), which we establish by a variation of Haldsz’ method.
Proposition 1 below is a variant of Montgomery’s lemma (see [15], and also Montgomery
and R.C. Vaughan [17]) which is one of the main ingredients in the proof of Hall’s theorem.

Proposition 1. Let f, z, T, and F be as in Theorem 1. Then

2a

1 2 Vol—am 1 loglogx
- < R F(1 )l )da+0( 7+ 22255,
a:‘;f(n)‘ - logx/0 ( 2a )(Zﬂ?%' (I+a+iy))da+O T + log

To prove Theorem 3, we adopt a different strategy, turning to integral equations. Let
X : [0,00) — U be a measurable function, with x(¢) =1 for t < 1. We let o(u) denote the
solution to

(1.8) war(w) = (o)) = [ o(Ox(u—1)d,
0
with initial condition o(u) =1 for 0 <wu < 1.

We showed in [6] that (1.8) has a unique solution, and this solution is continuous. Further
let Ip(u; x) = 1, and for n > 1 define

t

1+ttt <u tl t2 tn
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Then we showed that

(1.9D) o(u) =) (=

The relevance of the class of integral equations (1.8) to the study of multiplicative functions
was already observed by Wirsing [20]. We illustrate this connection by means of the
following Proposition, proved in [6] (Proposition 1 there).

Proposition 2. Let f be a multiplicative function with |f(n)| <1 for alln and f(n) =
forn <wy. Let 9(z) = Zpgm logp and define

x(u) = xy(u p) logp.

p<y

Then x(t) is a measurable function taking values in the unit disc and with x(t) = 1 for
t < 1. Let o(u) be the corresponding unique solution to (1.8). Then

y Z fln O(lozy)'

nly4

Proposition 2 allows us to handle mean-values of multiplicative functions which are
known to be 1 on the small primes. We borrow another result from [6] (see Proposition
4.5 there) which allows us to remove the impact of the small primes on the multiplicative
functions to be explored.

Proposition 3. Let f be a multiplicative function with |f(n)| < 1 for all n. For any
2 <y <z let g be the completely multiplicative function with g(p) = 1 if p < y, and
g(p) = f(p) otherwise. Then

%Zf(n)z(%(f,y)%zg(m)jL (08;3/ (Z|1_ >)

n<x m<x

We prove Theorem 3 by establishing a decay estimate, Theorem 5, for solutions of (1.8)
when x(t) is constrained to lie in D for all t. Then using Propositions 2 and 3 we unwind
this result to deduce Theorem 3. It should be noted that it is unnecessary to work with
integral equations to prove these results, and that one can proceed directly. However
we find it easier to understand these proofs when formulated in this way. Moreover we
discovered these proofs, which are rather different from those of Halasz and Montgomery, in
the context of integral equations, and it would seem disingenuous to disguise their origins.

Theorem 5. Let D be a closed, convex subset of U with 1 € D, and define k = (D), v =
v(D) and C(D) as above. Let x : [0,00) — D be a measurable function with x(t) =1 for
t <1, and let o denote the corresponding solution to (1.8). Put

“1—Re x(v)
v

Mo = Mo(u; x) = / dv.
0
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Then, if kv < 1,

lo(u)] < (2 — FW) exp (—kMy — C(D) + (1 — kv)) — ( i )exp ( — ? — @>

1—kr 1— & KV

If kv =1 (so that D = [0,1]) then |o(u)| < e¥=Mo,

When studying mean values of multiplicative functions we have seen how the example
f(n) = n'® led Haldsz to consider convex regions D that are not dense on the unit circle.
Given that we now have x(t) = 1 for 0 < ¢ < 1, it is perhaps unclear whether such
restrictions are necessary when considering (1.8). In fact they are, and in section 10a we
shall see that if x(t) = € for all t > 1 then limsup |o(u)| > 1.

By Proposition 2, we know that statements about multiplicative functions, can be in-
terpreted to give information on solutions to (1.8). For example, the remark after the
statement of Theorem 3 translates to saying that Theorem 5 is “best possible” for every
D, up to the constant of multiplication, via [12] and [13]. Moreover we can state integral
equations versions of Corollary 1 and Theorem 4.

Corollary 1’. If x and o are as in Theorem 5 then |o(u)| < (M +12/7)e?=™ where

“1—Re x(v)e ¥
v

dv.

M = M(u) := min/
yeR Jo

In fact this is “best possible”, up to a factor 10, in the sense that for any sufficiently
large mo we can find x and o as in Theorem 5 with M = my + O(1) and |o(u)| > (M +
12/7)eY =™ /10; see section 10b for our construction. This implies the same of Corollary 1
and hence of Theorem 1, by Proposition 2.

The analogue of Theorem 4 shows that |o(u)| obeys a strong Lipschitz-type estimate.

Theorem 4'. Let x : [0,00) — U be a measurable function with x(t) =1 fort <1, and
let o denote the corresponding solution to (1.8). Then for all 1 < v < u,

u—v\1—% U
— 1 .
o(w)] ~lo@)| < (“=F) Tlog

We illustrate Theorem 5, and thus Theorem 3, by working out several examples. In
each of our examples we will have D = D, which allows us to restate Theorem 5 as
lo(u)] < e Mo < cem"Mo wwhere

;o B ™ min(0,1 — k — maxsep Re §(e? — k)) (2= KV,
c .—cexp( 27?/0 92r —0) dd) < c:= <1_Hy>e .

Example 1. D is the convex hull of the mth roots of unity. For m = 2 we have D = [—1, 1],
v=2 k=0.32867416320... and ¢/ = 6.701842225--- < ¢ = 6.978982. ... For larger m we
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can determine a formula for h(«); for example, for odd m > 3, define 6; = 6, —7(2j —1)/m
where sinf;/(cos6; — a) = tan(m(2j —1)/m), for 1 < j < (m+1)/2. Then

_ 1 - (m—1)/2 (m—1)/2 2
Ba)=a+— [sin ™ [ 142 5| —als —6;)cos
(o) =a+ — | sin |1+ ; cos 0 alop+ Z 0j+1 ) cos -

An analogous formula holds for even m. We computed x and ¢ (not ¢) for various m:

m 3 4 5 6 7 8 9 10
K 167216 | .098589 | .063565 | .044673 | .032971 | .025359 | .020086 | .016305
c 4.15845 |3.99959 | 3.79356 | 3.73689 | 3.68124 | 3.65731 | 3.63435 | 3.62219

The ¢ and k values for D, the convex hull of the mth roots of unity.

One can show that, as m — oo, we have k = m2/6m? + O(1/m*) and ¢ = 2¢” + O(1/m?).
Therefore, following the proof of Theorem 2 of [6] we have that if x is sufficiently large
and p is a prime = 1 (mod m), then there are at least {m,, + o(1)}z integers < z which
are mth power residues (mod p), where 7, > exp(—exp({3/7* + o(1)}m*logm)). It is
shown in [6] that 7, < exp(—{1+ o(1)}mlogm), and that mo = .1715..., the only m for
which the best possible value has been determined.

Example 2. D is the disc going through 1 with radius r < 1. Note that k = 0 if r = 1.
We have the (relatively) simple formula,

_ 1 [ .
h(a) =1 (a - —/ et — a|d0> ,
T 0o

sothat k = 1if r <7/(m+4) = .43990084 . ... For various radii r, we computed x and c:

r | .4399.. 45 5 .6 e .8 9 .95
K 1 1.968330|.822168 | .580480 | .390142 | .236024 | .108183 | .051957
c |116.5986 |15.6413 | 11.7966 | 7.65099 | 5.70586 | 4.64287 | 3.99284 | 3.75723

The ¢ and k values for D, the disc of radius r, with center 1 — r.

One can show that, as r gets close to 1, that is » = 1 — § where § — 07, then kK =
§+362/4+ O(83) and ¢ = 2e7(1 + § + O(6?)).

Example 3. D is the sector of the circle bounded by the lines from 1 to e***. In
other words, D is the convex hull of the point {1} together with the arc from €% to e™*
on the unit circle. Select 6y < 67 so that tan(p/2) = sinfy/(cosfy — «) and tangp =
sin 61 /(cos 6y — ), and thus, with I := (6y + (61 — 6p) cos ), we have

h(a) =a+ 1 <sin90 +sin(f; — ¢) —sin(fg — ) — ol +/ et — a|d9) .
™ 01

Notice that if ¢ = 7 then D = [—1,1] so, as above, kK = k* := .328674163... and
c=6.978982... We computed the following values:
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/4 /3 /2 | 2n/3 | 3w/4 | 5xw/6 | 97/10 997
.006293 |.014597 | .046181 | .140280 | .188459 | .235961 | .317918 | .328674
c |[3.58485 |3.61571|3.74339 | 4.01647 | 4.25671 | 4.63956 | 5.15381 | 6.67192

AS)

N

The ¢ and k values for D, the cone with lines from 1 to e**%.
One can show that as ¢ — 0 we have k ~ ©3/24w. Moreover if ¢ — 7 then we have
K* — k ~ n(m — @), for some absolute constant n > 0.
2. PRELIMINARIES

We begin with the following lemma, weaker versions of which may be found in the works
of Haldsz [8], Halberstam and Richert [10], and Montgomery and Vaughan [17].

Lemma 2.1. Let f be a multiplicative function with |f(n)| < 1 for all n. Put S(z) =
> n<g [(n). Then for x >3,

(2.1) S() < 2 /;'Sy( )|dy+0(

log x log x )

Further, if 1 <w < x, then

(2.2) \S(:”) —S(E/w)k L /

x z/w |~ logx

S S(y/w og 2w
st o)

Proof. First note that

x)logz — Zf(n) logn = Zf(n) log% = O(Zlog%) = O(z).

n<zx n<zx n<zx

Further

> f(n)logn=> f(n)Y logp= > logp > f(mp")

n<zx n<z pk|n pk<zx m<x/pk
Since

> o) =16 X s +0( X 1) = 6hs(5) + o),
m<zx/pk m<zx/pk mgas/p}c p p
p|m

it follows that

(2.3) x)logx = Zf ( ) + O().
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Writing ¢ (x) = anm A(n), as usual, we see that
()] - Yoo -sta- (5] - o) - s (o))

We now use the prime number theorem in the form +(d) = d + O(d/(log2d)?), together
with the simple observation that [S(z/d)| — [S(x/(d+1))| < >°, /(4+1)<n<z/a 1- It follows
that -

Saals@-Tals@-bED o igeg Z 1)

z/(d+1)<n<z/d

The main term above is plainly Z i<z |S(z/d)], and the remainder term is

<<Z Z d Z 1<z +

d<\/z Vz<d<zr z/(d+1)<n<z/d

Combining these observations and (2.4), we have shown that
x
o< 3 [5(2)] 40
x)|logz < (;C g + O(x

Now |S(z/d)| = d+1 |S(x/t)|dt + O(Zx/(d+1)<n§x/d 1), and so the right side above is

/ ‘S( )‘dt+0 z).

By changing variables y = x/t this is

x/m @dy%—O(w):x/I&QyNdy%—O(aj),

z/(z+1) Y Y

x
- <L x.
log d+ log x log? Z n

proving (2.1).
To show (2.2), we note by (2.3) that

logx(s(;) - S;:c/{uw)> Ollog 2w) + Zf (d) _ %ng;w f(d)A(d)S(%)
Oflog2u) + Y- flaya)(2) - S0/
d<z/w
Hence

S(z) S(m/w)‘ < 1 Z A(d)‘S(:c/d) B S(x/wd)‘ +O(log2w).

x x/w log x oo x x/w log x

We now mimic the partial summation argument used to deduce (2.1) from (2.4). This
shows (2.2).

The next lemma provides our alterative way to develop this theory, different from that
of Montgomery (see II1.4.3 of [18]).
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Lemma 2.2. Let a,, be a sequence of complex numbers such that > % < 00. Define

A(s) = D207 apn 5 which is absolutely convergent in Re(s) > 1. For all real numbers
T>1, and all 0 < a < 1 we have

>,

(2.5) |rr|1ax [A(1 4+ a +iy)| < max |A(1 +iy)| + O(
yl< lyl<

Nle

and for any w > 1,

2.6) max |A(1+a+iy)(1—w )| < max |A(1+ 1-— )+ O
(26) max |A(1+ 0+ iy) )| max [A(1+iy)(1 —w™)|+ O

> tad).

’ﬂIQ

Proof. We shall only prove (2. 6) the proof of (2.5) is similar. Note that the Fourier
transform of k(z) = e~@1#l is k(&) = [ e 0lFl=€2q; = af—j‘gg which is always non-
negative. The Fourier inversion formula gives for any z > 1,

o] T
27 =k(logz) = k(—logz) = %/ (627 d¢ = 1 /_T

— 00 T

g et o(7)

Using this appropriately, we get that for allm > 1, and 0 < a <1,

e e £ AN —i& o ty—t€ e
—(1-w ) 7T/ n “(1l-w )df—I—O(T>.

n T a? + 52
Multiplying the above by a,/n!*%¥, and summing over all n, we conclude that

1

T 00
A(1+a+iy)(1—w_o‘_iy):;/Ta2L+£2 (14iy+i€)(1 —w™ %) d§+0( Z%)

N[ e

n=1

If |y| < T then |y +&| < |y| +|£]| < 2T, and so we deduce that
max QL+ i) (1) < (mas 4+ —w) [ e
|y|<T Y ~ \Jy<2r Y _pa?+ &
~o(f > 1),
= n

and (2.6) follows since %f_TT e dd < L= d¢ = 1.

— 00 a2+§2

Our next lemma was inspired by Lemma 2 of Montgomery and Vaughan [17], who
consider (essentially) the quotient |F(1 + i(y + 3))/F (1 + iy)| rather than the product
below.
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Lemma 2.3. Let f, x, and F be as in Theorem 1. Then for all real numbers y, and
1/logz < |B| < logx, we have

=l|u-\-

P+ )P+ iy +0)] < (og)* max (7 Ooglog)?) 7.

Proof. Clearly

" + fp)p~ P )

|F(1+iy)F(1+i(y + B))| < exp (Re > fp ;.

p<z

(2.7) <<exp(z |1+p—i/3|> :exp<22|(:os(|2|logp)|>

p

S

p<z p<x

By the prime number theorem and partial summation we have for z > w > 2

> 2= [ i+ Ofexp(—ey/ogw))

w<p<z

for some constant ¢ > 0. Choose C' = 100/c?, and put Y = max(exp(C(loglog)?), el_é\).
Put § = 1/log®z, and divide the interval [Y,z] into < log*z subintervals of the type
(z,2(1 + 0)] (with perhaps one shorter interval). For each of these subintervals we have

1

cos(Ll1o
Z | cos(*5 logp)| _ (Icos(L2l1og 2)| + O(5|3])) Z

> <p<a(1+6) P ><p<(1+8)>

= (| cos(1Bl 10g 2)| + 0(5\6|))</:(1+6) % + 0(%))

log™" x

2049) | cos(Bl 10g t 1

:/ | cos(75 log )|dt+0( 1 >
. tlogt log® x

where we used || < logz. Using this for each of the < log4 x such subintervals covering
[Y, x|, we conclude that

Z|wﬂ$%m:/ﬂm@%yﬂ

P v tlogt

|‘logm|COS
_ Y|
)_/ﬁ LCOSYl 4 1 0(1).

TllogY Yy

at+0(
log
Y <p<z

Splitting the integral over y above into intervals of length 27 (with maybe one shorter

interval), and noting that = fo | cos 0|df = =, we deduce that
| cos(@ logp)| 2 log
< -1 1).
Z P _WoglogY+O()

Y<p<e
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Trivially, we also have

L
Z |COS ogp)| < Z =loglogY + O(1).

p<Y p<Y
Combining the above two bounds, we get that
Z |cos(@ log p)|

p

2 2
< —loglogx + (1 — —> loglogY + O(1).
s ™

p<z

The Lemma follows upon using this in (2.7), and recalling the definition of Y.
We conclude this section by offering a proof of Lemma 1.1.

Proof of Lemma 1.1. For a fixed 6, note that maxsep Re (1 —6)(a —e~%) is an increasing
function of a. Integrating, we see that h(a) is an increasing function. Clearly h is con-
tinuous, and we now show that it is convex: that is, given 0 < a < < 1, and t € [0, 1],

h(ta+ (1 —t)8) < th(a) + (1 —t)h(B). Indeed, for a fixed 0, we have

I(Sneal%(Re (1= (tla—e )+ (1-1)(B—-e") < tréneal%cRe (1—0)(a—e™)

+%1—®gggReﬂ—ﬁK5—e%%;

so, integrating this, we get that h is convex.

Note that 27h(0) = fOQTr maxsep Re (1 — 6)(—e™%)df = fo% maxsep Re de~*?df. This
last expression equals \(D), the perimeter of D, a result known as Crofton’s formula (see
[1], page 65).

We now show the lower bounds for . If kK = 1 there is nothing to prove; and suppose
k < 1 so that (1) > 1. By convexity we see that

—¢ 1—h(0) 1—h(0) — 1—h(0) \z,.\
h<ﬁ(1) - E(o)> S OO (= 5= PO = 1

and so it follows that k > _L=h(O) Clearly h(a) < h(0)+ 5= fOQTr maxsep Re (1—0)adf =

h(1)—h(0)
h(0) + av. Hence we see that ﬁ > (1-n(0)/v=1(1- %?))
Lastly it remains to show that kv < 1 with equality only when D = kv. By definition we
have h(«) > maxsep 5= f (1 —0)(a—e )df = av. It follows that kv < 1 always.

Moreover if kv = 1 then h( ) = 1 and there exists d € D such that the maximum of
Re (1—6)(k—e~%") for 6 € D, occurs at 6 = d. Therefore if d+n € D then Re n(k—e~%) >
0 for all @ € [0, 27). Therefore k = v = 1 else as f runs through [0, 27), so does arg(k—e~"?),

which implies Re n(x —e~%) < 0 for some §. Now arg(1 —e~%) runs through (-7 /2, 7/2)
so 1 € R else Re n(k — e~%) < 0 for some . Thus D C R and so D = [0, 1] since v = 1.
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3. THE KEY PROPOSITION

3a. The integral equations version.
Our tool in analysing (1.8) is the Laplace transform, which, for a measurable function

f: [0,00) — C is given by
= te tSdt
s) /0 f(e

where s is some complex number. If f is integrable and grows sub-exponentially (that
is, for every € > 0, |f(t)| <. e almost everywhere) then the Laplace transform is well
defined for all complex numbers s with Re (s) > 0. Laplace transforms occupy a role in
the study of differential equations analogous to Dirichlet series in multiplicative number
theory.

Below, x will be measurable with x(t) = 1 for ¢t < 1 and |x(¢)| < 1 for all ¢, and o(u)
will denote the corresponding solution to (1.8). Observe that for any two ‘nice’ functions
fand g, L(f *g,s) = L(f,s)L(g,s). From the definition of o, it follows that

(3.1) L(vo(v),t+1iy) = L(o,t +iy)L(x, t + iy),

where t > 0 and y are real numbers. _
Further, recalling from (1.9a,b) that o(v) = Z;io(_l)]Ij (v; x)/4!, we have

[ele} : 0 : 1— 7
L(o,t+1iy) = i Li(v;x), t+iy) = t+zyz j!) (ﬁ( g(v),t—kiy))

- Xp(_,c<1—+<w,t+iy)>.

We now give our integral equations version of Proposition 1.

Proposition 3.1. Fiz v > 1, and define fort > 0

oo _—tv “1_R —ivy
M, (t) = / C min/ e x(v)e e dv.
u 0

v yEeR ()

o) < X /0 h (1 - ) (=M () 5,

u t t

Then

Since M, (t) > max(0, —log(tu) + O(1)) we see that the integral in the Proposition con-
verges.

Proof. Define x(v) = x(v) if v < u, and x(v) = 0if v > u. Let & denote the corresponding
solution to (1.8). Note that 6(v) = o(v) for v < wu. Thus

lo(u)| = |6(u)| < l/ |6 (v)|dv = l/ 2v|€7(v)|/ e 2 dtdy
U Jo U Jo 0

(3.3) - % /0 h ( /O ’ 2v|6(v)|e‘2t”dv> dt.
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By Cauchy’s inequality

u 2 u o0
(/ 2v|6(v)|e‘2t”dv) < 4/ e_2t”dv) (/ |U6(v)|26_2t”dv>
0 0 0

1— e—2tu

o0
2 / lvé(v)|?e ™" dv.
t 0

(3.4)
By Plancherel’s formula (Fourier transform is an isometry on L?)
> ~ 2 _—2tv 1 >
/ lva(v)|“e™ " dv =
0

2r ) o

[L(v5(v),t +iy)|*dy

and, using (3.1), this is
1 oo

1 o0
1L(6,t+iy)|*|L(X, t+iy)|*dy < (mgﬂglﬁ(f},tﬁyﬂ?) —/ |L(x, t+iy)|*dy.
Yy

" or o 27 J_

Applying Plancherel’s formula again, we get

I 2 > 2 2t R 1—e 2™
— L(x,t+1iy)|°dy = X Ty < Wy = ——.
5 |Gt infay = [ R@pea < [Tt - g
Hence
~ ~ 2 —2tv 1 — e 2 o . N2
(3.5) lva(v)|“e “*Ydv < ———— max |L(6,t + iy)|”.
0 2t yER

By (3.2), we have
Y —ivy _ vy
L6t +iy) = — exp(_g(%,t) +5(L,t)).

t+1y

Now, we have the identity
1— e—ivy ]
Re L ———,t | =log|1 + iy/t|
v

which is easily proved by differentiating both sides with respect to y. Using this we obtain

(3.6) HL(5, + iy)| = exp (—Re E(Mt))

(%

from which it follows that

o,y exp(—M (1))
glgﬁdﬁ(a,t +iy)| = , :

Inserting this in (3.5), and that into (3.4), and then (3.3), we obtain the Proposition.
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3b. The multiplicative functions version: Proof of Proposition 1.
In this subsection, we prove Proposition 1. We follow closely the ideas behind the proof of

Proposition 3.1 above.
Note that

[ 150y = [ 5 ([ 2 074 )
:/j%‘ Zf(n)logn+0<210g(y/n)>‘(/Oly2ada)dy+0(1)

1 xX 2
3.7 - [ ([ 2
(3.7) () o >

Z f(n) 10gn‘dy> do + O(loglog z).

By Cauchy’s inequality

x
logn‘ 3420 = (/1 1—|—2a

a

lognr?’d—y>%
Yy +2a

dy )%
y3+2a '

Now define the multiplicative function fbyf (gg’“) = f(p*) for p < x, and f (p*) = 0 for
p >z, so that F(s) =3, -, f(n)/n®. Naturally f(n)= f(n) for n <, and so

dy > = 2 dy
logn‘ y3+2a S/ ‘Zf(n) logn‘ yi+2a’
1

n<y

(3.8) - (1 —r

and with the change of variables y = e?, this is

(3.9) / ‘ Z f(n logn‘ —20+a)t gy,

n<et

By Plancherel’s formula

(o @] / . 2
3.10 Ej )logn 2 —20tay gy L F(1+afzy) p
(3.10) f(n)log

2m 14+ a4y

n<et

Lemma 3.2. LetT > 1 be a real number. Then

(% /_O:o ‘Fll(fao‘:i;y)fdy)% < (max |F(1+a+zy)|) (#) +O<”; +ﬁ>

ly|<T
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where, for convenience, we have set m = m(«) = min(logz,1/a).

Proof. We split the integral to be bounded into two parts: |y| < T', and |y| > T'. Split the
second region further into intervals of the form kT < |y| < (k + 1)T where k > 1 is an
integer. Thus

F'(1+a+iy)p? N R _
/Iy|>T‘ 1+a+1iy ‘ y<<Zk2T2/ |F'(1 4+ a+iy)|“dy

—1 ly|=kT
o~ 1 o [f(n)Plog?n
<) L272 ) n2+2a (T +mn),
k=1 n=1

by appealing to Corollary 3 of Montgomery and Vaughan [16]. Since f(n) = 0 if n is
divisible by a prime larger than x, this is

1 <= log®n 1 = logn 1 m?
<<fnz_:ln2+2a+ﬁ ;1 itza <t
B pln = p<z

Hence we have that

(3.11)
1 [ F(l4+a+iy)?, \z 1 (T Fl+a+iy)2, \3 1 m?
(%/_Oo‘ 14+ a+1y ‘dy) _<%/_T‘ 1+a+y )dy) +O<ﬁ+ T)’

We now turn to the first region |y| < T. Define g(n) to be the completely multiplicative
function given on primes p by g(p) = f(p). Put G(s) = 3.°°, g(n)n*, and define H(s)
by F(s) = G(s)H(s). Note that H(s) is absolutely convergent in Re(s) > 3, and that in
the region Re(s) > 1 we have uniformly |H(s)|, |H'(s)| < 1. Using F' = G'H + GH' =
F(G'/G) + O(G), together with the inequality ([ |f+g]2)2 < ([|f]*)2 + ([ |g|>)? (which
is easily deduced from Cauchy’s inequality), we see that

( 1 /T )F’(1+oz+iy)’2dy>% - ( 1 /T ‘(F%')(l—i-a-l—iy)‘?dy)%

o J_ 1+a+1y =~ \2r _r 1+a+y
T : 1
Gl+a+iy)|2, \2
3.12 0((/ ‘ , ‘d) )
( ) + _rl 1+a+y Y

Splitting the interval [T, T'] into subintervals of length 1, we see that the remainder term
above is

(7] 1 (1] 00 1

k+1 1 2
(Y i) Gtrerwia) <( Y e Eniaem)
1 n

k=—[T]—1 k=—[T]— =1
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by appealing again to Corollary 3 of [16]. Plainly this is

o0

1 2
(313) < < Z m) < \/E
n=1
pln = p<z
We focus on the main term in the right side of (3.12). Clearly

(i /_T ‘(F%l)(l—i-a_-i- iy)‘Qdy>% < <max |F(1+a+iy) )( / (1 +a+iy)‘2dy>%.

27 14+ a+1y ly|<T 1+a+y

Since —%(s) =3, g(n)A(n)n*s we get, by Plancherel’s formula, that

=~ +a—i—2y 72(1_{_ )t
*tdt.
’ l1+a+y / ‘Z ‘e

Since |g(n)| < 1 always, we see that | > __. g(n)A(n)| < ¢(e) for all ¢. Further, since
g(n) = 0 if n is divisible by a prime larger than z, we see that if t > logx, then
13 ot g(n)A(n)| < o + €!/2. Using these observations together with the prime num-
ber theorem we deduce that the above is

t

. /Ologiv <€t +O<(tj1)2>)2€_2(1+a)tdt+0</100 (a2 +et)e—2(1+a)tdt)

ogx

1 — g2
= ——+0(1).
5 TOM)
Thus the main term in the right side of (3.12) is
—2«

1—a2° 3 1—=z 3 1
< — 1
|IyI‘13X |F(1+a+zy)|( 70 -I-O(1)> |I;|13X |F(14+a+iy)| <<7204 ) +O0(m )),

since (1 — 272%)/2a < m(«). Combining this with (3.13), and (3.11), we obtain the
Lemma, since [F/(1 +a +iy)| < [[,<,(1 = 1/p'**) " < m.

We use (3.9), (3.10) and Lemma 3.2 to estimate the right side of (3.8). Inserting that
estimate into (3.7) we conclude that

2ce

/2 |Sy( )|d <2/01 <|ryr|1ax |F(1 +a+iy)|> <71 _2:; >da
+ O(/Ol <m(a)2 +m(a))da+loglogx>

T

= 2/01 <max |F(1+a+zy)|> (%)d +0 <1T —Hoglogac) :

ly|<

When used with (2.1) of Lemma 2.1, this yields Proposition 1.
We end this section by giving a variant of Propostion 1 which will be our main tool in
the proof of Theorem 4.
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Proposition 3.3. Let f, T, and x be as in Theorem 1. Then for 1 < w < x, we have

S(z) B S(z/w) ‘ < 1 /01 m(a) ( max |(1 — w™ %) F(1 + a + @'y)|>da

T x/w log x ly|<T

1 log2w log
(7 ).
+ T + log x o8 log 2w

Proof. Since the proof is very similar to that of Proposition 1, we shall merely sketch it.
Arguing as in (3.7), we get that

LI -2ty = (L

+ log 2w log ( log z )
log 2w

1 1 d
§Zf(n)logn—y/—w Z f(n)logn‘ﬁ)da

n<y

Using Cauchy’s inequality as in (3.8), we see that

11 1 d
Lw ;Zf(n)logn—y/—w Z f(n)logn‘w%

n<y

1 xX
< minm(a)? < /
2w

1 1 2 dy Nz
;Zf(n)logn—y/—w Z f(n)logn‘ ?Jl%> :

n<y

As before, we handle the second factor above by replacing f by f , extending the range of
integration to floo, substituting y = e?, and invoking Plancherel’s formula. The only differ-
ence from (3.10) is that F'(1+a+iy)/(1+a+iy) in the right side there must be replaced by

the Fourier transform of e (1+e)t Y n<et f(n)logn — we 1+t > n<et u f (1) logm which

is —F'(1+a+iy)(1 —w *%)/(1+ a+ iy). We make this adjustment, and follow the
remainder of the proof of Proposition 1.

4. PROOFS OF THEOREM 1 AND COROLLARY 1

Recall the multiplicative function f (n) defined by f (p*) = f(p*) for p < 2, and f (P*)=0

for p > 2. Then F(s) = 3. f(n)n=°, and since |f(n)| < 1 always, we get that for all
0<a<l,

(A1) max | F(1+a+iy)| < ((1+a) = é +0(1).

Taking a, = f(n) in Lemma 2.2 and noting that ) |a,|/n < logz, we conclude that for
0<a<l1

alogx
4.2 F(1 iy)| < F(1+i ( ).
(4.2) max [F(1+a+iy)| < max [F(1+iy)|+ O —
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Note that L < @ [T<.(1— %)_1 = e + O(1/logx), by Mertens’ theorem. The
Theorem is trivial if 1 < L < e?+ O(1/logx), and also if L < 1/logz, so we suppose that
1/logx < L < 1. We use Proposition 1, employing the bound (4.2) when o < 1/(Llogx),
and the bound (4.1) when 1/(Llogz) < a < 1. We deduce that

(4 3)

1/Llogz 1 _ p—2a 2 ! 1—27201 log 1
‘Zf )| < / 127 et / 2 da O( )
Qa logz Ji/p10g2 20 T logzx

n<x

Making a change of variables y = 2alog x, we see that the first integral above is

gL/ ‘ dy:L(/ ‘ dy+/ —y—/ e—dy+/ *ay)
0 Y 0 Yy 1 () 1 ) 2/ Y

:L<'y+log%>+L/22%dy,

since vy = fol(l — e Y)/ydy — [~ e7¥/ydy. Further, the second integral in (4.3) is

1 ! 1— g 2 ] _eV  2eY
/ %dazQ/ 0 dy:L—/ _—"
logz 1/Llogx a 2/L Y 2/L Y

Combining the above bounds, we see that the right side of (4.3) is

i eV 2/L 1 logl
(4.4) SL(1+log2+loge—+/ 6—( —L>dy>+0<—+7og ng).
L 2/L Y Y T log =

Since the maximum of (1 — (2/L)/y)/y for y > 2/L is attained at y = 4/L, we see that
the integral term above is < L/8 f;fL e Vdy < 1/8 [ e ¥dy = 1/(8€?) since L < 1, and
theorem then follows from (4.4) since 1+ log?2 + 1/(8¢?) < 12/7.

We now deduce Corollary 1. Suppose f is completely multiplicative. Then, by Mertens’

theorem,
IF(1+iy)| = (" logz + O(1)) ‘1— f(p) 1(1—1>
1+1
e +iy P
1 —Re f(p*)p~™"
(4.5) = (7 logz + O(1)) exp ( — IKZI " ),
E>1

and so it follows that L < ¥~ 4 0O(1/logz). Using this bound in Theorem 1, we get the
completely multiplicative case of Corollary 1.
If f is only known to be multiplicative then note that

i) f(®?) +"'H1_ f(p)

pl—l—zy p2+22y pl—Hy

el
since | f(p*)| < 1 for all k: Using this with the observation of the preceding paragraph, we
see that L <] (1 + = 1))67_M + O(1/log z) in this case. Appealing now to Theorem

1, and noting that log([],(1 + p(p 7 )) > 8/7, we deduce this case of Corollary 1.
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5. PROOF OF THEOREM 2A

We may suppose that |yg| > 10. Applying Theorem 1 with 7" = |yo|/2 — 1 we get that

1‘ 3 fo)| < (i<l 2 [F(1 +iy)\> g et logx )
r n<x logx Max|y|<yo—2 |F(1 + Zy)|

1 loglog x
+
lyol +1 logz

(5.1)

By the definition of yq, we see that for |y| < |yo| — 2,

F(L+iy)] < ([P +iy) P +ip)l)

and appealing to Lemma 2.3, this is (with logz > 3] = |y — yo| > 2)

< (logz)* (loglog z)21=%).

Using this bound in (5.1), we obtain the Theorem.

6. PrROOF OF THEOREM 4

If |yo| > (logx)/2, then in view of Theorem 3a, the result follows. Thus we may assume
that |yo| < (logz)/2. Put fo(n) = f(n)n="%, and define Fy(s) = Hpgx(l + fo(p)p~*° +
fo(P)p 2 +...) = F(s +iyg). We note that

(6.1) (IF(1+1yo)l =)  [Fo(1)] = Juax [Fo(1 +iy)].

Indeed, the left side of (6.1) is plainly < right side; and further the right side is =
maX|y|§logm |F(1 + iy + iy0)| S Ina}‘:|y|§logac—l—|yo| |F(1 + Zy)| S |F(1 + iy0)|7 proving (61)

We now appeal to Proposition 3.3, with f there replaced by fy, and F' by Fj, and with
T = (logxz)/2. Thus we see that

’i Zfo(n)—% Z fo(n)‘ < log 2w 10g< logz )

= nSaw log x log 2w

(6.2)

/1 min (loga:, l) ( max |Fo(1+ a+iy)(1 — w_a_iy)|)da.
0

log x o/ \|y|<(logz)/2

Next, we use Lemma 2.2 with a,, = fyo(n) if n is divisible only by primes < z, and
an = 0 otherwise. Thus A(s) = Fy(s), and >, |an|/n < logz. Taking T' = (logz)/2,
we deduce from (2.6) of Lemma 2.2 that

(6.3) max  |Fo(1+a+iy)(1 —w ™ %) < max |Fy(1+dy)(1 —w )| +0(1).
ly|<(logz)/2 |y|<logz
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If |y| < 1/logx, then plainly |Fo(1 + iy)(1 — w™%)| < logz(|y|log2w) < log2w. If
logz > |y| > 1/logz, then using (6.1) and Lemma 2.3, we get

3 1 (1-2)
Fo(1 -+ i) < (JFo(1)Fo(1 +i)]) < (o) max (1 1. (loglog)*) ™

Since |1 — w~%¥| < min(1, |y| log 2w), we deduce from these remarks and (6.3) that

2
1-%

(6.4) e |Fo(1+ o+ iy)(1 — w * ¥)| < (logz)* max <log 2w, (loglog :v)Q)
y|<(logz

In addition, we have the trivial estimate

; 1
6.5 max Fo(l+a+in)(l—w ) < (1+a)< —.
(6.5) |y|§(log:c)/2| ol y)( )| < (( ) -

We now use (6.2), employing estimate (6.4) when « is less than
- 1_%) 2
max <log 2w, (log log x)2> (log )~ =, and estimate (6.5) for larger . This gives the

Theorem.

7. DEDUCTION OF COROLLARY 3 AND OF THEOREM 2B

We require the following lemma, which relates the mean value of f(n) to the mean-value
of f(n)n*e.

Lemma 7.1. Suppose f(n) is a multiplicative function with |f(n)| < 1 for all n. Then
for any real number o we have

3 fnnie = 1"j:o;a n;cf(n) + O(lozm log(e + |a) exp (Z w))

n<zx p<z p

To prove this Lemma, we require a consequence of Theorem 2 of Halberstam and Richert
[10]. Suppose h is a non-negative multiplicative function with h(p*) < 2 for all prime
powers p*. It follows from Theorem 2 of [10] that

(7.1) > h(n) < 102;5 T;hgb) {1+O (102;3:)}'

n<x

Using partial summation we deduce from (7.1) that for 1 <y < xl/?,

cp Y Mo e (-2} S M o (o))

z/y<n<z n<x
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Proof of Lemma 7.1. Let g denote the multiplicative function defined by g(p*) = f(p*) —
f(P*1), so that f(n) =>4, 9(d). Then

(7.3) Z f(n Z n'e Z g(d Z g(d)d™ Z n'®

n<x n<x d|n d<zx n<z/d
By partial summation it is easy to see that

Zl+ia
Znia: m+0(1+(12)
O(2).

n<z

We use the first estimate above in (7.3) when d < x/(1 + o?), and the second estimate
when z/(1 + a?) < d < x. This gives

D flon = 1:229 +0(< rad) S l@l+e Y %d)')

n<z d<z/(14a?) z/(1+a?)<d<z

Applying (7.1) and (7.2) we deduce that

o _ 2T g(d) l9(d)
Zf(n)n _l—l—iozz 7 +O(l log(e + |a) Z )
n<x d<zx d<z
!t o~ 9(d) 11— f()|
_1+ia; y +O( log(e + |a) exp(p;BT)).

Using the above estimate twice, once with « replaced by 0, we obtain the Lemma.

Proof of Corollary 3. We may suppose that w < /z, else there’s nothing to prove. Let yq
be as in Theorem 4. By the definition of M and by (4.5) we know that for all |y| < 2logz,

3 L-Re f0)p™ _ 3 L —Re flp)p™™ o).

p p

p<z p<z

Further we have for |y| < 2logx

1 —Re f(p)p~" 1 —Re f(p)p~"¥ _
s> LR St 1R Sy g

p<z/w p<w z/wp<z

> M +0(1).

"=

By Corollary 1 (with 7' = logz) it follows that
loglog x

1 _
E‘Zf(n) a:/w Z fn ‘<<M€M+ log

n<x n<z/w
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From this estimate, Corollary 3 follows if M > (2 — v/3) loglog z. We suppose now that
M < (2 —+/3)loglogz.

For a complex number z in the unit disc, we have |1 — z| = (1 + |22 — 2Re 2)2 <
(2 —2Re z) Hence, by Cauchy’s inequality and our bound on M,

3 1= fp)p~*] _ T V2 —2Re f(p)p~ ™ _ (Zg>§(z 1 - Re f(p)p—iyo>%
< < : ;

p<z p p<z p p<z p<z

(7.4) < (2(2 - \/3)) *loglogz + O(1) = (V3 — 1) loglogz + O(1).
Applying Lemma 7.1, we see that

3100 = g S+ 0 ey (30 )

n<x n<x p<z
x'o » loglog
= - n)n W0+0(7‘>,
1 +iyo ;f( ) (log x)2-V3

and similarly
gj/w )iwo _ loglog
f(n) = fn=w + 0 28T ),
n<§/w 14+ wyo gz/w (log :1:)2—\/5
Taking absolute values in these relations, and appealing to Theorem 4, we obtain the
Corollary.

Proof of Theorem 2b. Suppose that the maximum in (1.3) with 7' = logz is attained
at y = yo. If |yo| > logz the result follows from Theorem 2a. Thus we may assume
lyo| < logz. Let g(n) = f(n)/n' so that the maximum in (1.3) with f replaced by g and
T = $logz is attained at y = 0 (for in the range there, |y+yo| < |y|+|yo| < 2logz). Write
M = My(x,logz) = My(z, % log x), We will give the proof now assuming f is completely
multiplicative (the proof for all multiplicative f is entirely analogous): By Corollary 1
(with T = 5 logz) we have

1 12 log1
LS o] < (a4 22)or w4 o(leleary,
zle= 7 log x

By Lemma 7.1 with f replaced by g, and « by yo, we have

> fn) Hw Z (n)+0< loglogxexp(zw))

n<z p<x

Combining these two statements gives, since >, [1—g(p)|/p < vV2Mloglogz+O(1) b
Cauchy’s inequality, B

‘Z ‘ \/?(M+1—72>67_M+O<%exp(\/2Mlogloga})>.
Y3

The result follows from this provided M < (2—+/3)loglog z; and it follows from Corollary
1 directly if M > (2 —/3)loglog .
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8. PROOF OF THEOREM 5

We recall the notations of §3a. We first obtain a lower bound for M, (t) in terms of
Mo — fu 1—Re x(v)d
0= Jo = w V.

v

Proposition 8.1. For allu > 1 andt > 0 we have

o —v

M4 (t) > max (0, kMo — kv log(tu) + (1 — m/)/

tu

dv + C(D)),

(%

where C(D) was defined in (1.6).
Proof. First note that My (t) > 0 by definition. Also

oo —tv

(1—e_t”)dv+/ S

w v

ul_
M+(t)—,<M0:I—/4/ R+M
0

where

(8.1) I == min /u L=k —Re x(v)(e™ — )
’ ’ yER 0 v

Since 1 — Re x(v) < v, we get that

U o —tv
—KJ/ M(l_e—tv)dv+/ € dv
0

v w U

Ul —tv oo, —tv oo L, —tv
> —/W(/ T —/ < dv) + (1 - /w)/ C v
0 v w U v

= —kv(y + log(tu)) + (1 — /w)/

tu

e " du.

0o —uv

dv,
v

so that

o0 —v

dv+ 1.

(

M. (t) > 1My — sy + log(tu)) + (1 — k) /

tu

Therefore we obtain the Proposition by proving

2™ mi — K — €T __
(8.2) [> min min(0,1 — k — maxsep Re d(e K))d

X.

If the minimum in (8.1) occurs at y = 0, then I = (1—k&) [, #X(”)e_t”dv > 0, which
is stronger than (8.2). So we may suppose that the minimum in (8.1) occurs for some

y # 0. Put w(f) =1 — k — maxsep Re §(e™ — k). Then we see that, with € = sgn(y),

. ol lulu g=to/lyl , v
Iz/ Me%:/ Metv/wm:/ ¢ d(/ w(er)dr).
0 v 0 v 0 v 0
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Integrating by parts, we conclude that

—tu  plylu ly|u v —tv/lyl  pe—tv/lyl
83) I>S / w(ex)dz + / ( / w(ez)dz) o v,
0 0 0

|y |u v? |yl

Note that w(ex) is a 2m-periodic function, and that 5- fo% w(ex)dr = 1 — h(k) > 0.
Hence putting w™ (z) = min(0, w(z)), we get that

(8.4 [ weasz [* (i =)

(5]

say. Observe that W, is a 2m-periodic function, which is always negative, and that W, is
decreasing in (0, 27).

Using (8.4) in (8.3), and since W, is negative and e=*(1 +z) <1 for all x > 0 , we get
that

—tu ly|w " ly|u
(8.5) I > —W.(lylu) +/ We—gv)e—t“”y'(l + —v)dv > Wellylw) +/ Legv)dv.
[ylu o v v lylu o v

If « > 27 then, since W, (v) > W.(2r—) (= fo%w_(ex)dw), we get

fo I — 21 o d
Welor) +/ Welv) g, » Wel@m) ngv)dwrwe(%—)/ =
o o v o 0 v om U
2 We(v)  We(2m—)
2 + )
0 v 2

If o < 27 then, since We(x) is decreasing in (0, 27),

a 27 27 27
We(OZ) +/ We(v)dv > We(a) + We(’U) . WG(OZ)/ d_v — Md’l} + M
« 0 02 « 0 v? o U2 0 v? 27
27 o
> Wegv) o+ We(2m )
0 v e

Using these in (8.5), we conclude that

2 2 —
€ 62 -
IZ/ ng)dv_l_W(ﬁ ):/ w (45:1:)(1‘,1:7
0 0

v 2 x

which, from the definition of w™, is greater than or equal to the right side of (8.2) for both
e = £1. This completes the proof of the Proposition.

We now finish the proof of Theorem 5. We first deal with the case D # [0, 1], where
kv < 1. We shall input the bounds for M, (t) in Proposition 8.1 into the t¢-integral in
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Proposition 3.1. We split this integral into three parts: when 0 <t < ¢; := e~ /u, when

t <t<tg:= exp(% + @)/u, and when t > ts.

RV
We first estimate the contribution of the first range of ¢. Since

oo ,— 1 1 — oo —
v d 1— v v

/ c dvz/ —U—/ c dv+/ c dv = —log(tu) — v,
tu v tu U 0 v 1 v

and 1 — kv > 0, we see that M, (t) > KMy — log(tu) + C(D) — (1 — kv), by Proposition
8.1. Hence, with a little calculation,

-
e

dx

< exp(—kMy — C(D) +v(1 — kv)).

For the middle range of ¢, we use the bound M, (t) > kM, — kv log(tu) + C(D), which

/:2 (1 — i”“) eXP(_tJLLF (1)) dt < exp(—xMy — C(D)) /: (t?iﬁy%

. 0 .
holds since 1 — kv, and ftu dv are non-negative. Hence

exp(—kMy — C(D) +v(1 —kv))  exp(=7F — =5

1 — kv 1— kv

For the last range of ¢, we use the trivial bound M (t) > 0. This gives that

/OO (1 —thu)eXp(_M+(t))dt < /00 B —exp (- e C(D))

t tu t2u v KV

Combining the above three bounds with Proposition 3.1, we obtain Theorem 5 in the case
kv < 1.

We now consider the case D = [0,1] where we shall show that |o(u)] < e¥=Mo, Put
X(t) = x(t) if t < u, and x(t) = 0 for t > u, and let 6 denote the corresponding solution
to (1.8). Note that both o(v) and &(v) are non-negative for all v, and that 6(v) = o(v)
for v < u. Now, using (3.6),

1 [ | 1 [ 1
_ — — d <— d <— 5 d :_1 £A,t
o) =1 [ oo < L [“otito< L [ s = Lt £(o.)
1 1 1—v 1 oo ,—tv
:—lim—exp(—[j(ﬂ’t)) = ¢ Mo lim—exp<—/ ¢ dv)
ut—0t¢ v t—0 tu w v
= e Mo lim 1exp(—/ . dv) :e'Y_MO,
y—0y y v

which proves the Theorem in this case.
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9. DEDUCTION OF THEOREM 3

Let y = exp((logz)3), and let g be the completely multiplicative function with g(p) = 1
for p <y, and g(p) = f(p) for larger p. Let x(t) =1 for t <1, and put for t > 1

() = —— 3" g(p)logp,

¢
Iy =
Let o denote the corresponding solution to (1.8). Note that for u > 1

/Ou #exwdv _ /1u vﬁ(lyv) Z (1 — Re f(p)) logp dv

y<p<yv

:/1u 1 3 (1—Ref(p))10gpd”+0<1;y)

vy®
y<p<y®
upon using the prime number theorem. Interchanging the sum and the integral, the above

is
= Y (1—Ref(p))10gp/u %JFO(lo;y)

y<p<y® log p/ logy
1 1 1 1
= 2 (1_Ref(p>)1°gp<1 +O( P >>+O<1 )
v plogp plog’p ~ uy“logy ogy
We conclude that
1 - 1-— 1
9.1) /Mdvz 3 Mw(l )
0 v y<p<y b ogY

Appealing to Propositions 3 and then 2 we obtain that

2 20 =000 3ot +0( rew (3 )

n<x n<x

_ @(f,y)o(iiiz) +0((10g1m)1 exp (; “‘p#))

pPST

Since f(p) € D for all p and D is convex, thus x(t) € D for all t. Hence using Theorem 5
and (9.1), we conclude that

\Zf )| <0G =L exp (= n 3 LB E ) 41— )

<p<w p
+O<(1og1x)é P (p; - _z;f(p)|>>’

which completes the proof of the first part of Theorem 3.
In fact the second part of Theorem 3 follows from Lemma 2.1 for, from (2.1) we have

(logz +1)— Zf Z@—FO(I)ze”logm O(f,x)+0(1)

n<x n<x

using Mertens’ theorem, and the result follows.
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10. ExpriciT CONSTRUCTIONS

10a. Examining proper subregions D of U is necessary.

As we remarked after Theorem 5, it is not, a priori, clear that one should look at proper
subsets D of U when looking for bounds (of the shape of Theorem 2) on solutions to (1.8).
However if we take x(t) = 1 for t < 1, and x(t) = €' for ¢t > 1 then

) (1—Re x<v>e“’“,t) -/ 1 (m) v | Tlocosva
v 0 v 0 v

as t — 0. Therefore, by (3.6),

/ lo(v)|e ™ dv > |L(o,t +ia)| >4 1/t,
0

if ¢ is sufficiently small. Now fbcﬁ lo(v)]e tdv < fbo/i e Wdv < e/t for any b > 0 and so

fob/t lo(v)|e”™dv >, 1/t if b is sufficiently large. Taking N = b/t we deduce that if N is

sufficiently large then fON lo(v)|dv >, N, and so limsup |o(u)| >, 1.
However

“1— “1—
1

0 v v

so no estimate of the shape |o(u)| < exp(—kMj) can hold (with x > 0), as in Theorem 5.

10b. Corollary 1’ is best possible, up to the constant.

Assume that Corollary 1’ is not best possible, so that if M = M (u) is sufficiently large
then |o(u)| < eMe™M,

Select u sufficiently large, and choose x(t) = 1 for t < 1, x(t) =i for 1 < t < u/2,
and x(t) = 0 for t > wu/2; let o denote the corresponding solution to (1.8). Next we
take x(t) = x(t) for t < u/2, or t > wu, and for u/2 < t < u choose x(t) to be a unit
vector pointing in the direction of o(u —t). Let ¢ denote the corresponding solution to
(1.8). By definition we have 6(u —t) = o(u — t) in the range u/2 < t < wu; and so
X(t)o(u—t) = |o(u—t)| throughout this range, by our choice of x(t). From (1.9) and then
this observation we deduce

uo Y olo(u — u/2
(10.1) a(u)—a(u)z/m@&(u—t)dt:/ Mdtgl/o (v)|d.

/2 u

Multiplicative functions such as this have been explored in some detail in the literature:
Let a be a complex number with Re(a) < 1, and let p, denote the unique continuous
solution to upl, (u) = —(1 — a)pa(u — 1), for u > 1, with the initial condition p,(u) = 1
for u < 1 (The Dickman-De Bruijn function is the case a« = 0.) For a € [0, 1], Goldston
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and McCurley [5] gave an asymptotic expansion of p,. Their proof is in fact valid for all
complex a with Re(a) < 1, and shows that when « is not an integer

6'7(1_05)

palu) ~ W’
as u — oo (Curiously, when « is an integer the behaviour of p, is very different; in
fact po(u) = 1/u*+°), We have o(v) = p;(v) for v < u/2, and so in (10.1) we get:
o(u) —o(u) ={c+o(1)}logu/u where ¢ = €7 /|T'(i)| = 3.414868086 . . ...

Now we note that

U —vy
M(u) = min/ Re x(v)e dv
yeR 0 v
11— cos(vy) u/2 1 —sin(vy)
zmin(/ 7dv—|—/ 7dv+log2>,
yER 0 v 1 v

Y1 _—cost+sint Yosint
> log u + min / cost st . ax / SUE It > logu — 1.851937052 . . .

and similarly M (u) > log(u/2)—1.851937052. ... Let ¢/ = 851937052 — 6 372150763 . . ..
Therefore Me ™ < {¢/ + o(1)} logu/u and Me ™M < {2¢/ 4 o(1)} logu/u, so that

6(w)] + lo(w)] > {c+ o(1)}ogu/u > {¢/3¢ + o(1)}(Me™™ + Me=).

Thus either |o(u)] > (5/28)Me=M or |6(u)| > (5/28)M€_M, which implies the remarks
following Corollaries 1 and 1’ since ¢/3¢’ > 5/28 > €7 /10.

11. BOUNDS ON LEAST MEMBERS OF COSETS OF THE k-TH POWERS

11a. Bounds for 74: k large.

Let f be a completely multiplicative function which takes values on the k-th roots of
unity. Suppose x is a large integer such that for each k-th root of unity & there are
between (1 —¢€)x/k and (1 + €)x/k integers n below z with f(n) = &, for some given € > 0.
It follows that

(11.1) S F(n) < {e+o(L)}a,
n<zx
for each j =1, ..., k — 1. Now suppose 1 < w < o(x) and observe that
= C1ls = '
S =6 X s =il e e  swp
n<z/w 7=0 n<z/w j=1 n<z/w

f(n)=¢
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Using (11.1) together with Corollary 3 we conclude that

P> E(% _E_C(log2w>1—%log( log x ) +0(1)>,

log x log 2w

for some absolute constant C. If € < k/2 and w < z¢/(k1o8 W2 for a suitable constant
¢ > 0 then the above is positive, so that 7, < 1—c/(klog k)1 =2/™) and our desired bound
for 7, the first part of Corollary 4, follows.

In the case that k is prime we may improve our bound for 75 by modifying the argument
of Davenport and Erdds [2]. Let €, f and = be as above, and suppose that & is a k-th
root of unity such that f(n) # ¢ for all n < X = 2™+t°(1)_ Plainly f(p) = 1 for all
p < XV =y otherwise &€ = f(p)? = f(p?) for some 1 < j < k — 1 contradicting
f(n) # € for all n < X. Suppose X < n < z with f(n) = £. Write n = rs where
plr = p<wy,and p|s = p>y. Then £ = f(n) = f(r)f(s) = f(s) and so we must
have s > X. Hence

(11.2) (1—6)%§Zl§ Y Yi<e ¥ é

n<zx X<s<z r<z/s X<s<z
f(n)=¢ pls = p>y pls = p>y

The right side above may be estimated using knowledge of the distribution of integers
free of small prime factors (see Theorem 3 of Chapter I11.6 of [18]). Using this result and
partial summation we get that

1 logz/logy
Z - = / w(z)dz 4+ o(1),
o 1

XSSSI OgX/lOgy
pls = p>y

where w is Buchstab’s function defined by w(z) = 1/z for 1 < z < 2 and for z > 2 it is the
unique continuous solution to the differential-difference equation (uw(u))’ = w(u —1). As
z — 00 we have w(z) = ™7 + O(2z~*+°(*)) (see Theorem 4 of I11.6 of [18]) and hence

3 1_ logi(mjev Ok ok,
X<s<z o8y
pls = p>y

Using this in (11.2) we conclude that e 7 (k —1)(1 —73) /7 + Ok F+°®)) > (1 —¢)/k, and
our desired bound on 74 follows.

11b. Evaluating 75 and 73.

That 7o = 1/4/e is essentially a classical observation of Vinogradov. First we show that
o < 1/4/e. Suppose f is a completely multiplicative function with f(n) = +1. Suppose
x is such that both {n < z : f(n) = 1} and {n < z : f(n) = —1} have cardinality
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~ x/2. Let ny be the first time f(n) = —1. Plainly we may suppose that n; > /.
If n < x has all prime factors below n; then f(n) = 1. The number of such integers is
~ z(1 — log(logz/logn)) and so we conclude that n; > z/vVeto(l) as desired. To see
that 75 > 1/+/e, simply consider the function f given by f(p) = 1 for all p < x'/V¢ and
f(p) = —1 for & > p > x'/Ve,

We now focus on evaluating 73. Define U to be the unique real number such that
U <4/3,and 1/(2U) +¢/(2U3) > 1 (that is, U > 1.30189...) and satisfying the equation

1 =553 d > 1—y\d
_:logU+/ * log( © )_y+/ log(_y>_y,
3 L %)y i ey y /y

Then U = 1.3064664 . .. and we claim that 73 = 1/U = 0.765423. ... We remark here that
Davenport and Erdés [2] showed that 75 < 0.76549. . ..

We first show that 73 < 1/U, and then construct an example giving 73 > 1/U. Suppose
f is a completely multiplicative function with f(n)3 = 1 for all integers n > 1, and that x
is large with

#n<ax:f(n)=w}=x/3+0(x) forj=0,1,2  wherew=e"/3

Let n; denote the smallest integer with f(n1) # 1, and without loss of generality suppose
that f(n1) = w. We then need to show that the smallest ny with f(ng) = w? satisfies
ne < z/U+e(l) We may suppose that ne > 23/4, and since n? > ny, that ny > x3/8.

Let P; denote the set of primes below z with f(p) = w, and P, denote the set of primes
below z with f(p) = w?. Then P, C [ny,z], and P, C [ng,z]. Since ny > 23/ and
n1 > 23/ we see that an integer n < x either has no prime factors from P; and P,, or has
exactly one prime factor from P; (and none from P,), or has exactly two prime factors
from P; (and none from P,), or has exactly one prime factor from P, (and none from P;).
We call A, B, C' and D, the sets of integers corresponding to these four cases. Elements
in A satisfy f(n) = 1, elements in B that f(n) = w, and elements in C' and D satisfy
f(n) = w?. Thus

(11.3) |A| ~ |B| ~ |C|+ |D| ~ x/3.
Lastly put $1 =3 p 1/pand B2 =3 cp 1/p.
Note that
D= [2/p] ~ Box,
pEP2
and that

Bl +2C| = Y [2/p] ~ Bua.

pEP1

Combining these with (11.3) we conclude that

(114) ﬂg + 0(1) S 1/3 S ﬂl + 0(1), and ﬂl + Qﬁg =1+ 0(1)
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Given a subset P of the primes in [w,2] with > 5 1/p= 8+ o(1) we see that

> -
p<qEP pq
Pg<z

is maximized when P is the set of all primes in [w,weﬁ]. Using this observation for
Py C [n1,z] C [\/n2, x] we see that

(%_é>N|%N Z pisg Z iq+0(1)=f(n2,51)+0(1),

p<gEP 1/2 P12
pqu p<q6[n2 ,7’1,2 ]
pg<z

say. If 3 < (3’ then we see that

fn2, 8) = fn2. )< Y] % ) ]39 < (6' =) log (12055 ) +o()
ng’2<q<ng”? " nE<p<at
< (0~ B) +o(1),

since ng > x3/4. Thus we see that (1/6 + o(1) >) 31/2 — f(na,B1) is essentially an
increasing function of 8. Since B2 < 37 _ .. 1/p = log(logz/lognz) + o(1) we get by
(11.4) that 51 > 1 — 2log(log z/logng) and hence we conclude that

1 1 log x log x
(11.5) g toll) =5 —log <1Ogn2> = f(n2,1 = 2log(:327)).

Put now ny = 2% g0 that 1 < u < 4/3. In case u < 1.301890916. .. is such that
1/(2u) + e/(2u®) > 1 then we see that

f(ng, 1 —2logu) = Z Z 1:/%log(l_—y>%+o(l).

1
/W <p<gl/?2 7 p<q<z/p 2u y

[N =

In this case (11.5) yields that

1
1 2 1—y\d
—+0(1)§logu+/ log (_y)_y
3 L y /'y

2u

However the right side is an increasing function of w, and its value at v = 1.302 is
0.3284... < 1/3. Thus we must have 4/3 > u > 1.301890916. . ., in which case 1/(2u) +
e/(2u®) > 1. Here we see that

[ D SERNE SIS IR s

xl/(Zu)2p<$1fe/(2u3) p<g<ze/(2ud)

3 1

xlfe/(2u3)<p<m% p<q<z/p

-5 d : 1—y\d
= / ’ log (%) i —I—/ log (_y) iy
1 2uty/ y I y /'y

2u

| =



36 ANDREW GRANVILLE AND K. SOUNDARARAJAN

Thus in this case (11.5) yields that

1 =53 d 2 —y\d
_+0(1)§10gu+/ log< 63 )_y—l—/ 1g<_y)_y,
3 Tu 2uty/ y 12 y /'y

Again the right side is an increasing function of u in this range, and it equals 1/3 at
U = 1.306466 . . ., proving that u > U + o(1), and hence our desired upper bound for 73.

Our proof above indicates the optimal function f attaining this value of 73. Take
f(p) =w for p € [z20,2775], f(p) = w? for p € [#7,z] and f(p) = 1 otherwise. Then we
check easily from our earlier considerations that the sets n < z, with f(n) =1, f(n) = w,
or f(n) = w? all have cardinality ~ x/3, and the least n with f(n) = w? exceeds 2'/V,
This completes our determination of 3.
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