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1. Introduction

In about 1637, Fermat claimed to have proved that for all integers n > 3, there do not
exist integers x, y and z that satisfy

x”+y"=z'I and xyz 20 0,

This still unproved assertion, known as “Fermat's Last Theorem”, has eluded the efforts
of many great mathematicians (see Ribenboim's book [36] for an excellent
introduction), although the many attacks to solve it have inspired much important

mathematics.

The first partially successful approach was begun, in 1823, by Sophie Germain [24]
who used local methods and ingenious combinatorial ideas to state results on the
equation

" +y"+2"=0 and gd(n,xyz)=1 @y

for odd integers n. She proved that if # and 2n + 1 are both prime then (2),, has no
solutions; this can be generalized as follows:

Lemma 1. ([17], [21]) Suppose that m is a given positive even integer and S,, is
the set of primes that divide someé non-zero norm of the sum of three m-th roots of
unity. Suppose further that p and q= mp + 1 are both odd primes with p not a
divisorof m and q & S, . Then,for n=p (m not a multiple of 3), p* Glm),
we have that (2), has no solutions in integers x, y and z.
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In 1954, Ankeny and Erdos [2] used Sophie Germain's approach to show that (2), has
solutions for o(N ) exponents n< N . More recently, Adleman and Heath-Brown
(1], used Lemma 1 together with Fouvry's work on the Brun-Titchmarsh theorem [8] to
show that (2),, has no solutions for infinitely many primes p. In their paper they made
a number of conjectures in analytic number theory that, if proved, would in conjunction
with Lemma 1, prove successively stronger theorems on the First Case of Fermat's Last
Theorem (i.e., the assertion that (2), has no solutions with n 2 2).

The second successful approach was started by Kummer [22], in 1847, who introduced
the concept of divisors (or ideals) and showed that (1), has no solutions for all “regular”
primes p. In 1857 Kummer [23] examined (2)p in more detail and established that if
(2)p does have solutions then a complicated set of p — 2 congruence conditions
involving Bernoulli numbers and Euler polynomials must be satisfied. It was not until
1909 that Wieferich [42] ingeniously derived the following result from Kummer's

congruences.
Lemma 2., If (2),, has solutions in integers x, y, z then

P 2
2 =2(mod p°).

p-1
2 -1

4
Lemma 2 can be rewritten as “p divides q,(2)"”. The question of whether or not p

divides ¢, (2) (or, indeed 4, (a), for any integer @ > 2) seems to be particularly
difficult, and in Section 2 we shall examine various related conjectures. For a = 2, our

The “Fermat quotient” is defined as 9, @)= , so that the conclusion of

total knowledge is that, of the primes p< 6- 109, p. divides ¢, (2) only for

p=1093 and p = 3511 ([25]). If we assume that the “probability” that p divides
4,2) is 1/p (note that p divides exactly one of ¢,2), ¢q,(2+p)....
9,2+ p(p-1) as q,2+ kp)=q,(2)- k /2(mod p)) then, of the primes

p < x, one expects that for about p§x 1/p . ¢ + loglog x such primes we have that

p divides ¢ p (2): As has been pointed out by a number of people at this conference,
Z1/p will always be less than 4 if we sum over all the primes that we know, ever
will know, (or even wish to know), and so finding two primes for which p divides
4, (2) is not so bad!
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‘In 1910, Mirimanoff [31] tidied up Wieferich's long and difficult proof and extended the
result to:

Lemma 3. If (2)p has solutions in integers x, y, z then
. , )
3 =3(maod p).

In rapid successnon, a number of authors proved the next few criteria (i.e.,
5 = 5(mod p ) 7 =7 (mod p ) etc.), but it was not until 1914 that Frobenius
(10] made an attempt to give an “algorithm” to determine each successive criteria:
However, his algorithm is difficult to implement and the paper contains numerous
errors. In 1917 Pollaczek [34] gave different, mostly correct proofs to determine an
algorithm that allowed him to prove:

Lemma 4. If p is sufficiently large and (2),, has solutions in integers x, y, z then
qp = q (mod pz), for each prime q <31.

In 1931 Morishima [33], adding a few ideas to Frobenius's paper, claimed to have
extended the criteria up to ¢ < 43. However, the only proof he gave of this was to state
that the computations can be done “/n analoger Weise” to the way in which they were
done up to 31. This is far from a proof, and far from a trivial assertion.

Gunderson, in his Ph.D. thesis under the supervision of Rosser [18], pointed out a
number of technical errors in Morishima's paper. (Similar errors appear in the papers of
both Frobenius [10] and Pollaczek [34]). Gunderson corrected these errors using some
ingenious ideas. In 1988, using a more combinatorial and less algebraic approach, the
author and Monagan [16] reproved the many technical theorems of Frobenius et al. We
also proved a succession of stronger technical results and extended the above Lemmas to:

Lemma 5. If (2),, has solutions in integers x, y, z then qp = q (mod pz) for each
prime q < 89.

We also made two conjectures that, if proved, would imply that the first case of
Fermat's Last Theorem is true. We shall examine these and related conjectures in
Section 3.
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The third important approach is due to Furtwangler [11] who used local class field
theory to derive criteria, again in terms of Fermat quotients. It seems, however, that
there is little to add to this approach following the recent paper of Azuhata [3]. Using
this approach Hellegouarch [20] showed that if (2), has solutions, where n = p' @
prime, ¢ 2 1) then pz' divides both 2P -2 and 3P —3. Using this I proved in my
Ph.D. thesis [15]:

Theorem 1. For any odd prime p, (2), has no solutions when n= p’ and
t2 pm'/log D A

This improves on the many previous bounds given for ¢ (e.g.,
t2¢( - 1)log3/log p —see [17]).

A number of recent approaches have come from the perspective of algebraic geometry;
to wit, those of Faltings [6], Frey, Ribet and Serre (see [9]). It is not my intention to
discuss these here except to state the important theorem of Faltings:

Lemma 6. For any n 23, there are only finitely many triples of integers
(x ,y ,z) that are coprime and satisfy (1),

Heath-Brown [19] and I [13] deduced from Lemma 6 that (1), has solutions for only

o(x ) exponents n < x.

Stewart and Tijdeman [40] observed that Lemma 6, together with the so—called “abc
conjecture”, implies that there are only finitely many solutions (x ,y.z,n) to (Dp
with god(x ,y ,z)=1 and n 2 3. We shall discuss this further in Section 2.

2. Fermat Quotient and Powerful Numbers

We start this section with the “trendy” conjecture of number theory, due to Oesterlé and
Masser [29]:

Conjecture 1. (The “abc conjecture™) Suppose that a, b and c are positive

integers satisfying
a+b=c¢ (€)

with - gd@@,b,c)=1.




Fermat's Last Theorem 181

Let G = G (a, b, c) be the product of the primes dividing abc, each to the first power.
1
For all € > 0, there exists a constant k = k (¢) such that ¢ < kG *e

(See de Weger [4] for some interesting computational information.)

Actually Oesterlé originally conjectured the existence of a constant T for which
c< G’ and this was sharpened by Masser. Recently Stewart and Tijdeman [40]
proved a result in this direction, which they tell me can now be sharpened to
¢ < expkG 1+e). Note that if x and y are integers and x + y V/d s a unit of
Q(‘\/d_), for any squarefree d 22, and e+ f V4 = (x +y ‘\/7)24 then
e2 - df 2= 1 where d divides f; thereforea=1, p= dfz, c= e2 is a solution of
(3) with G @,b,c)< e < c/A/d, sothat the exponent in Conjecture 1 certainly
can't be improved.

Assume only Oesterl€'s conjecture (i.e., ¢ < GT ). Suppose that we have a solution
X, ¥,z of (1), with n23T. Let a=x", b=y", c=2" in (3) so that
G(a,b,c)T < (xyz )T < 23T <z"= ¢, giving a contradiction. Thus n < 3T, and
so, by Lemma 6, we have only finitely many quadruples (x ,y ,z,n) satisfying (1),
with god(x ,y ,z)=1 and n 2 3.

We shall later relate Conjecture 1 directly to Fermat quotients.

As we stated in the introduction, there is very little known about the *p-divisibility”
of Fermat quotients. To illustrate this we state a number of conjectures (some of these
are well-known though perhaps they have never all appeared together before). We shall
suppose that @ is some fixed integer, with @ 2 2.

Conjecture 2a. There is an odd prime p which divides q,(@)

Conjecture 2b. There is an odd prime p which doesn’t divide q,(a)
Conjecture 3. There are infinitely many primes p for which p divides q, (a)
For each integer m 2 2,

Conjecture 4a),,. There are only finitely many primes p for which pm divides
q,(a).
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For each integer m 2 1,

Conjecture 4b),, . There are infinitely many primes p for which p"' does not
divide 9p (a).

Conjecture 5a. Conjecture 4a),, holds for some integer m = m(a).
Conjecture Sb. Conjecture 4b),, holds for some integer m= m’ (a).

If we assume that p™ divides g, (a) with “probability” 1/ p" then it is easy to give
a heuristic justification to each of the above conjectures.

We shall determine a number of interrelations between these conjectures, and with some

others below. We first note some trivial relations between the conjectures above: If

Conjecture 4a),, holds then Conjectures 4b),, and 5a hold, as well as 4a),, for each
n2m. If 4b), holds then 5b) holds as well as 4b), for each n 2 m. Also
Conjecture 3 implies 2a, Conjecture 4b); implies 2b and Conjecture Sa implies 5b with
m’(a)s m@).

Taking a = 2 in Conjecture 4b); implies the theorem of Adleman and Heath-Brown
(that (2)p has no solutions for infinitely many primes p), by Lemma 2. Moreover, by
Hellegouarch's theorem (mentioned in the introduction), we see that Conjecture 4a),
implies that (2)‘p , has no solutions for all but finitely many primes p; and, by
Faltings' theorem (Lemma 6), this implies that there are only finitely many
(r,x .y ,z) satisfying (2), withn divisible by a square and god(x ,y ,z) =L

By generalizing an argument of Puccioni [35], I was able to show in [12] that, for any
m 2 1, Conjecture 4a),,, implies Conjecture 4b),,. (In other words if pqup (@)
for all but finitely many primes p, then p"' * | q, (a) for infinitely many primes p.

We now make a sequence of seemingly unrelated conjectures:

Conjecture 6. (Erdds [S], Mollin and Walsh {32]) There are only finitely many
triples of consecutive powerful numbers. (Note that n is called powerful if p2 divides
n whenever p divides n).
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As noted by Mollin and Walsh, if n— 1, n and n + 1 are all powerful numbers then 4
divides n (as an integer = 2(mod 4) can't be powerful) and so n” — 1 is powerful if
and only if 2 -1 and n + 1 are both powerful (as gcd(n -1, n + 1) =1). Therefore
the following is equivalent to Conjecture 6.

Conjecture 6a. There are only finitely many even powerful numbers n such that
2 .

n” -1 is also powerful.

In [38] Ribenboim stated the even weaker (take n = m? above):

Conjecture 6b. There are only finitely many even integers m such that m4 -1is
also powerful.

If A is a fixed even integer then we can take n = A" in Conjecture 6a and deduce the
even weaker conjecture:

Conjecture 7a. For every even integer A there are infinitely many values of n for
which A" - 1 is not powerful.

28
Actually, as (A ~D)=@A"-1)A" +1), we see that Conjecture 7a also follows
from

Conjecture 7b. For every even integer A there are infinitely many values of n for
which A" +1 is not powerful.

The “link” between Conjectures 2-5 and Conjectures 6-7 comes from the following
argument, which is similar to that given in [14] (we shall show that Conjecture 7a
implies Conjecture 4b,): If Conjecture 4b, is false then p divides ¢, (a) for all

t= n¢(p2)

psp,

p>p, Set

and A = d'. Itis easy to show that A" — 1 is a powerful number for all positive
integers n (consider the prime divisors p> p, and p< p, separately), and this
contradicts Conjecture 7a.

In 1953, Mahler [28] proved that as x,y — oo, the largest prime factor of
2 3 ]
x° 4+ y~ — oo, We make an analogous conjecture:
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Conjecture 8. The largest prime factor of 1+ xzy 3 tends to infinity as x + |y |
tends to infinity.

It is easy to show that Conjecture 8 implies Conjecture 7b: If 7b is false then A" +1
is powerful for all sufficiently large n, i.e., A"+1=x 2(-y )3 for some x and y;
and, as n — oo, this contradicts Conjecture 8.

We now show how the “abc” Conjecture implies both Conjecture 6a and 8:

Ifn and n® -1 are both powerful then, by taking a=1, b= n>~1and c=n" in
3), weget G < +/(bn) < n°'%. Therefore, n® < kn>'**¢
bounds n, and so Conjecture 6a holds.

by Conjecture 1, which

If x and y are integers for which the largest prime factorof 1+ x 2y 3is <t, then take
a=1, b= x2y3 in (3), so that G < xyT , where T is the product of primes <t.
Therefore xzy 3 <clxy )l+e where ¢ = kTHe, by Conjecture 1, which bounds xy
and thus x + |y |- Conjecture 8 follows.

In a very recent paper Silverman [39] deduced a quantitative result on the p—divisibility
of Fermat quotients from the “abc™ Conjecture: If Conjecture 1 holds then, for any
a 22, there are » logx primes p <x for which p does not divide q,(a).
Actually a weaker quantitative result can be deduced from Conjecture 6a.

There are many fascinating connections between these conjectures and questions on
Fermat and Mersenne numbers (see Gary Walsh's forthcoming master’s thesis and also
[37] and [38]); and between Fermat quotients and Bernoulli numbers (see Emma
Lehmer's paper [26]).

It is also of interest to determine, for each odd prime p, an upper bound on the least
integer a= a(p) for which p does not divide ¢q,(a). By D.H. Lehmer's
computations ([25]) we know that a(p) < 3 whenever p< 6- 10 ; and H.W. Lenstra
([271) has asserted that this is probably always the case. We are less ambitious:

Conjecture 9. There exists an integer N such that for all odd primes p, there is a
positive integer a <N for which p does not divide q,(a). (le., a(p)< N for all
odd primes p).
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Conjecture 9a. (H.W. Lenstra [27]) We may take N =3 in Conjecture 9.

In fact Lenstra [27] has shown that a(p)<4 log2 p (subsequently reproved
independently by Fouché [7]). The proof is elegant:

Define S (x ,y ) to be the set of positive integers <x, free of prime factors greater
thany. Ifp divides q,(a) for everya<y then,as qp(®) is an additive function
(mod p), we see that p divides g, (a) forany ae § (pz,y ). However, as p divides
exactly one of ¢,(), q,(@+p).....,q,@+(@ - 1)p), we see that [S (p%,y )|
< p; and so, by choosing y sufficiently large (i.e., y =4log2 p) we get a
contradiction.

By considering the set S *(p,y ) of quotients m/n of coprime integers m, n from
S '(p, Y ) it is possible to improve the above to a(p) < logzp; and, by a similar
method, Tanner and Wagstaff [41] have shown, as a corollary to Lemma 5, that (2),,
has no solutions for n < 1.564 x 1017. More recently, Coppersmith [43] has come up
with a new method that gives n < 7.568 x 1017; however, in general, Coppersmith's
method also gives a(p) < log>p.

As we shall see in the next section, we would like to improve these results to

Conjecture 10. For any constant ¢ > 0, if p is sufficiently large then
1/4
a(p)s c(logp) .

This would seem to require a genuinely new idea. I have been unable to prove even the
2~
existence of infinitely many primes p for which a(p) < (log p) ¢ , for some € > 0.

We now give

Proof of Theorem 1. Hellegouarch [20] showed that if .(2),, has solutions then
o dividesboth 2 —1and 3 -1 K x=2% or 12°3 or 253" or
3b /2“ where a and b are non-negative integers then it is easy to show that
n:p_l = 1(mod pz' ); and, if both numerator and denominator are < p' then these
integers are distinct (mod pz‘ ). Gunderson [18] showed that the number of such

integers is
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3 logzn - (log12)log n

21+ log2log3 @)

However, as there are exactly p -1 distinct solutions (mod p ) of
x"_ = l(modp ), wehaveaconn'adwuonxfmcquanntym(4)132p This clearly

occmsxftzp /logp

3. Some Matrices

The purpose of this section is to expand upon the conjectures given in [16). First I will
give a vague outline of the previously mentioned method of Frobenius et al.: For
integers a, b, ¢ with ¢ >0 and ged(b,c)= 1 define afa, b,c)(Ba,b,c)) to be the
least positive (non-negative) residue of a/b (mod c).

Let A, (1) be the 2n by n matrix with (i ,j)th entry

U4 G g, a)=1), 0 (otherwise).

If (x »¥ »2) is a solution of (2), then define H =H (x ,y.z) to be the set of
congruence classes (mod p) of —x/fy, -y /x, -y/z,-zfy, —x/[z, -z/x.
Note that if ¢t € H then

-1 =
H={t1-e,0 1=k -1,/ - 1) )
The main theorem of Frobenius et al. states

Lemma 7. Suppose that t € H and n is a positive integer for which
() The matrix A, (t) hasrank &(m) in the ring 2/pl, for each m in
the range 1 <m <n.
(ii) ¢ hasorder 22n +1 (mod p).
Then p2 divides qp— q for all primes ¢<2n+ 1.

Gunderson [18] gave the first correct proof that ¢ cannot have order 3, 4 or 6 (mod p).
From this and a result of Pollaczek one can derive:

1
v
exists t € H which has order > cl(log p) (mod p).

Lemma 8. There exists a constant ¢, > 0 M;Ch that if (2)p has soluaons then there
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Lemma 8 makes it easy to satisfy Lemma 7 (ii) and so the real difficulty in
implementing Lemma 7 is in proving that the criteria in Lemma 7 (i) hold for each
successive integer m. In practice, we do not know much about ¢t € H except that it
is not = 0(mod p) and can have reasonably high order (by Lemma 8). Thus we have
to prove Lemma '7 (i) by taking determinants of ¢(m) by ¢(m) submatrices of
A, (X ) and examining these polynomials.

Let us suppose that A, (¢) does indeed have rank ¢(m) in C for any complex number
t, except when t € U (={0} U {the roots of unity }). We shall prove that there
exists a constant c,> 0 such that if logp > c2m4 then A, (¢) hasrank ¢(m) in
Z/pl:

First note that as each entry of A, (1) has degree <2m thus
Any subdeterminant of A, (¢) has degree S2m2. ©

Now suppose that A, (1) hasrank < ¢(m) in Z/pZ. Then each non-zero ¢(m)
by ¢(m) subdeterminant D of A, (x) is divisible by an imreducible polynomial
fD (x ) such that fD (t)=0(mod p). By hypothesis, either fD (x ) is a cyclotomic
polynomial, or we get two distinct polynomials 8, and g, with 8, )= gz(t )=
0(mod p). '

172
If f is a cyclotomic polynomial then, by (6), ¢ has order < 2m2 <« (log p) , which
contradicts Lemma 8 if ¢, is chosen sufficiently small.

As the matrix A, (#) has got monomial entries with coefficients 1, we see that, for
any subdeterminant D, the sum of the absolute values of the coefficients is bounded by
m!. By a method of Mignotte [30] this means that for any g dividing D we have

2m2
lell 2" m

d 12 d
2 .
(by (6)), where || || =[28,-) andg(x)=28,-x‘-
2 |: ! :
i=0 i =0
We have two such (distinct) polynomials 8, and 8y and as they have no common
root, we know that p divides their resultant ( as p divides 8, (t) and gz(t )R

Therefore, by using the standard bounds for the determinant of a matrix we have
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2 2
<o, e, = @m0 < iy

giving a contradiction.

Observing that we have already chosen ¢ with order 22n + 1 (mod p) we see that we
have proved the following:

Theorem 2. Suppose that A, (t) hasrank ¢(m) in C for any complex number ¢,
2> 0 such that if
p> exp(czn 4) and (2) p has solutions then p2 divides qp— q for each
q<2n+1.

notin U, and for any m, 1 <m < n. There exists a constant c

(In [16] the constant c, is given explicitly.) So what we really wish to prove is

Conjecture 11. For any complex number t, t ¢ U , and for any positive integer
n, the matrix A, (t) hasrank ¢(n).

As a corollary to Theorem 2 we have

Corollary 1. If Conjectures 10 and 11 are true then the first case of Fermat's Last
Theorem is true for all sufficiently large exponents.

Suppose that ged(m,n)= 1 and consider using the Euclidean algorithm in Z[t,x ] to
eliminate the variable x from 1— x ™ and 1- ¢x". Itis easy to see that there exist
polynomials U, (x ) and V, (x ) of degree <n -1, ‘< m - 1, respectively, such
that

(" -1=0-x"WU, x)-0-1x"WV, &) M
Explicitly we can show that
n-1
U, (x)= 2 ta(t.n.m)xi
i=0

m-1
Vi (x)= z PUmm), S
j=0
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We thus see that the entries of A, (1) appear in a natural way as the coefficients of
U, )M

It may well tumn out to be easier to approach Conjecture 11 by considering the
following equivalent Conjecture:
Conjecture 12. Let B, (t) bethe 2n by n matrix with (i ,J Jth emtry

1

@'-a¥)

where . is a primitive n-th root of unity. For every positive integer n and complex
number t € U , the matrix B, (t) has full rank.

Theorem 3. Conjecture 11 holds if and only if Conjecture 12 holds.

A proof of Theorem 3 can be found in [15]; the main idea comes from substituting
x=tin (7 for t* =17}, so that Un(t)=—~(1-1¢")1-7"). Letting p= t;',

for a fixed root 7, of X "=t“l, we see that if 't=‘tou.j then

U, @™ -1)=1/p" - ™)

and so. we can compare the matrices B, (p) and A ,(¢).
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