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Abstract. We consider decompositions K, — H, where H is either P, (the path with 3 edges) or the
complete bipartite graph K, 5, with the property that upon taking the complement of each graph
in the decomposition one obtains a new decomposition K, — H*.

1. Introduction

Let G, H be graphs. An H-decomposition of G, denoted G — H is a collection H,,
H,, ..., H, of subgraphs of G, each H, isomorphic to H, such that each edge in G
appears in exactly one of the H;. Let H® denote the complement of H and suppose
that the collection Hf, HS, ..., Hf forms an H°-decomposition of G. We will say
that the two decompositions are complementary and write G — (H, H°). Note that
under these circumstances the set {H;U Hf} is a collection of complete subgraphs
of G.with the property that each edge in G appears in exactly two of its members;
in particular a complementary decomposition K, — (H, H) gives rise to a balanced
incomplete block design (n, k, 2)-BIBD where k is the number of vertices in H.

Perhaps the most extensively studied examples of complementary decomposi-
tions are the nested Steiner Triple Systems. A Steiner Triple System STS(v) is a
(v,3,1)-BIBD, i.e. a decomposition of K, into triangles. If one can add a point to
each block in an STS(v) to obtain a (v,4,2)-BIBD, the STS is said to be nested. A
moment’s reflection will convince the reader that a nested STS(v) is equivalent to
a complementary decomposition K, — (K, 5, K¢ ;). D. Stinson [6] has proven that
there exist nested STS(v) if and only if v = 1 modulo 6. A Steiner Pentagon System
SPS(n) is a decomposition K, - Cs (where C, denote the cycle of length k) such
that any pair of vertices are joined by a path of length two in exactly one of the
cycles in the decomposition. These systems have an algebraic motivation, coexisting
with a certain class of quasigroups. We mention them here because an SPS(n) is
just a complementary decomposition K, — (Cs, Cs). It is shown in [4] that SPS(n)
exist if and only if n = 1 or 5 modulo 10, except when n = 15.

Itis easily seen that if H is a graph on k vertices and there exists a decom position
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G — (H, H ) then k = 0 or | modulo 4 since each of H and H® contains 5 <7> edges.

P

In Section 2 we will be concerned with decompositions K, — (H, H) where H has
4 vertices (and therefore 3 edges). There are two possibilities for the pairs (H, H):

Fig. 1

We will prove that there is a complementary decomposition K, — (P, P;) if and
only if n = 1 modulo 3. We have already indicated that a complementary decom-
position K, — (K, 3, K 3) exists if and only if n = 1 modulo 6. We will take this
one step further and show that for each integer n = 1 modulo 6 there exists a pair
of complementary decompositions K, — (K, 3,K$,3) and K, — (P5, P5) which give
rise to the same (n,4,2)-BIBD; that is, the graphs Hy, ..., H,, HS, ..., Hf and
Jisooos Jiy JS, ..., JS corresponding to these decompositions can be numbered so
that H;UHf = J;UJffori=1,...,1. The (n,4, 2)-BIBD’S arising in this manner will
be called pandecomposable (since they can simultaneously generate all possible
complementary decompositions of K, into 4-vertex graphs).

2. Complementary Decompositions

We will use the methods of [5] and [6], relying on the following well known results

(see [3], [1]).

Lemma 2.1 [Hanani]. If n = 1 or 4 modulo 12 then there is a K 4-decomposition of

K, (i.e. an (n,4,1)-BIBD).

Lemma 2.2 [Brouwer]. If n = 7 or 10 modulo 12 and n # 10 or 19 then there is a
decomposition of K, into K s together with one K.

Lemma 2.3. There exist pandecomposable (7,4,2)-, (13,4,2)- (19,4,2)- and (37,4,2)-
BIBD'’s.

Proof. In each case we give a set of base blocks, each block a, b, ¢, d giving rise to
the graphs
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Fig. 2
n=7 0,4,2,1 mod 7
n=]3 0,9,1,3; 0,6,5, 2 mod 13
n=19 0,11,1,7; 0,4,6,9; 0,5,17,16 mod 19
n= 37 0,15,2,20; 0,16,9,12; 0,26, 1, 10;

0,29,31,14; 0,32,18,24; 0,33,34,7 mod 37

,,,,,,

positions G—)( 1'3,K1_3) and G—»(P3,P3) giving rise to the same double ed
covering of G by K,’s.

Proof. In each case we give the K,’s, which are to be interpreted as in lemma 2
with the exception of the four starred (*) blocks, whose K; 3, K9 3 subgraphs ¢
to be interpreted by interchanging a and b in the top two figures of lemma 2.3.

G=K2,2.2,2: O, 27 73 4a 1:35 6) 53 2) 1; 5a 7: 3a O; 4; 6:
4,2,6,1; 5,3,7,0; 6,0,52; 7,1,4,3.

G =K, 542222 Wewrite the verticesas 1,1,2,2,...,7,7.

»»»»»»

1,562 4,1,2,3 7,1,4,5 3,57,2 6, 1,7,5
1,6,5,2 4,5,6,3 7,2,4,¢ 3,7,6,1 6,3,4,5
2,1,3,6 52,41 1,743 4,2,1,3 T7,4,2,6
2,6,7,4 52,37 1,437 4,6,53 *,7,1,%
3,7,5,2 61,57  2,7,6,4 5,3,2,7

*1,3,6,7 6,4,3,5 *6,2,3,1" *, 51,2

In what follows we will denote by K ., .., x the compléte multipartite gra
with ¢; holes of size g;, i = 1,...,1

Theorem 2.5. There exists a pandecomposable (n,4,2)-BIBD if and only if n =
modulo 6.

n—1
Proof.n =1 or 7 modulo 24. Let m = — Remove a point from an (m + 1,4,

BIBD (Lemma 2.1) to yield a partition of K;,,,5 into K,’s. Replace each vert
by two new ones and each K, by a K, , , , to yield a partition of Kgxms 1D




K. 52,2’ Add a new vertex to this design: each K, , , , is replaced by the design

of Lemma 2.4 while each of the holes are to be filled with the seven point designs
of Lemma 2.3.

-1
n=13or 19 modulo 24. Let m = ’-17—7. From Lemma 2.3 we may assume that

m 76,9 or 18 so that by Lemma 2.2 we can construct a decomposition of K, .,
into K,’s together with one K,. Remove a vertex not in the K, to yield a partition
of K343 into K,’s and a K,. Now proceed exactly as above, noting that both
designs of Lemma 2.4 will be used in the final step. |

Remark. By essentially the same procedure as the foregoing, Lemmas 2.1, 2.2 and
2.4 can be seen to imply the following: given any integer n = 1 modulo 3, n s 10,
19, the cocktail party graph T, (ie. K,, minus the edges of a perfect matching)
admits a pair of complementary decompositions T,,— (K, 3,K{ ;) and T, —
(Ps, Py) giving rise to the same double edge covering of T}, by K ,’s.

Lemma 2.6. If n = 4,7, 10 or 19 there is a complementary decomposition K, — (Ps, P3).

Proof. The cases n =7 or 19 are a consequence of Theorem 2.5. In each of the
remaining cases we list the blocks of the corresponding (n,4,2)-BIBD, each block
a, b, c, d giving rise to the graphs

a C a C

Fig. 3
n=+4 0,1,2,3 203,L
n=10 0,1,2,7; 80,43 5031, 20,6,4;
0,9,6,5 0,7,8,9 91,63 92381
2,4,9,5, 47,93 6238 2,537,
1,54,8 4,1,7,6; 6,857 0

2 2 3 H 2 2

The (10,4, 2)-BIBD given above was constructed by deleting a block from the
symmetric (16, 6, 2)-BIBD given in the appendix of Hall [2]. We remark that this
design has another interesting property: foreach i =0, ..., 9 the set {B — i: i € B}
can be arranged into two parallel classes of triples on the set {0,1,...,9} — {i}.

Theorem 2.7. There exists a complementary decomposition K, — (Ps, P;) if and only
if n =1 modulo 3.

Proof. The condition n = 1 modulo 3 is a necessary one on the existence of an
(n,4,2)-BIBD.

n = 1 or 4 modulo 12. Take a decomposition of K, into K ;’s (Lemma 2.1) and replace
each K, by the four-point design of Lemma 2.6.

n=7or 10 modulo 12. From Lemma 2.6 we may assume that n % 10 or 19. Use
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Lemma 2.2 to construct a partition of K, into K,'s and a K. Build the four- and
seven-point designs of Lemma 2.6 on the graphs in the partition.

4. Conclusion

The designs given here can be fit into a more general framework as follows. Let G
L . . h
be a simple graph. Let m, n and 4 be positive integers with m. = <2> and let

G,, ..., G, be a collection of m-edge subgraphs of K,. The problem is to construct
a K ,-decomposition D of AG which satisfies the following properties:
(i) each complete graph K,(i) in D admits a decomposition into m-edge subgraphs
Gy(i), ..., G,(i) (each Gj(i) isomorphic to G;), and
(ii) foreach j=1,..., 4, the collection {G,(1)} is a G;-decomposition of G.
A particularly interesting sub-problem of the above occurs when we let G = K,

— 1
andm=n <so thatnisoddand A = n—é—>, then let G, be an n-cycle, and for each

j=2,..., Alet G; be the set of cycles on the vertices of G, formed by ruling that
two vertices be adjacent if and only if they are at distance j from each other along
G,. D.R. Stinson has suggested the name Steiner n-gon system of order v for these
designs since they are a natural generalization of Steiner Triple Systems (i.e. where
n = 3)and Steiner Pentagon Systems (i.e. where n = 5). These designs are of interest
because it is not difficult to show that a Steiner n-gon system of order v is equivalent
to a Cyclic Perpendicular Array CPA (v, n) (see e.g. [7] for the definition and some
applications of perpendicular arrays). In a forthcoming paper (‘Nested Steiner
n-gon Systems and Perpendicular Arrays’) we will discuss this problem in some
detail and obtain many new examples of these designs.
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