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1. Introduction

How are the roots of a polynomial distributed (inC)? The question is too vague for
if one chooses one’s favourite complex numbers z1, z2, . . . , zd then the polynomial∏d

j=1(x − z j) has its roots at these points. However if one looks at polynomials
that arise frequently then one finds that certain patterns emerge. Take for example
xn − 1. Here the roots are equidistributed around the unit circle, at the points
{e( j/n) : 0 ≤ j ≤ n − 1}, and the larger n, the more points one has, and the denser
they become. (Throughout this article, e(t) := e2iπt.)

In terms of measure, write µ{ f } = (1/n)
∑n

j=1 δz j for a polynomial with (not
necessarily distinct) roots z1, z2, . . . , zd, where δ is the Dirac delta-measure. Let
ν{|z|=1} be the Haar measure on the unit circle (that is, uniform distribution). Then
we have limn→∞ µ{xn−1} = ν{|z|=1} (that is, convergence in the sense of “weak
convergence”).

Another interesting example is (x − 1)n; in this case all the roots are at the
same point on the unit circle, 1; and so limn→∞ µ{(x−1)n} = δ1. One more example
is xn − 2. Here the roots are again equidistributed in angle where, as n gets larger,
the more points one has, and the more uniformly distributed they become. But
there is more than that. As n→ ∞ we have 21/n → 1, so all of the roots get closer
and closer to the unit circle as n→ ∞. Therefore limn→∞ µ{xn−2} = ν{|z|=1}.

So what distinguishes those sequences of polynomials for which the limiting
measure of the roots is the Haar measure on the unit circle? The most obvious
difference if one compares polynomials xn − a where a1/n → 1 as n → ∞,
and polynomials like (x − 1)n is that the latter has coefficients whose size grow
exponentially in n, whereas the former do not. The main point of this section is
to prove a result along these lines: “If the coefficients of f (x) ∈ C[x] are not too
large then µ{ f } is a not far from ν{|z|=1}”. Obviously we need to be more precise than
this, but we run into a tricky question: What is the best measure of the size of the
coefficients of a polynomial? There are several options used in the literature, and
it is known that they do not differ in size by much – however the “by much” can be
as large as exponential in the degree of f which is too much for our application.
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The first result in this direction, due to Erdős and Turán (Erdős and Turán, 1950)
used the re-normalized 1-norm. If f (x) = ad

∏d
j=1(x − α j) =

∑d
j=0 a jx j where

ada0 , 0 then

L( f ) :=
1

(|ad | |a0|)1/2


d∑

j=0

|a j|
 .

Progress in arithmetic has suggested that the most natural height is the Mahler
measure

M( f ) := |ad |
d∏

j=1

max{1, |α j|};

this has several advantages, one of which is that if for a given algebraic number α
we take f to be the minimum polynomial for α (over Q) and let M(α) = M( f ),
then the renormalized height h(α) := (1/d) log M(α) is simple to use in calcu-
lations without reference to the smallest field to which α belongs. Note that if
f ∗(x) = xd f (1/x) then L( f ∗) = L( f ) and M( f ∗) = M( f ).

Jensen’s formula gives an analytic interpretation of Mahler’s measure:

M( f ) = exp
(∫ 1

0
log

∣∣∣ f (e(t)
)∣∣∣ dt

)
;

and so M( f ) ≤ maxt
∣∣∣ f (e(t)

)∣∣∣. Now, note that
∣∣∣ f (e(t)

)∣∣∣ ≤ ∑d
j=0 |a j| |e( jt)| ≤ ∑d

j=0 |a j|
= L( f )(|ad | |a0|)1/2 and so M( f ) ≤ L( f )(|ad | |a0|)1/2, which yields

d∏

j=1

max{|α j|, |1/α j|} =

d∏

j=1

max{1, |α j|}
d∏

j=1

max{1, 1/|α j|}

=
M( f )
|ad | ·

M( f ∗)
|a0| ≤

(L( f )(|ad | |a0|)1/2)2

|ad | |a0| = L( f )2.

We deduce the following result:

LEMMA 1.1. Suppose that f1, f2, . . . is a sequence of polynomials, where fd has
(not necessarily distinct) roots αd,1, αd,2, . . . αd,d, all non-zero. If L( fd) = eo(d) as
d → ∞ then |αd, j| = 1 + o(1) for {1 + o(1)}d values j, 1 ≤ j ≤ d.

This shows that most of the roots come in towards the unit circle. Now we
wish to show that they are uniformly distributed around the circle. For a given
polynomial f write the roots as α j = r je(ϕ j) with each r j ∈ R+. For 0 ≤ α < β ≤ 1
define

N f (α, β) = #{ j : 1 ≤ j ≤ d such that α ≤ {ϕ j} < β}.
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PROPOSITION 1.2 (Erdős and Turán, 1950). For any polynomial f of degree
d > 1, and any 0 ≤ α < β ≤ 1, we have

|N f (α, β) − (β − α)d| ≤ 8
√

d log L( f ).

Combining these two results we immediately deduce the result we had guessed
at earlier:

THEOREM 1.3. Suppose that f1, f2, . . . is a sequence of polynomials in C[x]
where fd has degree d and fd(0) , 0. If L( fd) = eo(d) as d → ∞ then

lim
d→∞

µ{ fd(x)} = ν{|z|=1}.

(We stress that this limit is in the sense of “weak convergence” of measures.)

Erdős and Turán’s proof of Proposition 1.2 boils down to the following opti-
mization result.

LEMMA 1.4. Fix γ ∈ [0, 1). Suppose that g(x) has degree d with all of its
roots on the unit circle, and that Ng(0, γ) = [γd] + 2∆ + 1. Then maxt

∣∣∣g(e(t)
)∣∣∣ ≥

exp
(
∆2/4(d + 1)

)
.

Deduction of Proposition 1.2 from Lemma 1.4. Given f (x) = ad
∏d

j=1(x−α j) =∑d
j=0 a jx j take g(x) =

∏d
j=1

(
x − e(ϕ j)

)
so that N f (0, γ) = Ng(0, γ). Consider the

inequality

|re(ϕ) − e(t)|2
r

= r +
1
r
− 2 cos

(
2π(ϕ − t)

)

≥ 2 − 2 cos
(
2π(ϕ − t)

)
= |e(ϕ) − e(t)|2.

Multiply this over the roots r je(ϕ j) of f , to obtain

∣∣∣g(e(t)
)∣∣∣2 ≤

∣∣∣ f (e(t)
)∣∣∣2

a2
d
∏

j |r j|
≤ L( f )2|a0ad |

|a0ad | = L( f )2

since
∣∣∣ f (e(t)

)∣∣∣ ≤ L( f )|a0ad |1/2 as we established above, and so
∣∣∣g(e(t)

)∣∣∣ ≤ L( f ).
Combining this with Lemma 1.4, we deduce that

N f (0, γ) ≤ [γd] + 1 + 4
√

(d + 1) log L( f ) ≤ γd + 8
√

d log L( f )

since L( f ) ≥ (|a0| + |ad |)/|a0ad |1/2 ≥ 2.
Let h(x) =

∑d
j=0 a jx j so that L(h) = L( f ) and N f (γ, 1) = Nh(0, 1 − γ).

Therefore, by the above,

N f (0, γ) = d−N f (γ, 1) = d−Nh(0, 1−γ) ≥ γd−8
√

d log L(h) = γd−8
√

d log L( f ).
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Now let h(x) = f (e(α)x) =
∑

j b jx j so that b j = e( jα)a j for each j, with
L(h) = L( f ), and Nh(0, γ) = N f (α, β) where γ = β − α. Thus we may assume,
without loss of generality, that α = 0 by replacing f with h. The result then
follows from the previous two displayed equations.

Their proof of Lemma 1.4 involves several ingenious arguments, blending
facts then well-known about polynomials. In the next section we will see a dif-
ferent and complete proof of a related result so here we will just give a

Sketch of their proof of Lemma 1.4. The idea is to understand the optimal
polynomial; that is, g satisfying the hypothesis for which maxt

∣∣∣g(e(t)
)∣∣∣ is minimal.

So the first thing they do is to show that it takes its maximal value at some point
in-between each pair of roots of g(x) inside the arc in question. Next they apply
a result of Turán which says that there cannot be a zero of g(x) at a distance less
than π/2d from one of these maximal points; which implies that at least 2∆ roots
must lie at the endpoints of the interval, and so at least one endpoint has a zero
with multiplicity ≥ ∆. We know from basic complex analysis that a polynomial
with a root of high multiplicity must get large, and thus they obtain their lower
bound.

2. Algebraic Numbers

Theorem 1.3 is a purely analytic result, in that there are no algebraic requirements
on f . It is of more interest in arithmetic to have such requirements; for example
if we insist that all of the coefficients of f are integers then the roots of f are the
union of various complete sets of conjugates of certain algebraic numbers. In this
circumstance Bilu proved an arguably stronger result than Theorem 1.3 (in that it
involves M( f ) rather than L( f )) with a better motivated proof. Also, as we shall
see in the next section, it generalizes to higher dimension in a beautiful way.

For a compactly supported measure µ on C we define the energy by

E(µ) := −
∫ ∫

log |z − w| dµz dµw.

If µ is finitely supported, at {α1, . . . , αd}, then define

E′(µ) := −
∑

i, j

µ(αi)µ(α j) log |αi − α j| and ‖µ‖ =


∑

i

µ(αi)2


1/2

.

Note that E′(µ) is not the same as E(µ) since we miss out the i = j terms (and
note that E(µ) = ∞ by including them). We quote a couple of useful results on
measures from the literature:
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LEMMA A. If {µd}d=1,2,... have finite support with ‖µd‖ → 0 as d → ∞ and where
the µd weakly converge to µ, then

E(µ) ≤ lim inf E′(µd).

LEMMA B. If K ⊂ C is compact then there exists a unique measure ν = νK
for which E(ν) is minimized over all measures ν whose support is a subset of K
(we call νK the equilibrium measure of K). If K = {|z| = 1} is the unit circle then
E(νK) = 0.

Now suppose f (x) ∈ Z[x] has distinct roots α1, . . . , αd and lead coefficient
ad. The discriminant of f is a non-zero integer, Disc( f ) := a2d−2

d
∏

i, j(αi − α j).
Therefore

0 ≤ 1
d2 log

(
Disc( f )

)
=

2d − 2
d2 log |ad | +

∑

i, j

1
d2 log |αi − α j|

≤ 2
d

log M( f ) − E′(µ{ f }),

and so E′(µ{ f }) ≤ (2/d) log M( f ). We deduce

THEOREM 2.1. Suppose that f1, f2, . . . is a sequence of polynomials in Z[x]
where fd has degree d and fd(0) , 0. If M( fd) = eo(d) as d → ∞ then

lim
d→∞

µ{ fd(x)} = ν{|z|=1}.

Proof. As fd(x) ∈ Z[x] we see
∏

j max{1, |α j|} ≤ M( fd) = eo(d) and∏
j max{1, 1/|α j|} ≤ M( f ∗d ) = M( fd) = eo(d), so µ{ fd} is converging to some mea-

sure on the unit circle. Now since this is compact there must be some subsequence
of the fd such that µ{ fd} converges weakly to some limit, call it µ, supported on
{|z| = 1}, on that subsequence. But since ‖µd‖ = 1/

√
d → 0 as d → ∞ we may ap-

ply Lemma A to deduce that E(µ) ≤ lim inf E′(µd) ≤ lim inf(2/d) log M( fd) = 0.
On the other hand E(µ) ≥ E(ν{|z|=1}) = 0 by Lemma B, and so E(µ) = 0. However
this implies that µ = ν{|z|=1} by Lemma B, and this is true for any convergent
subsequence. From the above compactness argument it is clear that all fd belong to
some convergent subsequence, and since they all have this same limiting measure
the result follows.

If α is an algebraic number with minimum polynomial f we define M(α) =

M( f ); Theorem 2.1 can easily be reformulated in terms of a sequence of algebraic
numbers αd.

3. In k Dimensions: the Bilu Equidistribution Theorem

Bilu (Bilu, 1997) went on from here to consider whether the conjugates of dif-
ferent algebraic numbers of small height are distributed independently. In other
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words if we are given sequences {(αi, βi) : i = 1, 2, . . .} of algebraic numbers,
where both αi and βi have degree i over the rationals and both have small height
(as above) then what is the joint distribution of the conjugates? In other words,
let Hi be the subgroup of Gal(Q/Q) which gives all distinct pairs of conjugates
S i := {(ασi , βσi ) : σ ∈ Hi}, and then consider the measure

µS i =
1
|S i|

∑

σ

δ{ασi ,βσi }.

Evidently S i ⊂ Q2
and, in the limit we know (from the previous section) that these

measures are supported on the two dimensional torus U2 where U := {z ∈ Q∗ :
|z| = 1}. Then the question is whether they have a limit and, if so, whether that limit
is the Haar measure. In other words, writing ασi = cie(ϕi,σ) and βσi = bie(θi,σ), we
ask whether for any 0 ≤ u j < v j ≤ 1,

#{σ ∈ Hi : u1 ≤ ϕi,σ < v1 and u2 ≤ θi,σ < v2} ∼ (v1 − u1)(v2 − u2)|Hi|
as i→ ∞? There are some obvious cases in which this cannot be true: for example
if αi = βi for each i, or αiβi = 1 for each i. So the conjecture becomes that the pairs
should be uniformly distributed onU2, unless they belong to some obvious family
of exceptions and it is now necessary to try to determine the correct formulation
of the exceptional set:

The k-dimensional algebraic torus Tk is isomorphic to (Q
∗
)k, and a torsion

subvariety of Tk is a translate of a subtorus by a torsion point. We will call a
sequence of points α1, α2, . . . ∈ Tk strict if there are only finitely many such
points in any proper torsion subvariety. Bilu’s result works for strict sequences of
small height, though first we need to define height here:

Given γ ∈ Q∗ define deg(γ) to be the degree of the minimum polynomial of γ,
and let H(γ) = M(γ)1/ deg(γ) (thus the condition in Theorem 2 can be rewritten as
H(γd) = 1+o(1) if fd is the minimum polynomial of γd). For γ = (γ1, γ2, . . . , γk) ∈
Tk, define deg(γ) = mini deg(γi), and H(γ) =

∏
i H(γi).

THEOREM 3.1 (Bilu, 1997). Suppose that α1, α2, . . . ∈ Tk is a strict sequence
with deg(αd) ≥ d for each d, and H(γd) = 1 + o(1) as d → ∞ (we call this last
condition small height). Then

lim
d→∞

µ{αd} = νUk .

Sketch of Proof. As we noted above, almost all conjugates of αd are getting
closer and closer to Uk as d → ∞ and so, by compactness, there must be some
subsequence that tends to a limiting measure (call it ν).

For any non-trivial character χ : Tk → Q the sequence χ(αd) is strict and
has small height. Thus applying Theorem 2.1 to our subsequence we see that
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χ∗(ν) = νU (where χ∗ should be interpreted as the action of χ on the support of
the measure, and thus the measure). But this is true for any non-trivial character
χ and so ν must be the Haar measure on Uk, namely νUk . But this is true for any
convergent subsequence and so for the whole sequence (by the same argument as
in the proof of Theorem 2.1).

This beautiful result has many powerful consequences. Most famous, perhaps,
is

COROLLARY 3.2 ((Zhang, 1995)). Suppose that X ⊂ Tk is Zariski closed. Let
W be the union of the torsion subvarieties that lie entirely in X. There exists a
constant c(X) > 1 such that if α ∈ X \W then H(α) > c(X).

Proof. Northcott’s theorem tells us that there are only finitely many algebraic
numbers of given degree below a certain height. So if Zhang’s theorem is false
then there is an strict sequence α1, α2, . . . ∈ Tk with deg(αd) ≥ d for each d, and
H(αd) = 1 + o(1) as d → ∞. By Bilu’s Theorem (Theorem 3.1) these become
equidistributed around Uk, and so, as X(Tk) is closed (since X is Zariski closed),
thus Uk ⊂ X(Tk). However Uk is Zariski dense (as may be proved by induction
on k) and so X(Tk) = Tk in which case W = X and the result is trivial.

This result was proved by Szpiro, Ullmo and Zhang for points on an abelian
variety by rather different means, something that will be discussed by Ullmo
(Ullmo, 2006) in a subsequent section.

It is perhaps a little difficult to understand Zhang’s theorem, so let’s examine
a special case, the solutions to x + y = 1 in algebraic numbers. There are four
torsion solutions 1 + 0 = 0 + 1 = 1 and e(1/6) + e(5/6) = e(5/6) + e(1/6) = 1, so
we now investigate solutions omitting these: So suppose that we have a solution
α + (1 − α) = 1 with H(α)H(1 − α) small. Note that if H(β) is small then most
conjugates βσ of β must be close to the unit circle, that is |βσ| ≈ 1. Thus for most
conjugates ασ of α we have |ασ|, |1−ασ| ≈ 1. The circles of radius 1 centered at 0
and 1 only intersect at e(1/6) and e(5/6), so we must have ασ ≈ e(±1/6) whence
1−ασ ≈ e(∓1/6) for almost allσ. In such cases (ασ)2−ασ+1 = 1−ασ(1−ασ) ≈ 0,
and thus the norm of α2 − α + 1 over Q is very small, whereas it should be a
non-zero integer (and thus ≥ 1 in absolute value). Formalizing and refining this
argument, Zagier (Zagier, 1993) was able to show that in any non-torsion algebraic
solution of x + y = 1 we have H(x)H(y) ≥ (

(1 +
√

5/2
)1/2. It is amusing to try

to develop an analogous argument for other varieties (see for example (Bombieri
and Zannier, 1995)).
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4. Lower Bounds on Heights

Kronecker established a result on roots of unity on the unit circle which can be
re-interpreted as stating that for any integer d ≥ 1, if M(α) > 1 then there exists
a constant δ(d) > 0 such that M(α) ≥ 1 + δ(d) for all α of degree d. In 1933
Lehmer (Lehmer, 1933) made the extraordinary conjecture that δ(d) ≥ δ(10) =

.1762808 . . . obtained from the example where α is a root of x10 + x9 − x7 − x6 −
x5 − x4 − x3 + x + 1.

In 1979 Dobrowolski (Dobrowolski, 1979) showed that one can take δ(d) =

(1 − ε)(log log d/ log d)3 but this has not been much improved subsequently.

5. Compact Sets with Minimal Energy

Let K be a compact subset of the complex plane and suppose that E(νK) = 0.
One example is where K is the unit circle but there are many other interesting
examples besides (for example the line segment [−2, 2]). Rumely (Rumely, 1999)
showed that Bilu’s result, our Theorem 2.1, can be extended when appropriately
reformulated to any such K (note though that Rumely prefers to work with the
capacity of K, which is given by exp

( − E(νK)
)
, and is thus 1 in this case).

I cannot resist at least mentioning the first few results of capacity theory as
they motivate some of the ideas in this article, which link several obvious notions:
First we have that if α1, . . . , αd ∈ K is the support of measure µ = µα where
µα(α j) = 1/d then

E(νK) = lim
d→∞

min
α1,...,αd∈K

E′(µα).

The right-side here is the logarithm of what Fekete called the transfinite diameter
of a compact set K. From this one can deduce that νK is supported only on the
outer boundary of K.

Second we have

E(νK) = lim
d→∞

min
monic f (z)∈C[z]

deg f =d

1
d

sup
z∈K

log | f (z)|;

the right-side here is the logarithm of the Chebyshev constant of K.
The Mahler measure used above, when K is the unit disk, can be re-interpreted

as a product of parts. The infinite part is the product of terms max{1, |α|}, the “local
parts” the prime powers dividing |ad |. In defining an appropriate height function
for more general K we give the same definition for the local parts, but the infinite
part is now defined as the exponential of minus the potential function for K. More
explicitly

MK(α) := |ad |
∏

σ

G(ασ,∞; K),
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where our Green’s function, G(z,∞; K), is defined as E(νK)+
∫

K log(|z−w|)dνK(w).
(Note that G(z,∞; K) = max(0, log(|z|) when K = D(0, 1).) We interpret MK( f ) =

MK(α) for any root α of irreducible f ; and MK( f g) = MK( f )MK(g).
Now, as in the proof of Theorem 2.1, we have, using the above and the well-

known fact that G(z,∞; K) ≥ 0 for all z,

0 = E(νK) ≤ lim inf E′(µα) ≤ lim inf
2
d

log MK(α) = 0.

In this way, Rumely proved:

THEOREM 5.1. Fix a compact set K with E(νK) = 0. Suppose that f1, f2, . . .
is a sequence of polynomials in Z[x] where fd has degree d and fd(0) , 0. If
MK( fd) = eo(d) as d → ∞ then

lim
d→∞

µ{ fd(x)} = νK .
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