
THE ANATOMY OF INTEGERS AND PERMUTATIONS

Andrew Granville

We begin, as in any mathematical paper, with definitions:

Anatomy (a-nat-o-my) noun: The scientific study of the shape and structure of an

organism and the inter-relation of its various parts. The art of separating the parts of an

organism in order to ascertain their position, relations, structure, and function.

Forensic (fo-ren-sic) adjective: Relating to the use of science or technology in the

investigation and establishment of facts or evidence.

If you switch on your TV in the evening then, as likely as not, you will find yourself
watching an episode of a popular detective show (set in various spectacular locations) in
which surprisingly dapper forensic scientists turn up evidence using careful anatomical
(and other) study so as to be able to identify and prosecute a heinous criminal. Sometimes
a flatfooted detective is misled by the surface evidence to suspect one person, but then
the forensic team, digging deeper, turns up details that surprise not only the easily misled
detective but even you, the astute viewer. For example, two seemingly unrelated corpses
are found, and our hapless detective believes that the crimes are unrelated, whereas the
forensic investigators turn up conclusive proof that the two corpses were in fact twins.

So what would happen if we put together a forensic team to investigate the anatomy of
some of the most common mathematical objects, say of integers and permutations? Seems
silly at first. Most of our training with these simple mathematical objects involves how
they are used in understanding more complicated phenomena, but rarely do we look at
their anatomy, the inter-relation of their constituent parts (that is, the prime factors of
integers, and the cycles of permutations). So our objective is to be the forensic scientists,
with the corpses of these two seemingly unrelated mathematical objects laid out before us,
and it is up to us to determine whether there is more in common between the anatomies
of integers and permutations than meets the eye.

This article is written as a companion piece to [0], a film-script in which we develop the
connection with anatomy and forensics to create a fantasy world where forensic detectives
(loosely based on famous mathematicians) prove and interpret several of the key notions
exposed more precisely herein.

1. Is there a case to be made?

1.1. The basic constituent parts. When comparing the anatomies of two seemingly
different organisms, the forensic scientist knows that one must calibrate their sizes oth-
erwise one might be misled into believing that they are different, whereas they might be
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2 ANATOMY 101

twins organisms that had grown apart. In order to do such a calibration, one needs to find
some essential feature that the organisms have in common to allow one to better compare
the two objects. Often one chooses to compare the key constituents of each organism –
forensic scientists consider the selection and measurement of this key constituent as much
an art as a science.

So what are the key constituents of our mathematical organisms, integers1 and per-
mutations2? Each integer is a product of primes, the basic, indecomposable parts of an
integer, and each permutation is a union of (disjoint) cycles, the basic, indecomposable
parts of a permutation. So it would make sense to calibrate the primes with the cycles,
but we have to figure out how to do so given that these are about as similar as apples and
I-pods. One idea is to compare how rare primes are with how rare cycles are: We know
that roughly one out of every log x integers up to x is prime, and that exactly one in every
N permutations on N elements is a cycle, so we could try to calibrate by replacing N
when we measure the anatomy of a permutation with log x when we measure the anatomy
of an integer.

The fact that roughly 1 out of every log x integers up to x is prime is known as “the
prime number theorem” and is a deep fact to prove. On the other hand the fact that there
are (N − 1)! = N !/N cycles of length N in SN (the set of permutations on N letters) is
easy to prove: In an N -cycle, element 1 (which we will call e1) must be mapped to some
different element (there are N −1 possibilities), call it e2; then e2 must be mapped to some
element other than e1 and e2 (there are N − 2 possibilities), etc; and thus in total there
are (N − 1) × (N − 2) × · · · × 1 possibilities.

Now we have the calibration we need to start comparing our organisms, permutations
and integers, and their constituent parts, cycles and prime factors. Perhaps the most
obvious things to compare are how many constituent parts a typical organism of each type
has, and whether these parts are laid out in the same way.

1.2. How many constituent parts? If one selects a permutation on N letters at
random then, with a probability that goes to 1 as N → ∞, the permutation has about
log N disjoint cycles.3 Now, replacing the N in log N by log x (which we must do in order
to calibrate this count), we expect that if one chooses an integer up to x at random then,
with a probability that goes to 1 as x → ∞, the integer has about log log x distinct prime
factors. And this is true (as was shown in famous work of Hardy and Ramanujan from
1917).

More compelling justification for the comparison of permutations and integers comes in
asking more precise questions. For example, with what probability does one or the other
organism have somewhat fewer parts, or somewhat more parts than log N (or log log x)?
In 1942, Goncharov showed that, as we vary over the permutations on N letters, the
probability that the number of cycles is more than or less than a given quantity is governed
by a Bell curve, that is the normal distribution, with mean and variance about log N .
Similarly Erdős and Kac showed in 1940 that, as we vary over the integers ≤ x, the

1Integer (in-te-ger) (noun): positive or negative whole number.
2Permutation (per-mu-ta-tion) (noun): a re-arrangement of the elements of a set.
3By “about log N disjoint cycles”, I mean, more precisely, that the ratio of the number of disjoint cycles

to log N tends to 1 as N → ∞
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probability that the number of distinct prime factors of an integer is more than or less
than a given quantity is also governed by the normal distribution, this time with mean
and variance around log log x.

1.3. The layout. For a permutation σ ∈ SN (where SN is the set of permutations on N
letters), suppose that σ decomposes into cycles as C1C2 · · ·Cℓ with lengths 1 ≤ d1(σ) ≤
d2(σ) ≤ · · · ≤ dℓ(σ) ≤ N . If we take the logarithms of these lengths then we have

0 ≤ log d1(σ) ≤ log d2(σ) ≤ · · · ≤ log dℓ(σ) ≤ log N,

So most σ ∈ SN have about log N numbers of the form log di(σ) in the interval [0, logN ].
This is an interval of length log N and so there is an average distance of one between these
numbers. How are these numbers distributed within the interval? Do they look random, or
will they be bunched up in one part of the interval, and sparse in another part? The correct
model for “random”, from probability theory, is the “Poisson point process”, which deals
with the appearance of random variables over time. However, since we do not actually
have random variables here we need to reshape this model for our situation: Suppose
that we are given a sequence of finite sets S1, S2, · · · such that Sj is a subset of [0, mj] and
contains about mj elements, where mj → ∞ as j → ∞. We say that S1, S2, · · · is “Poisson
distributed” if, for any fixed interval length λ > 0, and given integer k ≥ 0, the probability
that a random subinterval of [0, mj] of length λ contains exactly k elements of Sj tends
to e−λλk/k! as j → ∞. One can prove that the sets {log d1(σ), logd2(σ), · · · log dℓ(σ)} are
indeed Poisson distributed, for almost all σ ∈ SN , as N → ∞.4

So how about for integers? We saw in the previous section that we should replace log N
by log log x for comparison purposes, and we might extend this to replacing the log dj

by log log pj for the prime factors involved. Thus we consider the sets {log log p : p|n};
we have seen that, for n ≤ x, these sets typically have about log log x elements inside
the interval [log log 2, log log x]. One can prove that the sets {log log p : p|n} are indeed
Poisson distributed, for almost all n ≤ x, as x → ∞.

Our two organisms, permutations and integers, seem to be almost identical with our
chosen calibration. However it is also true that the poisson and normal distributions
appear in many situations in mathematics, so perhaps these successful comparisons are
not too surprising – after all the cycle lengths and prime factor sizes have to be distributed
somehow, so one’s first guess would probably be something random, hence the poisson and
normal distributions. So are there measures of permutations or integers that involve rather
unusual functions, so that it would be more surprising if our two organisms calibrate so
well?

1.4. The largest and smallest parts. One cannot sensibly ask how long is the longest
cycle in a permutation since no particular length occurs with high probability. However,
for fixed u > 0, the probability that the longest cycle of a randomly chosen permutation
on N letters contains no more than N/u elements is about ρ(u) for large N (as was also
shown by Goncharov, in 1944). Evidently ρ(u) = 1 in the uninteresting range 0 < u ≤ 1,

4By “almost all” we mean that the proportion tends to 1 as N → ∞.
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but it does not appear to have any simple definition (that is, any closed formula) for u > 1.
Indeed the most palatable definition that we know of is via the integral delay equation

ρ(u) =
1

u

∫ u

u−1

ρ(t) dt for u > 1,

which certainly satisfies our requirement that the measuring function be unusual.
Evidently the analogy to longest cycle will be largest prime factor. Replacing N by log x

we wish to determine how often some function of the largest prime factor is ≤ 1
u log x. To

be a meaningful analogy this should always be the case when u = 1, and since if p is the
largest prime factor of n ≤ x then log p ≤ log n ≤ log x, we guess that one can take the
function of p to be log p. Now log p ≤ 1

u
log x if and only if p ≤ x1/u, so our analogy would

be, for fixed u > 0, that the probability that the largest prime factor of an integer ≤ x is
≤ x1/u is about ρ(u) for large x. This was proved to be true by Dickman in 1930.

And the same is true for the largest k cycles of a permutation or prime factors of an
integer. That is for any given 1 ≤ u1 ≤ u2 ≤ · · · ≤ uk the probability that a randomly
chosen cycle on N letters has its jth largest cycle of length ≤ N/uj for j = 1, 2, . . . , k is
more-or-less the same as the probability that a randomly chosen integer ≤ x has its jth
largest prime factor ≤ x1/uj for j = 1, 2, . . . , k, for N and x both sufficiently large.5

One can ask analogous question about the smallest parts: For fixed u > 0, one finds
that the probability that the smallest cycle of a randomly chosen permutation on N letters
contains at least than N/u elements is about uω(u)/N for large N . Evidently ω(u) = 0
for 0 < u < 1, and has the simple formula ω(u) = 1/u for 1 ≤ u ≤ 2. However, it does not
appear to have any simple definition for u > 2, the most palatable being

ω(u) =
1

u

∫ u−1

0

ω(t) dt for all u > 2,

which again satisfies our requirement that the measuring function be unusual. In 1949
Buchstab showed that the probability that the smallest prime factor of an integer ≤ x
is ≥ x1/u is also about uω(u)/ logx for large x. Again the correct analogy. And again the
same probabilities occur when determining how often the smallest k cycles of a permutation
are at least N/u1, N/u2, . . . , N/uk, respectively, and how often the smallest k prime factors
of an integer are at least x1/u1 , x1/u2 , . . . , x1/uk , respectively.

1.5. Smaller parts, and the constant γ. There is no obvious way to compare the
smallest cycles in a typical permutation with the smallest prime factors of a typical integer.
What prime corresponds to a fixed point of permutation (that is, a cycle of length one)?
Forensic scientists know that you are never going to have a perfect match, that there is
some evidence which is truly irrelevant, simply superficial,6 and in this situation it will be
the cycles of bounded length, and the primes of bounded size. However we should look
at cycles that are a little longer and primes a little larger, which should provide a more
fundamental description of the respective anatomies. So we will estimate the probability

5The probability theorists call this a Poisson-Dirichlet distribution if it holds true for all integers k.
6For example, one twin may have broken her nose, the other dyed his hair.
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that the shortest cycle has length > M , where M is some function of N , such that M and
N/M tend to ∞ as N does.7

We will now estimate the number of elements of SN whose shortest cycle has length
> M , by an inclusion-exclusion argument. First we take all permutations on N letters,
and then remove all those that contain a given cycle of length ≤ M , for each possible
cycle of length ≤ M . The expected number of cycles of length j in a permutation is about

1/j, and so our total so far is about N ! −
∑M

j=1 N !/j, which equals N !(1 − µM ) where

µM :=
∑M

j=1
1
j . Of course we have subtracted off too much; for a permutation that has r

cycles of length ≤ M , we have counted −1 r times. So we have to add back in the expected
number of permutations that contain a pair of given cycles of length ≤ M , for each given
pair. The expected number of cycles of lengths j1 and j2 in a permutation is about 1/j1j2

if j1 6= j2, and about 1/2j2
1 if j1 = j2. Therefore our sum is now about N !(1− µM +

µ2
M

2 ).
Continuing in this way, we estimate that the number of permutations in SN that are free
of cycles of length ≤ M is about

N !
∑

r≥0

(−1)r µr
M

r!
= N !e−µM which is about

e−γ

M
N !.

Here γ, the Euler-Mascheroni constant, is defined to be limM→∞

(

1
1 + 1

2 + . . . + 1
M − log M

)

.
It is not even obvious that this limit exists (but it does). Mathematicians know very little
about γ, but expect that it is a transcendental number. By the way, this argument can be
made into a rigorous proof so long as M and N/M → ∞ as N → ∞.

Now let’s try estimating the number of integers ≤ x free of prime factors ≤ y. We
begin with the number of integers ≤ x, and subtract the number of such integers that are
divisible by p, of which there are about x/p, for all primes p ≤ y. We then need to add
the number of integers ≤ x that are divisible by pq back into the sum, of which there are
about x/pq, for all pairs of primes p < q ≤ y. Continuing on like this we estimate, for
P =

∏

p≤y p, that the number of integers ≤ x free of prime factors ≤ y is about

∑

d a positive integer
d divides P

(−1)ν(d) x

d
= x

∏

p prime
p≤y

(

1 − 1

p

)

which is about
e−γ

log y
x.

(Here ν(d) denotes the number of distinct prime factors of d.) This last approximation
is known as Mertens’ theorem. This argument can be made into a rigorous proof so long
as log y and (log x)/(log y) → ∞ as x → ∞. Equating M with log y, as in the previous
section, we find yet again that the anatomies of permutations and integers are very much
alike.

An academic’s aside: As an analytic number theorist I find this particular piece of evidence
rather special. You have to understand that the appearance of γ in Mertens’ theorem is
somewhat mysterious: In all of the proofs in the literature one obtains the constant in
this estimate in terms of certain integrals, which evaluate to e−γ but none of these proofs

7The case where N/M is fixed (and equal to u) was dealt with in the previous section.
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seem to give any intuition as to why the special constant γ should feature. However, if
we believe that the anatomies of permutations and integers are indeed the same then this
section gives us intuition as to why e−γ is the constant in Mertens’ theorem.

2. Even more analogies

What do we make of all of this evidence as to the similarities between the anatomies
of integers and permutations? A skeptic might argue that we have mostly considered
the “typical” integers and permutations, whereas it might be profitable to look at the
atypical, for example those permutations with exactly ℓ cycles and those integers with
exactly ℓ prime factors, even for atypical values of ℓ.

2.1. The proportion with ℓ parts. We know that one in every N permutations in SN

is a cycle. We now ask what proportion have exactly two cycles, or three or more? In fact
it is known that, for any fixed integer ℓ ≥ 1, the proportion of permutations with exactly
ℓ cycles is about

∼ 1

N

(log N)ℓ−1

(ℓ − 1)!

(as shown by Jordan in 1947); in fact this is true for all ℓ that are significantly smaller
than the expected number of cycles, log N .8 Moreover if ℓ is a fixed multiple of log N ,
then this estimate needs multiplying by a small constant, 1/Γ(r + 1), depending (only) on
the ratio r := (ℓ− 1)/ log N .9; and this remains true for all ℓ that are significantly smaller
than (log N)2.

And what about integers up to x having exactly two prime factors, or three or more?
Can we simply replace N by log x in the above results? It is an old theorem of Landau

from 1909 that for any fixed integer ℓ ≥ 1, the proportion of integers up to x with exactly
ℓ prime factors is

∼ 1

log x

(log log x)ℓ−1

(ℓ − 1)!
,

and this is true for all ℓ that are significantly smaller than the expected number of prime
factors, log log x. If ℓ is a fixed multiple of log N , then this estimate needs multiplying by
two small constants: First, 1/Γ(r+1), depending (only) on the ratio r := (ℓ−1)/ log log x,
and second,

∏

p prime

(

1 +
r

p − 1

)(

1 − 1

p

)r

.

At first sight this second factor might seem to suggest a big difference between the two
anatomies. However at both r = 0 and r = 1, the most usual values to consider, this
product equals 1. In general this infinite product is equal, up to a small factor, to the
same product but now limited to the primes p ≤ r2, and therefore only involves the small
primes. Now we argued earlier that small primes should be regarded as an irrelevant and
superficial difference, and one can prove that the contribution of this factor is always pretty

8That is, if ℓ/ log N → 0 as N → ∞, thinking of ℓ as a function of N .
9The function Γ is the classical “Gamma function”.
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small, so we should feel safe in ignoring this difference. This Sathé-Selberg formula
(1954) remains true for all ℓ that are significantly smaller than (log log x/ log log log x)2.

And how about if there are more parts, far more than the average? It seems that our
formulas are getting more complicated the more parts there are, so it might not come as a
surprise to hear that there are no simple functions known that describe the proportion of
permutations σ ∈ SN with exactly ℓ cycles, where ℓ is larger than a fixed power of log N ,
or the number of integers up to x with exactly ℓ prime factors, where ℓ is larger than a
fixed power of log log x. In both cases we do have estimates in a wide range available but
these are in terms of saddle points so that the values are implicit functions and difficult
to estimate precisely. However what one can do with such estimates, which is just as
useful for many applications, is to prove an accurate comparative estimate, as we will now
explain.

Suppose that ℓ and N/ℓ → ∞ as N → ∞, and let ν = N
ℓ

log(N
ℓ
). If m is a positive

integer that is significantly smaller than both N and ν then

Proportion of permutations on N − m letters with ℓ − 1 cycles

Proportion of permutations on N letters with ℓ cycles
is about

ℓ

log ν
.

This follows from deep estimates of Moser and Wyman (1958).10 Similarly suppose that

ℓ and log x/ℓ(log log x)A → ∞ as x → ∞, for every fixed A, and let ν = log x
ℓ log( log x

ℓ ). If

d is a positive integer for which log d is significantly smaller than ν then11

Proportion of integers up to x/d with exactly ℓ − 1 prime factors

Proportion of integers up to x with exactly ℓ prime factors
is about

ℓ

log ν
.

Could these results really just be a co-incidence, or is this compelling new evidence that
the whole populations of permutations and integers have remarkably similar anatomy?

2.2. The layout with ℓ parts. Suppose that a permutation has exactly ℓ cycles, for a

fixed integer ℓ ≥ 2. Since
∑ℓ

i=1 di(σ) = N , we see that dℓ(σ) is determined by the other
cycle lengths, and is ≥ N/ℓ, so that log dℓ(σ) is guaranteed to be very close to the end of
the interval. It therefore makes sense to study the distribution of all but the largest part,
and one can show that the points {log di(σ)/ logN : 1 ≤ i ≤ ℓ − 1} are distributed on
(0, 1) like ℓ−1 random numbers, as we vary over such permutations σ.12 In fact this holds
provided ℓ ≤ 1

2 log log N . It similarly makes sense to study only the smallest ℓ − 1 prime
factors of a typical integer with exactly ℓ prime factors for fixed (or small) values of ℓ. We
can prove that the elements of {log log pi(n)/ log log n : 1 ≤ i ≤ ℓ− 1} are distributed on
(0, 1) like ℓ − 1 random numbers, as we vary over the integers n ≤ x with exactly ℓ prime
factors.

10In fact they estimated the Stirling numbers of the first kind, which can be defined as the number of
σ ∈ SN with exactly ℓ cycles.

11As proved by Hildebrand and Tenenbaum (1988).
12More precisely a proportion (ℓ − 1)!ǫℓ−1 of the permutations σ ∈ SN with exactly ℓ cycles have

log di(σ)/ log N ∈ (αi, αi + ǫ) for each 1 ≤ i ≤ ℓ − 1, so long as α0 = 0 < α1 < α2 < · · · < αℓ−1 ≤ αℓ = 1

and the intervals (αi, αi + ǫ) are disjoint.
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We would like to prove that the cycle lengths of permutations with exactly ℓ cycles,
look random, in that the lengths are Poisson distributed, once ℓ → ∞ as N → ∞. There
are two different obstructions to this behaviour for various values of ℓ:

• Our definition of “Poisson distributed” involves a continuous distribution, and so we
do not expect there to be any repeated cycle lengths. However if ℓ is around

√
N or larger

then most cycle lengths will be repeated for almost all such σ, so we have no hope of a
Poisson-type distribution of cycle lengths. When ℓ is much smaller than

√
N then there

will be more than one cycle of each length up to ℓ/ log ν, so we should exclude these small
cycle lengths from our considerations.

• There are no more than ℓ/ log ν cycles of length > (N/ℓ) log(N/ℓ); that is a vanishing
proportion of cycles are this large, so we should exclude these large cycle lengths from our
considerations.

Taking these two observations into account, by only considering cycle lengths between ℓ
and N/ℓ, one can indeed prove that the sets

{

log di(σ)
1
ℓ log(N/ℓ2)

: di(σ) ∈ [ℓ, N/ℓ]

}

are Poisson distributed, for almost all σ ∈ SN with exactly ℓ cycles.13

When we look at the distribution of the prime divisors of integers then the analogy to
the second of the two restrictions above applies, but not the first. Therefore we find that
for almost all integers up to x with exactly ℓ distinct prime factors, the sets

{

log log p
1
ℓ log log(n1/ℓ)

: p|n, p ≤ n1/ℓ

}

are Poisson distributed, whenever ℓ and log x/ℓ(log log x)A → ∞ as x → ∞ for every fixed
A.

So in this question the ranges in which we can sensibly ask the question differ, but we
do find, in both settings, that the parts are Poisson distributed throughout the feasible
ranges.

2.3. The largest of the ℓ parts. In section 1.4 we saw that the distribution of the
size of the largest cycle of a randomly chosen partition satisfies a complicated distribution
function, the same as the distribution of the largest prime factor of a random integer.
What if we restrict our attention to permutations with rather more cycles than is typical?
We have more cycles, so more of them must be short indicating that there might be a bias
towards having shorter cycles in general. However the longest cycle is not a typical cycle,
and these permutations have more cycles than normal, so perhaps the longest cycle will
be longer than usual? Which is it? How about for permutations with fewer cycles than
is typical? And for integers with fewer prime factors than is typical? Or for integers with
more prime factors than is typical?

In fact it is not difficult to show that for almost all permutations on N letters with
exactly ℓ cycles, where ℓ is significantly smaller than is typical,14 the longest cycle has

13Note that the average gap between the logarithm of cycle lengths in this interval is about 1
ℓ

log(n/ℓ2).
14That is, ℓ/ log N → 0 as N → ∞.
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length close to N . And also that for almost all integers n up to x with exactly ℓ prime
factors, where ℓ is significantly smaller than is typical, we have that log p is about log x for
the largest prime factor p of n.

Now suppose that ℓ is significantly larger than is typical,15 with ℓ ≤
√

N , and let
ξ = (ℓ − 1)/ log ν.16 For almost all permutations on N letters with exactly ℓ cycles, the

longest cycle has length about log ξ
ξ N . (So the longest cycle of a permutation typically gets

smaller the more cycles the permutation has).17 Similarly if p is the largest prime factor

of n then log p is about log ξ
ξ log x for almost all integers n up to x with ℓ distinct prime

factors.
Finally what if we fix ξ? Then the proportion of permutations on N letters with exactly ℓ

cycles such that all cycles have length ≤ N/u, is about ρξ(u); and this is also the proportion
of integers n ≤ x with exactly ℓ distinct prime factors such that the largest prime factor of
n is ≤ x1/u. Here ρξ(u) = 1 for 0 ≤ u ≤ 1, and ρξ(u) = 1− ξ

∫ u

1
(u− t)ξ−1 dt

t for 1 ≤ u ≤ 2
with

ρξ(u) =
ξ

u

∫ u

u−1

ρξ(t)

(

t

u

)ξ−1

dt for all u ≥ 2.

(One can easily verify that ρ1(u) = ρ(u).)

3. Whys, other relations, and uses.

Why are the anatomies of integers and permutations so similar? Could it be that they
have the same DNA? Or, perhaps one is modelled on the other? There are two proposed
explanations for why their anatomies are so similar, one from probability theory, the other
from analytic combinatorics as we will discuss in section 3.1.18 Moreover such frameworks
suggest other organisms (that is, classes of mathematical objects) in which one finds similar
anatomies, as we will find in section 3.2.

3.1. Any good explanations? Arratia, Barbour and Tavaré (1997) developed
a probabilistic model, which yields a good approximation to the structure of randomly
chosen permutations and randomly chosen integers, so that the properties of the model
give accurate forensic predictions for their anatomies. This model considers the joint
distribution of (z1, z2, . . . ) where each zi is an independent random variable having a
Poisson distribution with parameter 1/i. This distribution (subject to the side condition
∑

i izi = N) is very close to the joint distribution of (c1(σ), c2(σ), . . . ) where we run
through the permutations σ on N letters, and ci(σ) denotes the number of cycles of length
i in σ. When we look at the whole population of permutations, as in section 1, this model
mostly predicts things very well. However, it is not clear whether it works so well for the
sub-populations considered in section 2, since the probability questions that arise when we

15That is, ℓ/ log N → ∞ as N → ∞.
16Note that ξ is the correct generalization of r (from section 2.1) as ℓ varies.
17More precisely, every cycle has length ≤ 1

ξ
log

“

ξ

λ log ξ

”

for a proportion e−λ of the permutations on

N letters with ℓ cycles.
18It could be that these two viewpoints are really the same, in disguise. It is often difficult to penetrate

the different languages of mathematics and, in this case, one feels there are many elements in common

without it being clear to me whether there are fundamental differences.
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add in the condition
∑

i zi = ℓ are somewhat more delicate. Moreover one cannot drop
such conditions to simplify the calculations as the following example highlights: For m
in the range N/2 < m ≤ N , the probability that the largest cycle in σ has length m is
precisely 1/m; however the probability that zm = 1 and zj = 0 for m < j ≤ N is

1

m

N
∏

j=m

e−
1
j which is about

1

N
,

which is somewhat different.
In 2001, Panario and Richmond noted that many of the statistics of section 1 are

true for a fairly general class of combinatorial objects for which the generating function
takes the following form: The number of objects of size m is given by the coefficient of
zm in a generating function of the form a(1 − z/ρ)−b exp(E(z)) where |E(z)| ≤ |z − ρ|ǫ
if z is sufficiently close to ρ. Their work appears to me to be more the development of
an efficient calculating tool to prove that certain qualified organisms have rather similar
anatomies than a reason for why they are so similar.

Both these methods can be applied to show several other organisms have remarkably
similar anatomies to integers and permutations – we shall give some examples in the next
subsection.

In 1994, Vershik provided perhaps the best explanation for this phenomenon: Funda-
mental mathematical structures should be organized in a natural way. There are a few
outstanding possibilities for this “natural anatomy” (seven are listed in [15]), including
the structure we see here. What is perhaps new in this article is the amazing amount of
detail that these different anatomies share. The idea that wildly different objects should
be organized along very similar lines has emerged recently in an area on the boundary be-
tween quantum chaos in mathematical physics and the theory of zeta functions in analytic
number theory: Sets of eigenvalues of various naturally arising operators (for example, in
quantum chaos), and zeros of L-functions also seem to always be organized in very similar
ways, according to the distribution of the eigenvalues of matrices randomly selected from
certain groups: In 1999, Katz and Sarnak showed that only a small set of possible groups
seem to ever arise. I don’t think anyone can say why, indeed it all seems unreasonably
convenient, begging for a unifying explanation.

3.2. Other organisms with similar anatomies. At least one other important class
of mathematical objects has a similar anatomy, namely the polynomials mod p. These
factor into irreducible polynomials mod p, the indecomposable components. There are
pN monic polynomials mod p of degree N , of which roughly 1 in N are irreducible, and
their anatomies seem to be similar to those of integers and of permutations, though much
remains to be established.

And there are other class of objects which appear to be likely candidates to share similar
anatomies:

• The connected components of the 2-regular graphs on N labeled vertices; that is, the
vertices should all appear in a set of non-trivial disjoint cycles.

• The connected components of the directed graphs given by the edges (i, f(i)) of any
map f : {1, 2, . . . , N} → {1, 2, . . . , N} (which typically have about 1

2 log N components).
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• The equivalence classes of mappings {1, 2, . . . , N} → {1, 2, . . . , N}, where π1, π2 are
equivalent if there exist permutations σ, τ such that π2 = σπ1τ .

• Additive arithmetic semigroups, and other algebraic objects generalizing the rational
integers, or polynomials over finite fields.

3.3. Models for the primes. Arratia, Barbour and Tavaré gave a probabilistic
model to represent the integers (so as to compare the integers to the model discussed in
section 3.2) which can be described as a process to randomly select an integer n ≤ x, so
that it will be given fully factored: For each prime p ≤ x let ep be a random variable for
which

Prob(ep = k) =
1

pk

(

1 − 1

p

)

for each integer k ≥ 0.

Let Y :=
∏

p≤x pep . For each integer n ≤ x, define independent random variables un so

that Prob(un = 1) = n/x, and Prob(un = 0) = 1 − n/x; for n > x let un = 0. Then

Prob(Y = n and un = 1 | Y ≤ x and uY = 1) =
1

x
.

So the process proceeds by selecting the random variables as described. The algorithm
fails if Y > x or if un = 0, which occur with probability 1 − cx. Otherwise the algorithm
succeeds and we obtain an fully factored, randomly chosen integer ≤ x. We expect this
algorithm to succeed 1 in every 1/cx ≈ eγ log x times it is run.

This algorithm would run slowly on a computer since it requires the calculation of ep for
each prime p ≤ x: Determining each ep may be quick but it is the fact there are so many
of them that causes this part of the algorithm to be so slow. However one can simplify
matters using Vershik’s 1997 observation that a random integer up to (integer) x can be
constructed by what is, in essence, a Markov chain, picking at each step a random prime
factor of our integer. Hence our algorithm to select a random factored integer n ≤ x runs
as follows: The probability that we select n = 1 is 1/x; if we do so then the algorithm

terminates. Otherwise, the probability that prime p divides n is 1
x−1

[

x
p

]

. So we select

prime p with probability
(

1 − 1

x

)

1

L

[

x

p

]

where L :=
∑

p prime
p≤x

[

x

p

]

.

If we have selected prime p then we obtain n = mp, where m is a randomly selected integer
≤ [x/p]. Now we repeat the process for m. Since the range in which we search gets at
least halved each time we run this process, we will not have to run it more than log2 x
times. Thus the algorithm is fast provided we can select p rapidly, and this was achieved
by Bach in his 1998 Ph.D. thesis [4], proving that random, fully factored integers up to
x can be found in “polynomial time”.19 Bach’s algorithm for selecting p quickly is clever
but complicated.

19In Bach’s original paper the primes selected were really pseudoprimes (so as to be chosen in polynomial
time) but after the recently discovered Agrawal-Kayal-Saxena polynomial time primality test [1] this

problem is easily avoided.
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We now develop another approach to producing a random factored integer ≤ x, using
the fact that permutations and integers have such similar anatomies. Let N = log x and
select a random permutation σ ∈ SN .20 Writing σ as a product of cycles of lengths
d1(σ) ≤ d2(σ) ≤ · · · ≤ dk(σ), we then select random prime numbers pi ∈ (edi(σ), edi(σ)+1)
and consider the product p1p2 . . . pk.21 With this algorithm, the probability that integer
n ≤ x is produced is close to 1/x (up to a constant multiple), which is not quite what was
required. What we want is that the probability that integer n is produced is exactly 1/x.
To fix this one can import Bach’s ideas (as described in [4]) to “doctor the odds”, and
make our algorithm work as claimed.
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4. Even more evidence.

There seem to be more than enough compelling analogies between the anatomies of
integers and permutations in the article above, but we did find even more. We list another
three below.

20It is easy to construct a random permutation by letting 1 be mapped to a random number σ(1) ∈

{1, . . . , N}, then 2 be mapped to a random number σ(2) ∈ {1, . . . , N} \ {σ(1)}, etcetera.
21By “random prime numbers” we mean we select each prime in the interval with roughly equal

probability. To do this we select an integer at random in the interval and determine whether or not it is

prime: if not, select another integer, and then another, until we find a prime.
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4.1. Divisors.

Almost all integers n have log log n prime factors, few of them repeated, and thus
2{1+o(1)} log log n = (log n)log 2+o(1) divisors. One might then guess that the average number
of divisors of an integer is about this, but one’s guess would be wrong. Indeed the average
number of divisors of an integer ≤ x is log x + O(1). This is not hard to prove

1

x

∑

n≤x

∑

d|n

1 =
1

x

∑

d≤x

∑

n≤x
d|n

=
1

x

∑

d≤x

[x

d

]

=
1

x

∑

d≤x

(x

d
+ O(1)

)

= x(log x + γ + O(1)),

and in fact Dirichlet showed that the “γ +O(1)” could be replaced by 2γ−1+O(1/
√

x)
by counting over the divisors of n that are ≤ √

n.
What notion concerning permutations corresponds to divisors? Since cycles “correspond

to primes”, thus unions of “cycles” correspond to “divisors”. In other words define D(σ),
the set of sub-divisors of σ = C1C2 . . . Cℓ, to be {∪i∈ICi : I ⊂ {1, 2, . . . , ℓ}}. We have
seen that almost all permutations in SN have ∼ log N cycles, so have 2{1+o(1)} log N =
N{1+o(1)} log 2 sub-divisors, so what is the average going to be?

1

N !

∑

σ∈SN

|D(σ)| =
1

N !

∑

σ∈SN

∑

C1,...,Ck∈σ

1 =
1

N !

∑

C1,...,Ck

∑

σ∈SN

C1,...,Ck∈σ

1

=
∑

C1,...,Ck

(N −∑i d(Ci))!

N !
=

N
∑

m=1

∑

a1,a2,···≥0
P

i
iai=m

∏

i

1

iaiai!
=

N
∑

m=1

1 = N ;

exactly analogous again!

4.2. The Hardy-Ramanujan upper bound.

Hardy and Ramanujan showed that there exist constants c1, c2 > 0 such that the number
of integers ≤ x with exactly ℓ prime factors is

≤ c1x

log x

(log log x + c2)
ℓ−1

(ℓ − 1)!
.

We will prove an analogous bound for permutations by induction: there are

(1) ≤ N !

N

µℓ−1
N

(ℓ − 1)!
where µN :=

N
∑

m=1

1

m

permutations in SN,ℓ. This is true for ℓ = 1 (with equality, as we noted in section 1). For
ℓ = 2 we can write each permutation as the union of two cycles, one of length m ≤ N/2
the other of length N − m. Therefore if N is odd,

|SN,2|
N !

=
1

N !

∑

σ∈SN

ℓ(σ)=2

1 =
∑

1≤m<N/2

1

m(N − m)
=

1

N

∑

1≤m<N/2

(

1

m
+

1

N − m

)

=
µN

N
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so (1) holds with equality. If N is even, we have to add in a term 1/2m2 where m = N/2,
but which then contributes the missing 1/(N/2) term to the sum for µN , so (1) again holds
with equality.

Now suppose (1) is true for ℓ = k ≥ 2 and consider the case ℓ = k+1: Note that if σ has
cycles of length 1 ≤ d1(σ) ≤ · · · ≤ dk(σ) ≤ dk+1(σ) then each dk(σ) ≤ (1/2)(

∑

i di(σ) −
d1(σ)) ≤ (N − 1)/2 < N/2. Therefore

k|SN,k+1| ≤
∑

σ∈SN

ℓ(σ)=k+1

∑

C∈σ
d(C)<N/2

=
∑

C: d(C)<N/2

∑

σ∈SN ,C∈σ
ℓ(σ)=k+1

1 =
∑

C: d(C)<N/2

|SN−d(C),k|,

and so, since there are N !/(m(N − m)!) possible cycles of length m in SN ,

|SN,k+1|
N !

≤ 1

k

∑

1≤m<N/2

1

m

|SN−m,k|
(N − m)!

≤ 1

k

∑

1≤m<N/2

1

m
· 1

N − m

µk−1
N−m

(k − 1)!

≤ µk−1
N

k!

∑

1≤m<N/2

1

N

(

1

m
+

1

N − m

)

≤ 1

N

µk
N

k!

by the induction hypothesis.

4.3. More functions on the parts.

Let f be a function defined on the length of a cycle, and then its value extended
multiplicatively to permutations. In other words

f(σ) = f(C1)f(C2) · · ·f(Cℓ) = f(d1(σ))f(d2(σ)) · · ·f(dℓ(σ)).

We are interested in the mean value of f on SN , that is (1/N !)
∑

σ∈SN
f(σ). Note that

the questions of section 1.4 are special cases of this. The number theory version of these
problems can be efficiently handled by using sieve identities, which we imitate below:
Define τ(N) = τf (N) = (1/N !)

∑

σ∈SN
f(σ). Then, writing σ = C ∪ φ when C ∈ σ,

N !τ(N)N =
∑

σ∈SN

f(σ)N =
∑

σ∈SN

f(σ)
∑

Ci∈σ

d(Ci)

=
∑

C

d(C)
∑

σ∈SN

C∈σ

f(σ) =
∑

C

d(C)
∑

C∪φ∈SN

f(C)f(φ)

=
∑

C

d(C)f(C)
∑

φ∈SN−d(C)

f(φ) =
∑

C

d(C)f(d(C))(N − d(C))!τ(N − d(C))

=
N
∑

m=0

mf(m)(N − m)!τ(N − m)#{cycles C ∈ SN : d(C) = m}

=

N
∑

m=0

mf(m)(N − m)!τ(N − m)
N(N − 1)(N − 2) . . . (N − m + 1)

m
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and therefore we deduce that

τ(N) =
1

N

N
∑

m=0

f(m)τ(N − m).

Suppose that f(n) = 1 for all n ≤ Y so that τ(x) = 1 for all x ≤ Y ; we re-normalize writing
θ(t) = τ(tY ). Suppose f is well-approximated by a “smooth” (re-normalized) function χ,
so that f(m) ≈ χ(m/Y ); then the above relation can be re-written as, for N = uY ,

(2) θ(u) ≈ 1

u

∫ u

0

χ(t)θ(u − t)dt for u ≥ 1.

In other words, given Y and f with f(n) = 1 we can construct χ (for example by extrapo-
lating linearly between values f(m) and f(m+1)) and then deduce a good approximation
for τ using (2). In fact if Y → ∞ as N → ∞ then τ(N) ∼ θ(u).

Something very similar happens with integers. Function f is multiplicative if f(mn) =
f(m)f(n) whenever gcd(m, n) = 1. We are interested in (1/x)

∑

n≤x f(n) which we denote

by F (u) when x = yu for some given y; and we suppose that f(n) = 1 whenever n ≤ y. We
define χ(t) = 1 for t ≤ 1; and then χ(t) := (1/yt)

∑

p≤yt f(p) log p where the sum is over

primes p. Then F (u) ∼ θ(u) where θ(u) = 1 for u ≤ 1 and otherwise θ(u) is determined
by (2).

Another approach to understanding such equations comes simply from noting that there
are N !/

∏

i iaiai! permutations σ ∈ SN with ai cycles of length i for each i (this holds if
and only if

∑

i iai = N). Therefore

∑

N≥0

(

∑

σ∈SN

f(σ)

)

XN

N !
=

∑

a1,a2,···≥0

∏

i≥1

f(i)aiX iai

iaiai!
= exp





∑

i≥1

f(i)X i

i



 .

Note also we can obtain the derivative of the logarithm of this equation from τ(N) =

(1/N)
∑N

m=0 f(m)τ(N−m) by multiplying both sides by NXN , and summing over N ≥ 0.
One can do the analogous operations to (2): multiply both sides by uesu and integrate
over u ≥ 1 to obtain L′(θ, s) = L(χ, s)L(θ, s) where L(g, s) =

∫∞

0
g(u)esudu is the Laplace

transform of g; and thus, integrating,

L(θ, s)
/

L(θ, 0) = exp

(∫ s

0

L(χ, w)dw

)

,

the analogy to what appears above. Much discussion of such integral equations (in number
theory) can be found in [17].

Another way to develop the above is to rewrite

∑

N≥0

τf (N)XN = (1 − X)−1 exp



−
∑

i≥1

(1 − f(i))X i

i





=
∑

i≥0

X i ·
∑

j≥0

(−1)j

j!





∑

i≥Y +1

(1 − f(i))X i

i





j
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if f(i) = 1 for all i ≤ Y , so that

τf (N) =
∑

j≥0

(−1)j

j!

∑

i1,i2,...,ij>Y
i1+i2+···+ij≤N

(1 − f(i1)) . . . (1 − f(ij))

i1i2 . . . ij
,

which is in analogy to [17], Theorem 3.3.
Finally, for the ambitious reader; We estimated in section 4 the integers with no large

prime factors/the permutations with no large cycles, and in section 5 the integers with no
small prime factors/the permutations with no small cycles. Friedlander (1976) gave an
asymptotic formula for the integers with neither large nor small prime factors – it would
be interesting to prove the analogous result for permutations.

It would also be interesting to determine Ψ[SN , Y ], the number of permutations in SN

all of whose cycle lengths are ≤ Y , in a wide range. We have seen that this is ∼ N !ρ(u)
if Y = N/u, but what is u → ∞. It is known that Ψ(x, y) ∼ xρ(u) for y in a very wide
range (and indeed it holds for all t > (log x)2+o(1) if and only if the Riemann Hypothesis
is true). Another interesting case in where Ψ(x, (log x)A) ∼ x1−1/A for any fixed A > 1;
I believe that the analogous question is to estimate Ψ[SN , A logN ] but cannot even guess
what that might equal.

[16] Friedlander, J.B. (1976), Integers free of large and small primes, Proc. London Math. Soc 3,

565-576.
[17] Granville, A. and Soundararajan, K. (2001), The Spectrum of Multiplicative Functions, Ann. of

Math 153, 407–470.
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