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Abstract

A class A of labelled graphs is weakly addable if if for all graphs G in A and all vertices u

and v in distinct connected components of G, the graph obtained by adding an edge between u

and v is also in A; the class A is monotone if for all G ∈ A and all subgraphs H of G, we have
H ∈ A. We show that for any weakly addable, monotone class A whose elements have vertex
set {1, . . . , n}, the probability that a uniformly random element of A is connected is at least
(1− on(1))e−0.540760, where on(1) → 0 as n → ∞. Furthermore, if every element of A has girth
at least g > 1, then the probability that A is connected is at least (1− og(1)))e−1/2. The latter
result establishes a conjecture of McDiarmid et al. (2006) for graphs of large girth.

1. Introduction

Given a class A of labelled graphs, we say that A is weakly addable (or bridge-addable)
if for all graphs G in A and all vertices u and v in distinct connected components of
G, the graph obtained by adding an edge between u and v is also in A. The concept of
addability was introduced in McDiarmid et al. (2005) in the course of studying random
planar graphs. It was shown there that, for a uniformly random element of a finite
non-empty weakly addable class A of graphs, the probability that it is connected is at
least e−1.
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As well as the class of planar graphs, other examples of weakly addable graph classes
include forests, series-parallel graphs, graphs with tree-width at most k, graphs em-
beddable on any fixed surface, and more generally any minor-closed graph class with
cut-point-free excluded minors; triangle-free graphs, and more generally H-free graphs
for any two-edge-connected graph H ; and k-colourable graphs.

It is well-known (Cayley, 1889) that there are nn−2 trees on n labelled vertices. To-
gether with a result of Rényi and Szekeres (1967) (see also Moon (1970)) that the corre-

sponding number of forests is asymptotic to e
1
2 nn−2, we see that, for a uniformly random

forest on n labelled vertices, the probability that it is connected is asymptotically e−
1
2 .

In McDiarmid et al. (2006) it was suggested that if connectivity is desired then the
worst possible example of a weakly addable graph class is the class of forests. More pre-
cisely, they conjectured that the lower bound of e−1 on the probability of connectedness
for a weakly addable graph class can be improved to (1 + o(1))e−

1
2 . (They assumed

also that the graph class was closed under isomorphism.) Recently, Balister et al. (2007)
took a first step towards proving this conjecture, proving an asymptotic lower bound of
e−0.7983.

Observe that the examples above of weakly addable graph classes, and many other
interesting examples of such graph classes, also satisfy the property of being monotone
(decreasing); that is, given a graph G in A, each graph obtained by deleting edges from
G is also in A. In this paper we investigate the probability of connectivity of a uniformly
random element of a monotone weakly addable graph class; for such graph classes, we
improve the bounds of Balister et. al. and obtain a bound which is quite close to the
conjectured lower bound. Our method relies upon a reduction to weighted forests; when
the class contains two-connected components our reduction yields vertices of weight larger
than one, and these vertices prevent us from proving the desired lower bound exactly.
However, we find that we can approach arbitrarily close to that bound if the graphs have
sufficiently high girth.

For several weakly addable graph classes, including some of those mentioned above,
the asymptotic probability of connectedness has recently been determined – see the last
section below.

2. Main results

A bridge in a graph G is an edge e such that G − e has strictly more connected
components than G. We say that a class A of graphs is bridge-alterable if for any graph
G and bridge e in G, G is in A if and only if G − e is. We remark that if A is bridge-
alterable then it is weakly addable, and if it is both weakly addable and monotone then
it is bridge-alterable.

For any class A of graphs, let An denote the set of graphs in A on the vertex set
[n] = {1, . . . , n}. Let

β =

5
∑

i=1

ii−2

i!ei
+

∞
∑

i=6

1

i2e
=

π2

6e
−

5
∑

i=1

(

1

i2e
− ii−2

i!ei

)

≈ 0.540760.

We shall show that, if A is bridge-alterable and G is a uniformly random element of AW ,
then P {G is connected} ≥ e−β+o(1), where o(1) → 0 as W → ∞. More precisely, we
shall prove:
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Theorem 1 For any ε > 0 there exists W0 such that, if W ≥ W0 and A is a non-empty
bridge-alterable class of graphs on {1, . . . , W}, and if G is a uniformly random element
of A, then

P {G is connected} ≥ (1 − ε)e−β . (1)

This is our main theorem. As a biproduct of its proof, we find that we obtain a lower
bound close to e−

1
2 given sufficiently high girth. Recall that the girth of a graph G is the

minimum length of a cycle (and is ∞ if G is a forest).
Theorem 2 For any ε > 0 there exist W0 and g0 such that, if W ≥ W0 and A is a
non-empty bridge-alterable class of graphs on {1, . . . , W} in which each graph has girth
at least g0, and if G is a uniformly random element of A, then

P {G is connected} ≥ (1 − ε)e−
1
2 . (2)

In the next section we show that Theorem 1 will follow from Claim 4 concerning random
weighted forests, and we introduce Lemma 6. In the following two sections we show
that Lemma 6 will yield Claim 4, and then prove Lemma 6. At this stage we will have
completed the proof of Theorem 1. Following that we quickly deduce Theorem 2 from
three of the lemmas proved earlier, and finally we make some concluding remarks.

3. A reduction to weighted forests

We shall prove Theorem 1 by partitioning AW and showing that an inequality such
as (1) holds for a uniformly random element of each block of the partition. (This step of
our proof is essentially Lemma 2.1 of Balister et al. (2007).)
Definition 3 Given a graph G, let b(G) be the graph obtained by removing all bridges
from G. We say G and G′ are equivalent if b(G) = b(G′), and in this case write G ∼ G′.
For a graph G, let [G] be the set of graphs G′ for which b(G′) = b(G).
It is easily seen that ∼ is an equivalence relation on graphs, and thus we always have
[G] = [b(G)]. Furthermore, if G ∈ AW then as A is closed under deleting bridges, b(G) ∈
AW , and as A is weakly addable, we have [G] ⊆ AW . It follows that AW can be written
as a union of some set of disjoint equivalence classes [G1], . . . , [GmW

]. To prove Theorem
1, we will in fact prove:
Claim 4 For any graph G ∈ AW , if H is a uniformly random element of [G] then

P {H is connected} ≥ e−β+o(1),

where o(1) → 0 as W → ∞.
Clearly, Theorem 1 immediately follows from Claim 4, and it thus remains to prove Claim
4. Fix a bridgeless graph G on vertex set [W ] and let B = [G]. Write C1, . . . , Cn for the
components of G, and let wi = |V (Ci)| for i = 1, . . . , n, so W =

∑n
i=1 wi. We remark

that since the components C1, . . . , Cn are bridgeless, either wi = 1 or wi ≥ 3 for all
i ∈ {1, . . . , n}. Indeed, if G has girth g (that is, g is the minimum length of a cycle),
then each wi 6= 1 satisfies wi ≥ g. We denote by −→w the vector (w1, . . . , wn). We use −→w to
define a probability measure on the set Fn of labeled forests with vertex set {1, . . . , n}.
Given F ∈ Fn, let

mass(F ) = mass−→w (F ) =

n
∏

i=1

w
dF (i)
i ,
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let K =
∑

F∈Fn
mass(F ), and let F be a random element of Fn with P {F = F} =

mass(F )/K for all F ∈ Fn. We say F is distributed according to −→w ; when we wish
to highlight the distribution of F, we will sometimes write F−→w in place of F. For our
purposes, the key fact about such a random forest is the following:
Lemma 5 Given a uniformly random element H of B,

P {H is connected} = P {F is connected} .

PROOF. We construct a flow from B to Fn in the following fashion: given G ∈ B,
let f(G) be the graph obtained from G by contracting Ci to a single point for each
i = 1, . . . , n; then f(G) ∈ Fn, and for each F ∈ Fn, the set f−1(F ) has cardinality

precisely
∏n

i=1 w
dF (i)
i . Since G ∈ B in connected if and only if f(G) is connected, it

follows that

P {H is connected}=
|{G ∈ B : G is connected}|

|B|

=

∑

{F∈Fn:F is connected} |f−1(F )|
∑

F∈Fn
|f−1(F )|

=

∑

{F∈Fn:F is connected} mass(F )

K
= P {F is connected} . 2

To prove Claim 4, it therefore suffices to show that for such a random forest F, P {F is connected} ≥
e−β+o(1), where o(1) tends to zero uniformly in W .

For i = 1, . . . , n, let Fn,i be the set of elements of Fn with i components (so F ∈
Fn,1 precisely if F is connected). For larger i set Fn,i = ∅. It turns out that bounds on
P {F is connected} follow from bounds on the ratio between P {F ∈ Fn,2} and P {F ∈ Fn,1}.
More precisely, Claim 4 follows from Lemma 5 and the following lemma.
Lemma 6 For all ǫ > 0, for W sufficiently large, for all −→w = (w1, . . . , wn) with
∑n

j=1 wj = W ,

P {F ∈ Fn,2} ≤ (1 + ǫ)β P {F ∈ Fn,1} . (3)

In Section 4 we explain how to use Lemma 6 to prove Claim 4; in Section 5 we prove
Lemma 6.

4. Proof of Claim 4 assuming Lemma 6

The proof of Claim 4 proceeds somewhat differently depending on the value of the ratio
of n and W . When W is much larger than n, the proof is rather straightforward, and in
fact does not require Lemma 6 at all, but rather Lemma 9, below. In both cases, however,
we construct a flow ϕ on Fn and using it to analyze the probability mass of Fn,i relative
to that of Fn,i+1 (for i = 1, . . . , n−1). Given a graph G, let c(G) be the set of connected
components of G. Given a forest F ∈ Fn and T ∈ c(F ), let w(T ) =

∑

i∈V (T ) wi. Consider

forests F, F ′ ∈ Fn such that F ′ can be obtained from F by the addition of an edge e.
Writing T 6= T ′ ∈ c(F ) as shorthand for {{T, T ′} ⊆ c(F ) : T 6= T ′}, we let
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ϕ(F ′, F ) =
mass(F ′)

∑

T 6=T ′∈c(F ) w(T )w(T ′)
. (4)

For all other pairs F, F ′, we let ϕ(F ′, F ) = 0.
Lemma 7 For all i = 1, . . . , n − 1

∑

F ′∈Fn,i

∑

F∈Fn,i+1

ϕ(F ′, F ) =
∑

F∈Fn,i+1

mass(F ) = K · P {F ∈ Fn,i+1} .

PROOF. Given i ∈ {1, . . . , n − 1} and F ∈ Fn,i+1, if F ′ ∈ Fn,i is obtained from F by
the addition of edge uv, then mass(F ′) = mass(F ) · wu · wv. We thus have

∑

F ′∈Fn,i

ϕ(F ′, F ) =





∑

T 6=T ′∈c(F )

∑

u∈V (T ),v∈V (T ′)

mass(F ) · wu · wv





·
(

1
∑

T 6=T ′∈c(F ) w(T )w(T ′)

)

=
mass(F )

∑

T 6=T ′∈c(F ) w(T )w(T ′)
·





∑

T 6=T ′∈c(F )

∑

u∈V (T ),v∈V (T ′)

wu · wv





= mass(F ). 2

We remark that we have actually proved the stronger fact that for all i = 1, . . . , n−1 and
all F ∈ Fn,i+1,

∑

F ′∈Fn,i
ϕ(F ′, F ) = mass(F ). Using Lemma 7, we can straightforwardly

prove a first bound on the ratio of the mass of Fn,i and that of Fn,i+1.
Lemma 8 For all positive integers W and all positive integer weight vectors −→w =
(w1, . . . , wn) with

∑n
j=1 wj = W ,

P {F ∈ Fn,i+1} ≤ P {F ∈ Fn,i} (n/W )

i
, (5)

PROOF. [Proof of Lemma 8] Fix i with 1 ≤ i ≤ n − 1. By the definition of ϕ, for all
F ′ ∈ Fn,i we have

∑

F∈Fn,i+1

ϕ(F ′, F ) = mass(F ′) ·
∑

e∈E(F ′)

1
∑

T 6=T ′∈c(F ′−e) w(T )w(T ′)
. (6)

We assert that for any set of positive integers a1, . . . , ai+1 with
∑i+1

j=1 aj = W ,

∑

1≤j<k≤i+1

ajak ≥ i(W − i) +

(

i

2

)

(7)

(where we let
(

1
2

)

= 0). To see this, if a1 ≥ a2 ≥ 2 then let a′
1 = a1 + 1, a′

2 = a2 − 1
and a′

j = aj for each j ≥ 3. Then with sums as above,
∑

j<k a′
ja

′
k − ∑j<k ajak =

a′
1a

′
2 − a1a2 = −a1 + a2 − 1 < 0. Hence the sum is minimised when there are i entries 1

and one entry W − i.
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In particular, for any F ′ ∈ Fn,i and any e ∈ E(F ′), we have

∑

T 6=T ′∈c(F ′−e)

w(T )w(T ′) ≥ i(W − i) +

(

i

2

)

. (8)

Since, if F ′ ∈ Fn,i then F ′ has exactly n − i edges, it follows from (6) and (8) that for
all F ′ ∈ Fn,i

∑

F∈Fn,i+1

ϕ(F ′, F )≤mass(F ′) · (n − i) ·
(

1

i(W − i) +
(

i
2

)

)

≤mass(F ′) · 1

i
· n

W
,

so
∑

F ′∈Fn,i

∑

F∈Fn,i+1

ϕ(F ′, F )≤
∑

F ′∈Fn,i

mass(F ′) · 1

i
· n

W

= K · P {F ∈ Fn,i} ·
1

i
· n

W
, (9)

and (5) follows by combining Lemma 7 and (9). 2

As a consequence of Lemma 8, we have
Lemma 9 For all positive integers W and all weight vectors −→w = (w1, . . . , wn) with
∑n

j=1 wj = W , P {F is connected} > e−n/W .

PROOF. It follows immediately from (5) that

P {F ∈ Fn,i+1} ≤ P {F ∈ Fn,1} (n/W )i

i!
, (10)

and (10) implies that

1 =

n−1
∑

i=0

P {F ∈ Fn,i+1} <
∑

i≥0

P {F ∈ Fn,1} (n/W )i

i!
= en/WP {F ∈ Fn,1} . 2

When n/W ≤ β, Claim 4 follows immediately from Lemma 5 and Lemma 9. To explain
why Lemma 6 implies Claim 4 when n is not much smaller than W , it turns out to be
useful to prove a slightly more general implication. For each finite non-empty set V of
positive integers, let G(V ) be the set of all graphs on the vertex set V , and let Gk(V ) be
the set of all graphs in G(V ) with exactly k components. Also, write Gn for G({1, . . . , n}),
and Gk

n for Gk({1, . . . , n}). For each positive integer n, let µn be a measure on the set of
all graphs with vertex set a subset of {1, . . . , n}, which is multiplicative on components

(that is, if G has components H1, . . . , Hk, then µn(G) =
∏k

i=1 µn(Hi)).
Lemma 10 Suppose there exist x > 0 and integers n ≥ m0 ≥ 1 such that

µn(G2(V )) ≤ xµn(G1(V )) for all V ⊆ {1, . . . , n} with |V | ≥ m0. (11)

Let k be a positive integer and suppose that n ≥ km0. Then

µn(Gk+1
n ) ≤ x

k
µn(Gk

n). (12)
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PROOF. Let A be the collection of all sets {H1, . . . , Hk−1} of k − 1 connected graphs
such that the vertex sets V (Hi) are pairwise disjoint subsets of {1, . . . , n} and

max
1≤i≤k−1

|V (Hi)| < n −
k−1
∑

i=1

|V (Hi)|.

Let H = {H1, . . . , Hk−1} ∈ A, let VH = {1, . . . , n} \
(

⋃k−1
i=1 V (Hi)

)

, and note that

|VH| > max1≤i≤k−1 |V (Hi)| and |VH| ≥ m0. For j = k and k + 1, let Gj
n(H) denote the

set of all graphs G in Gj
n such that H1, . . . , Hk−1 are each components of G. Then, letting

α =
∏k−1

i=1 µn(Hi), by the multiplicativity of µn and by (11) we have

µn(Gk+1
n (H)) = α · µn(G2(VH)) ≤ xα · µn(G1(VH)) = x · µn(Gk

n(H)). (13)

Next, consider any graph G ∈ Gk+1
n , and suppose that G has components G1, . . . , Gk+1,

where |V (G1)| ≤ . . . ≤ |V (Gk+1)|. For each set H formed by picking any k − 1 of the
graphs G1, . . . , Gk, we have H ∈ A and G ∈ Gk+1

n (H). It follows that

k · µn(Gk+1
n ) ≤

∑

H∈A

µn(Gk+1
n (H)). (14)

Applying (13) to bound the right-hand side of (14), we obtain

k · µn(Gk+1
n ) ≤ x ·

∑

H∈A

µn(Gk
n(H)). (15)

Furthermore, the sets {Gk
n(H) : H ∈ A} are pairwise disjoint subsets of Gk

n, so
∑

H∈A µn(Gk
n(H)) ≤

µn(Gk
n), which combined with (15) yields that

k · µn(Gk+1
n ) ≤ x · µn(Gk

n). 2

Lemma 10 allows us to use Lemma 6 to derive bounds on the ratio between P {F ∈ Fn,i+1}
and P {F ∈ Fn,i} for i > 1.
Lemma 11 Suppose that there exist γ with 0 < γ < 1, m0 with m0 > 0, and a non-empty
set of positive integers W such that for any positive integer weights −→w = (w1, . . . , wn) with
wi ∈ W for i = 1, . . . , n and with

∑n
k=1 wk ≥ m0, P {F−→w ∈ Fn,2} ≤ γP {F−→w ∈ Fn,1}.

Fix any positive integer j. Then for W sufficiently large, for all integers i with 1 ≤ i ≤ j
and any positive integer weights −→w = {w1, . . . , wn} ∈ Wn with

∑n
k=1 wk = W ,

P {F ∈ Fn,i+1} ≤ γP {F ∈ Fn,i}
i

. (16)

PROOF. Suppose γ, m0, and W satisfy the hypotheses of the lemma, and fix some
positive integer j. Observe first that, by Lemma 8, the inequality in Lemma 6 holds if
n ≤ γW . We may thus assume that n > γW .

Let n ≥ m0 and consider any weights w1, . . . , wn. Define µn(G) for each graph G with

vertex set V ⊆ {1, . . . , n} by setting µn(G) =
∏

i∈V w
dG(i)
i if G is a forest and µn(G) = 0

otherwise. Then µn is multiplicative on components, and by the hypotheses of the lemma,
for each V ⊆ {1, . . . , n} with

∑

i∈V wi ≥ m0 we have

µn(G2(V )) ≤ γµn(G1(V ));
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Now we may use Lemma 10 to obtain

µn(Gk+1
n ) ≤ γ

k
µn(Gk

n)

whenever n ≥ km0. Since n ≥ km0 whenever W ≥ km0/γ, Lemma 11 follows. 2

PROOF. [Proof of Claim 4 assuming Lemma 6]
Fix α with 0 < α < 1, and choose j large enough that 2/j! ≤ α/2. Let ǫ > 0 be small

enough that (1 − α/2)/(1 + ǫ)j ≥ 1 − α. We apply Lemma 11 hold with W the set of
positive integers and with γ = (1 + ǫ)β (Lemma 6 guarantees that there exists m0 > 0
such that the hypotheses of Lemma 11 hold with this choice of m0, γ, and W). It follows
that for W large enough, for all i with 1 ≤ i ≤ j we have

P {F ∈ Fn,i+1} ≤ (1 + ǫ)i β
iP {F ∈ Fn,1}

i!
.

Furthermore, writing κ(F ) for the number of connected components of F ,

1 =
n−1
∑

i=0

P {F ∈ Fn,i+1}

≤ (1 + ǫ)j

j−1
∑

i=0

βiP {F ∈ Fn,1}
i!

+ P {κ(F) ≥ j + 1} . (17)

By Lemma 8, for all i ≥ 1,

P {F ∈ Fn,i+1} ≤ (n/W )i

i!
≤ 1

i!
,

from which it follows that for all k ≥ 1,

P {κ(F) ≥ k + 1} ≤
∑

i≥k

1

i!
≤ 2

k!
.

Combining the latter equation with (17) yields that

1 ≤ (1 + ǫ)jeβP {F ∈ Fn,1} + α/2,

so

P {F ∈ Fn,1} ≥ 1 − α/2

(1 + ǫ)jeβ
≥ 1 − α

eβ
. (18)

As α > 0 was arbitrary, (18) implies that P {F is connected} ≥ e−β+o(1) which combined
with Lemma 5 proves Claim 4. 2

5. Proof of Lemma 6

As already noted, Lemma 6 follows immediately from Lemma 5 and Lemma 8 when
n ≤ βW , and we hereafter focus on the case that n > βW . For the remainder of the paper
let W be a positive integer and fix a positive integer weight vector −→w = (w1, . . . , wn)
with n > βW . Given a tree T with vertex set {1, . . . , n} and an edge e ∈ T , we denote
by s(T, e) the smaller weight component of T − e, or the component of T containing 1

8



if the components have equal weights. We call the components of T − e pendant subtrees
of T . Given S ⊂ {1, . . . , n}, by T S we mean the subgraph of T induced by S; the graph
T S is not necessarily connected. For i = 1, . . . , ⌊W/2⌋, denote by c(T, i) the quantity
|{e ∈ T : w(s(T, e)) = i}|.

Let K ′ =
∑

T∈Fn,1
mass(T ) = K · P {F ∈ Fn,1}, and let T be a random tree with

vertex set {1, . . . , n} and such that

P {T = T } =
mass(T )

K ′
. (19)

The following lemma provides an identity that lies at the heart of our proof of Lemma 6,
and of Theorem 2.
Lemma 12

P {F ∈ Fn,2} = P {F ∈ Fn,1} ·
⌊W/2⌋
∑

i=1

Ec(T, i)

i(W − i)
. (20)

PROOF. We recall the definition of the flow ϕ given in (4). It follows from this definition
that

∑

F ′∈Fn,1

∑

F∈Fn,2

ϕ(F ′, F ) =
∑

T∈Fn,1

mass(T ) ·
∑

e∈T

1

s(T, e)(W − s(T, e))

=

⌊W/2⌋
∑

i=1

1

i(W − i)

∑

T∈Fn,1

mass(T ) · c(T, i). (21)

Furthermore, by Lemma 7 applied with i = 1, we have that
∑

F ′∈Fn,1

∑

F∈Fn,2

ϕ(F ′, F ) = K ·P {F ∈ Fn,2} ,

which combined with (21) yields that

K · P {F ∈ Fn,2} =

⌊W/2⌋
∑

i=1

1

i(W − i)

∑

T∈Fn,1

mass(T ) · c(T, i). (22)

For each i = 1, . . . , ⌊W/2⌋, we then have

∑

T∈Fn,1

mass(T ) · c(T, i) = K ·
∑

T∈Fn,1

P {T = T } ·P {F ∈ Fn,1} · c(T, i)

= K · P {F ∈ Fn,1} ·Ec(T, i), (23)

and combining (22) and (23) proves the lemma. 2

Lemma 12 allows us to understand the ratio between P {F ∈ Fn,2} and P {F ∈ Fn,1} by
studying the values Ec(T, i) for 1 ≤ i ≤ ⌊W/2⌋; it is by studying these values that we
shall prove Lemma 6.
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5.1. Pendant subtrees of weight one vertices

For integers k ≥ 1 let c∗(T, k) be the number of pendant subtrees of T consisting
precisely of k weight one vertices. By definition, c∗(T, k) ≤ c(T, k), and if wi = 1 for all
i then c∗(T, k) = c(T, k) for all k. Also, let

ρk =
kk−2

k!ek

for k = 1, 2, . . .. We shall prove:
Lemma 13 Given any fixed positive integer k,

Ec∗(T, k)

k(W − k)
≤ (1 + o(1))ρk.

Before proving this lemma, let us give one easy result which shows that the values ρk are
the ‘right’ targets to aim for here. We consider the case when all the weights in −→w are 1
(corresponding to the case when the original class A consisted only of forests) and note
that in this case we have W = n and c∗(T, k) = c(T, k) for all k.
Proposition 14 Suppose that all the weights in −→w are 1. Given any fixed positive integer
k,

Ec(T, k)

k(n − k)
→ ρk as n → ∞.

PROOF. Let k be fixed and let n > 2k. By Cayley’s formula, double counting, and
symmetry, we have

Ec(T, k) = n−(n−2)
∑

{Trees T on [n]}

∑

e∈T

1[|s(T,e)|=k]

= n−(n−2)
∑

1≤i6=j≤n

∑

{Trees T on [n]}

1[ij∈E(T )]1[|s(T,ij)|=k]1[i∈s(T,ij)]

= n−(n−2)n(n − 1)
∑

Trees T on [n]

1[12∈E(T )]1[1∈s(T,12)]1[|s(T,12)|=k].

We thus have

Ec(T, k) = n−(n−2) n(n − 1)

(

n − 2

k − 1

)

kk−2(n − k)n−k−2

∼ kk−2

(k − 1)!

nk+1 (n − k)n−k−2

nn−2

∼ kk−1

k!
e−kn

which yields the desired result. 2

We will prove Lemma 13 by comparing the probability that T contains many pendant
subtrees composed of k weight-one vertices (i.e., that c(T, k) is large) to the probability
that T contains a large pendant subtree composed entirely of weight-one vertices. We
will use the following definitions throughout Section 5.
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Definition 15 Given S ⊆ {1, . . . , n}, let PS be the event that T contains a pendant
subtree T with V (T ) = S, and let LS be the event that for all v ∈ S, v is a leaf of T.

PROOF. [Proof of Lemma 13] Fix a positive integer k. Given an integer m with 1 ≤
m ≤ ⌊W/2k⌋, let

Sm,k = {S ⊆ [n] : |S| = mk, wi = 1 ∀i ∈ S}.

Given S ∈ Sm,k, let QS,k be the set of partitions of S into sets S1, . . . , Sm, ordered
lexicographically, such that for all i ∈ [m], |Si| = k. For all S ∈ Sm,k,

|QS,k| =
(mk)!

m!(k!)m
. (24)

Next, for any S ∈ Sm,k and Q ∈ QS,k, let

TQ = {m-tuples (T1, . . . , Tm) : Ti is a tree and V (Ti) = Si ∀i = 1, . . . , m};

then |TQ| = (kk−2)m. Given S and Q as above, let LS,Q be the event that for all S′ ∈ Q,
T contains a pendant subtree T with V (T ) = S′. For a given S ∈ Sm,k, the following
procedure constructs all trees T ∗ containing a pendant subtree T with V (T ) = S.

(i) Choose a tree T with V (T ) = S.
(ii) Choose a tree T ′ with V (T ′) = [n] − S.
(iii) Choose r1 ∈ S, r2 ∈ [n] − S, and add an edge between r1 and r2.

A tree constructed in this manner has mass

mass(T ) · mass(T ′) · wr1 · wr2 .

The sum of wr1wr2 over all possible choices of r1, r2 is mk(W −mk); since mass(T ) = 1
for all (mk)mk−2 possible choices of T , it follows that

K ′ · P {PS}=
∑

Trees T ′ on [n]−S

mass(T ′) · (mk)mk−2 · [(mk)(W − mk)]

= (mk)mk−1(W − mk) ·
∑

Trees T ′ on [n]−S

mass(T ′). (25)

Furthermore, given S and Q = (S1, . . . , Sm) as above, the following procedure constructs
all trees contributing to the event LS,Q (i.e. all trees T such that if T = T then LS,Q

holds)
(i) Choose a tree T ′ with V (T ′) = [n] − S.
(ii) Choose an m-tuple (T1, . . . , Tm) ∈ TQ.

(iii) For i = 1, . . . , m, choose r
(i)
1 in Si, choose r

(i)
2 in [n]− S, and add an edge between

r
(i)
1 and r

(i)
2 .

The sum of
∏k

i=1 w
r
(i)
1

w
r
(i)
2

over all possible choices of r
(1)
1 , . . . , r

(m)
1 and r

(1)
2 , . . . , r

(m)
2 is

[k(W −mk)]m. Since
∏m

i=1 mass(Ti) = 1 for all (kk−2)m of the m-tuples in TQ, it follows
that

K ′ ·P {LS,Q} =
∑

Trees T ′ on [n]−S

mass(T ′) · [kk−1(W − mk)]m, (26)

11



so by (24) we obtain

K ′ ·
∑

Q∈QS,k

P {LS,Q} =
(mk)!

m!(k!)m
· [kk−1(W − mk)]m ·

∑

Trees T ′ on [n]−S

mass(T ′). (27)

Combining (25) and (27), it follows that

P {PS} =
(mk)mk−1(W − mk)

[kk−1(W − mk)]m
· m!(k!)m

(mk)!
·
∑

Q∈QS,k

P {LS,Q} . (28)

Choose m = m(W ) so that m(W ) → ∞ as W → ∞ and so that m = o(W ). We have

n ≥ E {c∗(T, mk)} =
∑

S∈Sm,k

P {PS} ,

which combined with (28) gives

n≥ (mk)mk−1(W − mk)

[kk−1(W − mk)]m
· m!(k!)m

(mk)!
·
∑

S∈Sm,k

∑

Q∈QS,k

P {LS,Q}

=

[

k!

kk−1(W − mk)

]m

· m!(mk)mk−1

(mk)!
· (W − mk) ·E

{(

c∗(T, k)

m

)}

≥
(

k!

kk−1W

)m

· m!(mk)mk−1

(mk)!
· W ·E

{(

c∗(T, k)

m

)}

. (29)

Since
(

c∗(T, k)

m

)

=
c∗(T, k)(c∗(T, k) − 1) . . . (c∗(T, k) − m + 1)

m!
≥ (c∗(T, k) − m)m

+

m!
,

by Jensen’s inequality (29) yields

n ≥ W

[

(Ec∗(T, i) − m)+ · k!

kk−1W

]m

· (mk)mk−1

(mk)!
,

which by Stirling’s formula gives

n

W
≥
(

1√
2π

+ o(1)

)

· 1

(mk)3/2
·
[

(Ec∗(T, i) − m)+ · ekk!

kk−1W

]m

, (30)

where o(1) tends to zero as m = m(W ) tends to infinity. Since m(W ) → ∞ and n ≤ W ,
(30) yields that

Ec∗(T, k) − m ≤ (1 + o(1))W · kk−1

ekk!

(√
2πn(mk)3/2

W

)1/m

≤ (1 + o(1))W · kk−1

ekk!
,

so Ec∗(T, k) ≤ (1 + o(1))W · kk−1/(ekk!) + m = (1 + o(1)W · kk−1/(ekk!), as claimed.
2

In order to prove Lemma 6, we extend the technique we used to prove Lemma 13
in two distinct directions, both relatively straightforward. In Section 5.2, we use this
technique to study pendant subtrees containing vertices of weight greater than one; in
Section 5.3, we prove Lemma 19, which can be viewed as a strengthening of both Lemma
13 and of Lemma 16 from Section 5.2, in the special case that the pendant subtree under
consideration is a single vertex.
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5.2. Pendant subtrees containing heavier vertices

In the last subsection we considered pendant subtrees containing only weight one
vertices. In this subsection, we present and prove a similar lemma for pendant subtrees
containing heavier vertices. More precisely, we prove bounds on Ec(T, k), which we shall
want for large but bounded k. Recall that we have fixed a positive integer W and a
positive integer weight vector −→w = (w1, . . . , wn) with n > βW .
Lemma 16 Given any fixed positive integer k,

Ec(T, k) ≤ (1 + o(1))
W

ek
, (31)

where o(1) → 0 as W → ∞.
The proof of Lemma 16 proceeds by comparing the probabilities of PS and

⋃

Q∈QS,k
LS,Q.

Without the restriction that all vertices in the pendant subtrees have weight one, we
are unable to compare these probabilities directly and our bounds are correspondingly
weaker; however, the flavour of the proof is by and large the same as that of Lemma 13.

PROOF. [Proof of Lemma 16] Fix a positive integer k as above and ǫ > 0. For any m
with 1 ≤ m ≤ ⌊W/2k⌋, let

Sm,k = {S ⊆ {1, . . . , n} : w(S) = mk}
(this notation differs slightly from that in Lemma 13). Given S ∈ Sm,k, let QS,k be the
set of partitions of S into sets S1, . . . , Sm, ordered lexicographically, such that for all
i ∈ {1, . . . , m}, w(Si) = k; of course, QS,k may be empty, for example, if there is j ∈ S
with wj > k. Next, for any S ∈ Sm,k and any Q ∈ QS,k, let

RS,Q = {Trees T ′ : V (T ′) = S, ∀S′ ∈ Q, T ′
S′ is connected},

and let

TQ = {m-tuples (T1, . . . , Tm) : Ti is a tree and V (Ti) = Si ∀i = 1, . . . , m}.
Given S and Q as above, let RS,Q be the event that T contains a pendant subtree
T ∈ RS,Q. We remark that

⋃

Q∈QS,k
RS,Q ⊆ PS . Also, let LS,Q be the event that for all

S′ ∈ Q, T contains a pendant subtree T with V (T ) = S′.
Given S ∈ Sm,k and Q ∈ QS,k, we have

K ′ · P {RS,Q}
=

∑

{Trees T on [n]−S}

∑

T ′∈RS,Q

∑

u∈T,v∈T ′

mass(T )mass(T ′) · wuwv

=
∑

{Trees T on [n]−S}

∑

T ′∈RS,Q

mass(T )mass(T ′) · km(W − km). (32)

Given S and Q = (S1, . . . , Sm) as above, the following procedure constructs all trees
T ′ ∈ RS,Q.

(i) For each i = 1, . . . , m, choose a tree Ti with vertex set Si.
(ii) Choose a labelled tree T ∗ with m vertices, say v1, . . . , vm.
(iii) For each edge e = vivj of T ∗, choose ue ∈ V (Ti), ve ∈ V (Tj), and add edge ueve

between Ti and Tj.
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The total mass of all trees T ′ ∈ RS,Q corresponding to a given choice of T1, . . . , Tm and
T ∗ is

k2(m−1) ·
m
∏

i=1

mass(Ti);

the factor k2(m−1) is the contribution of all possible choices for edges between the trees
T1, . . . , Tm. Furthermore, there are mm−2 ways to choose the tree T ∗. We therefore have

∑

T ′∈R(S,Q)

mass(T ′) =
∑

(T1,...,Tm)∈TQ

mm−2k2(m−1)
m
∏

i=1

mass(Ti). (33)

Let

m(S, Q) =
∑

{Trees T on [n]−S}

∑

(T1,...,Tm)∈TQ

mass(T ) ·
m
∏

i=1

mass(Ti).

Combining (32) and (33), we have

K ′ · P {RS,Q}=
∑

{Trees T on [n]−S}

∑

(T1,...,Tm)∈TQ

mass(T ) ·
m
∏

i=1

mass(Ti) · mm−1k2m−1(W − mk)

= m(S, Q) · mm−1k2m−1(W − mk). (34)

Further, by almost the same argument we used to establish (26) in the proof of Lemma
13, it can be seen that

K ′ · P {LS,Q} =
∑

{Trees T on [n]−S}

∑

(T1,...,Tm)∈TQ

mass(T ) ·
m
∏

i=1

mass(Ti) · [k(W − mk)]m

= m(S, Q) · [k(W − mk)]m. (35)

Combining (34) and (35), we obtain

P {RS,Q} = P {LS,Q} ·
mm−1k2m−1(W − mk)

[k(W − mk)]m
= P {LS,Q} ·

[

mk

W − mk

]m−1

.

Since
⋃

Q∈QS,k
RS,Q ⊆ PS , and [mk/(W − mk)]m−1 ≥ [mk/W ]m−1, we therefore have

P {PS} ≥
∑

Q∈QS,k

P {RS,Q} ≥
[

mk

W

]m−1

·
∑

Q∈QS,k

P {LS,Q} . (36)

The remainder of the proof follows from (36) just as Lemma 13 followed from (28). 2

5.3. Light pendant leaves

We call vertex i light (with respect to −→w ) if wi ≤ 5, and let ℓ(T) be the total weight of
all light leaves; we remark that ℓ(T) ≥ c(T, 1), and if wi = 1 for all i then ℓ(T) = c(T, 1).
For the remainder of Section 5.3, let S = {v ∈ [n] : wv ≤ 5}, and let
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S(T) = {v ∈ S : v is a leaf of T}.
For 1 ≤ i ≤ ⌊W/5⌋, let Si = {S ⊂ S : |S| = i}, and define Si(T) accordingly. In the
special case that we are only considering leaves (i.e. that k = 1) the identity in the
derivation of (29) is based on the fact that

∑

S∈Sm,1

∑

Q∈QS,1

1[LS,Q] =

(

c∗(T, 1)

m

)

=

(

c(T, 1)

m

)

. (37)

The analogous identity does not quite hold when we replace c(T, 1) by ℓ(T); however,
it turns out that it is not too far from holding. As before, for all S ∈ S, let LS be the
event that for all v ∈ S, v is a leaf of T. We can prove:
Lemma 17 For any positive integer k ≤ w(S), if ℓ(T) ≥ k then

(

1 − 10k2

ℓ(T)

)

·
(

ℓ(T)

k

)

≤
∑

S∈Sk

1[LS]

∏

j∈S

wj ≤
(

ℓ(T)

k

)

PROOF. [Proof of Lemma 17] We think of the set {1, . . . , ℓ(T)} as split into blocks
B1, . . . , B|S(T)|, where B1 = {1, . . . , w1} and for each j = 2, . . . , |S(T)|,

Bj =

{(

j−1
∑

m=1

wm

)

+ 1, . . . ,

(

j−1
∑

m=1

wm

)

+ wj

}

.

Observe that
∑

S∈Sk
1[LS]

∏

j∈S wj =
∑

S∈Sk(T)

∏

j∈S wj . Furthermore, the sum
∑

S∈Sk(T)

∏

j∈S wj

is simply the number of ways of choosing k elements from [ℓ(T)], each from a distinct
block; the second inequality follows immediately. This also establishes the first inequality
in the case k = 1.

To see that the first inequality holds when k ≥ 2, we first note that since k ≤ ℓ(T),
(

ℓ(T) − 2

k − 2

)

=

(

ℓ(T)

k

)

· k(k − 1)

ℓ(T)(ℓ(T) − 1)
≤
(

ℓ(T)

k

)

k2

ℓ(T)2
,

so the number of ways of choosing k elements from [ℓ(T)] with at least two elements
from some block is at most

|S(T)| ·
(

5

2

)

·
(

ℓ(T) − 2

k − 2

)

≤ 10|S(T)| · k2

ℓ(T)2
·
(

ℓ(T)

k

)

,

so
(

ℓ(T))

k

)

≤
∑

S∈Sk(T)

∏

j∈S

wj +
10|S(T)|k2

ℓ(T)2
·
(

ℓ(T)

k

)

≤
∑

S∈Sk(T)

∏

j∈S

wj +
10k2

ℓ(T)
·
(

ℓ(T)

k

)

,

and the first inequality follows by rearrangement. 2

The following easy inequality will also be useful:
Lemma 18 Given any non-empty set S ⊂ S,

∑

Trees T on S

mass(T ) ≥ |S||S|−2 · (
∏

v∈S wv)2

25
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PROOF. Let T∗ be a uniformly random tree with vertex set S. By Jensen’s inequality,
we have

logE {mass(T∗)} ≥E {log mass(T∗)}

= E

{

∑

v∈S

dT∗(v) log wv

}

=
∑

v∈S

(log wv) · EdT∗(v) (38)

By symmetry, E {dT∗(v)} = 2 − 2/|S| for all v ∈ S, so as w2
v ≤ 25 for all v ∈ S, (38)

yields

E {mass(T∗)} ≥
∏

v∈S

w2−2/|S|
v ≥

∏

v∈S w2
v

25
.

As E {mass(T∗)} =
∑

Trees T on S mass(T )/|S||S|−2, the fact follows. 2

Using Lemmas 17 and 18, we can now prove the key lemma of this subsection.

Lemma 19 Eℓ(T) ≤ (1+o(1))W
e .

PROOF. Let m(S) =
∑

Trees T on [n]−S mass(T ). For any 1 ≤ i ≤ ⌊W/5⌋ and any
S ∈ Si we have

K ′ · P {PS}
=

∑

Trees T on [n]−S

∑

Trees T ′ on S

∑

u∈S,v∈[n]−S

mass(T )mass(T ′)wuwv. (39)

By Lemma 18 and (39), we have

K ′ · P {PS} ≥
∑

{Trees T on [n]−S}

∑

u∈S,v∈[n]−S

mass(T ) · ii−2 ·
∏

v∈S w2
v

25
· wuwv.

=
∑

Trees T on [n]−S

mass(T )ii−2[i(W − i)]

∏

v∈S w2
v

25

= m(S) · [ii−1(W − i)]

∏

v∈S w2
v

25
. (40)

Let MS be the set of vectors M = (m1, . . . , mi) with elements from [n] − S. List the
elements of S in increasing order of weight as (s1, . . . , si). We may uniquely describe
a tree T with vertex set {1, . . . , n} for which the vertices of S are all leaves by first
specifying a tree T ′ with vertex set [n]− S, then choosing M = (m1, . . . , mi) ∈ MS and

connecting mj to sj , for j = 1, . . . , i. Such a tree has mass mass(T ′) ·∏i
j=1 wmj

wsj
; it

follows that
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K ′ · P {LS}=
∑

{Trees T ′ on [n]−S}

∑

M∈MS

mass(T ′)
∏

m∈M

wm ·
∏

v∈S

wv.

=
∑

Trees T ′ on [n]−S

mass(T ′)(W − i)i
∏

v∈S

wv

= m(S) · (W − i)i ·
∏

v∈S

wv. (41)

Combining (40) and (41) yields that for any S ∈ Si,

P {PS} ≥P {LS} ·
ii−1(W − i)

(W − i)i
·
∏

v∈S wv

25

≥
(

i

W

)i−1

· E
{

1[LS]

}

·∏v∈S wv

25
. (42)

Choose i = i(W ) so that i(W ) → ∞ as W → ∞ and so that i ≤ W 1/4. We have

n ≥ Ec(T, i) =
∑

S∈Si

P {PS} , (43)

which combined with (42) gives

25n≥
(

i

W

)i−1

·
∑

S∈Si

E
{

1[LS]

}

·
∏

v∈S

wv

=

(

i

W

)i−1

·E
{

∑

S∈Si

1[LS] ·
∏

v∈S

wv

}

. (44)

By (44) and Lemma 17, it follows that

25n≥
(

i

W

)i−1

·E
{(

ℓ(T)

i

)(

1 − 10i2

ℓ(T)

)}

(45)

where
(

x
i

)

= 0 if x < i. If ℓ(T) ≥ i3 then (1 − 10i2/ℓ(T )) ≥ (1 − 10/i). If ℓ(T) < i3 then

(

ℓ(T)

i

)

≤
(

ℓ(T)e

i

)i

≤ ℓ(T) · i2i−3ei,

so
(

ℓ(T)

i

)(

10i2

ℓ(T)

)

≤ 10eii2i−1.

It follows from these inequalities and from (45) that

25n ≥
(

i

W

)i−1

· E
{(

ℓ(T)

i

)(

1 − 10

i

)

− 10eii2i−1

}

. (46)

Expanding
(

ℓ(T)
i

)

and applying Jensen’s inequality just as in the proof of Lemma 13 we
obtain
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25n≥
(

i

W

)i−1

·
(

(Eℓ(T) − i)i
+

i!

(

1 − 10

i

)

− 10eii2i−1

)

,

= (1 + o(1)) · W

i
· ii

i!
·
(

(Eℓ(T) − i)+
W

)i

− 10eii3i−2

W i−1
. (47)

Since i ≤ W 1/4 and i(W ) → ∞, 10eii3i−2/W i−1 = o(1), so by by Stirling’s formula (47)
gives

25n + o(1)

W
≥
(

1 + o(1)√
2π

)

i−3/2

(

e · (Eℓ(T) − i)+
W

)i

. (48)

Since i(W ) → ∞ and n ≤ W , by rearrangement (48) yields that

(Eℓ(T) − i)≤ (1 + o(1))
W

e

(

(25 + o(1))
√

2πni3/2

W

)1/i

≤ (1 + o(1)
W

e
, (49)

so Eℓ(T) ≤ i + (1 + o(1))W/e = (1 + o(1))W/e as claimed. 2

With Lemmas 13, 16, and 19 under our belt, we are finally ready for the proof of Lemma
6.

5.4. Putting it all together

PROOF. [Proof of Lemma 6] Fix ǫ > 0. We recall the definition of ρi from Section 5.1:
for integers i ≥ 1, ρi = ii−2/(i!ei). Let x(k) be the expected number of leaves of T of
weight k, for k = 1, . . . , 5. More generally, let x(aibj) denote the expected number of
pendant subtrees of T which consist of i vertices of weight a and j of weight b, that is
pendant aibj-subtrees, and so on. In particular, x(1i) is precisely Ec∗(T, i). With this
notation we have:

5
∑

i=1

Ec(T, i)

i(W − i)
=

Eℓ(T) − 3x(3) − 4x(4) − 5x(5)

W − 1

+
x(12)

2(W − 2)
+

x(13) + x(3)

3(W − 3)
+

x(14) + x(13) + x(4)

4(W − 4)

+
x(15) + x(123) + x(14) + x(5)

5(W − 5)
.

We now prove upper bounds on x(13), x(14) and x(123). We may assume that n ≥ 6.
Thus for any tree T on n vertices, any leaf v of T , and any k = 1, 2, 3, there is at most
one edge e of T such that the component of T − e containing v has order k. It follows
that the expected number of pendant subtrees in T of a given order at most 3 which
have a leaf of weight j is at most x(j).

Let k be 3 or 4, and let a and b be vertices with wa = 1 and wb = k. Let pa be the
probability that T has a pendant subtree on a, b with a the leaf (in T), and let pb be

18



the corresponding probability with b the leaf; the latter situation is depicted in Figure 1.
Then pa = kpb, and so the probability that T has a pendant subtree on a, b is (k + 1)pb.
Hence x(1k) is (k+1) times the expected number of pendant 1k-subtrees with the weight
k vertex the leaf, and so x(1k) ≤ (k + 1)x(k). Thus x(13) ≤ 4x(3) and x(14) ≤ 5x(4).

T

a

b

Fig. 1. The event with proba-
bility pb.

T

a

b

c

Fig. 2. The event with proba-
bility qc.

T

a b

c

Fig. 3. The event with proba-
bility 3qc.

We argue similarly for x(123). Now let a, b, c be distinct vertices with wa = wb = 1
and wc = 3. Let qb be the probability that T has a pendant subtree the path abc rooted
at a, and let qc be the probability that T has a pendant subtree the path acb rooted at
a – then qc = 3qb (the latter event is depicted in Figure 2). Furthermore, the probability
that T has a pendant subtree on a, b, c and c has degree 1 is 4qb, as the pendant subtree
containing a, b, and c may be either abc or bac, and in each case the subtree may be
rooted at either a or b. Similarly, the probability that T has a pendant subtree on a, b, c
and c has degree 2 is 4qc, and the probability that T has a pendant subtree on a, b, c and
c has degree 3 is 3qc (this last event is shown in Figure 3). Thus the probability that T

has a pendant subtree on a, b, c is

4qb + 4qc + 3qc = 25qb =
25

4
P {T has a pendant subtree on a, b, c and c is a leaf} .

Hence x(123) is 25
4 times the expected number of pendant 123-subtrees with the weight

3 vertex a leaf, and so x(123) ≤ 25
4 x(3).

Using these upper bounds, we see that for W sufficiently large,

5
∑

i=1

Ec(T, i)

i(W − i)
≤ Eℓ(T)

W − 1
+

5
∑

i=2

x(1i)

i(W − i)

+x(3)

(

− 3

W − 1
+

1

3(W − 3)
+

1

W − 4
+

5

4(W − 5)

)

+x(4)

(

− 4

W − 1
+

1

4(W − 4)
+

1

W − 5

)

+x(5)

(

− 5

W − 1
+

1

5(W − 5)

)

≤ Eℓ(T)

W − 1
+

5
∑

i=2

x(1i)

i(W − i)
. (50)

Given any δ > 0, for W sufficiently large, by Lemma 19 and since ρ1 = 1/e we have

Eℓ(T)

W − 1
≤ (1 + δ) ρ1.
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Also, for each i = 2, . . . , 5, for W sufficiently large, by Lemma 13 we have

x(1i)

i(W − i)
≤ (1 + δ) ρi.

Combining the two preceding equations and (50), we obtain

5
∑

i=1

Ec(T, i)

i(W − i)
≤ (1 + δ)

5
∑

i=1

ρi, (51)

for all W sufficiently large. Next, choose δ > 0 small enough that (1 + δ)2 ≤ (1 + ǫ/2),
and choose k0 ≥ 4/ǫβ – then for all W ≥ 2k0,

⌊W/2⌋
∑

i=k0

Ec(T−→w )

i(W − i)
≤ n − 1

k0(W − k0)
≤ 2

k0
≤ ǫβ

2
. (52)

Choose W0 ≥ 2k0 large enough that W0/(W0 − k0) ≤ 1 + δ and large enough that for
all weight vectors −→w = (w1, . . . , wn) with

∑n
i=1 wi = W and n > βW , (51) holds and

additionally, for all i ∈ {1, . . . , k0}, Ec(T−→w , i) ≤ (1 + δ)W/ie; such a choice of W0 exists
by Lemma 16. For any weight vector as above, since Ec(T−→w , i) ≤ W for all i, by Lemma
12 and by (52), we have

P {F−→w ∈ Fn,2}
P {F−→w ∈ Fn,1}

=

⌊W/2⌋
∑

i=1

Ec(T−→w , i)

i(W − i)

≤
5
∑

i=1

Ec(T−→w , i)

i(W − i)
+

k0
∑

i=6

Ec(T−→w , i)

i(W − i)
+

⌊W/2⌋
∑

i=k0+1

W

i(W − i)

≤
5
∑

i=1

Ec(T−→w , i)

i(W − i)
+

k0
∑

i=6

Ec(T−→w , i)

i(W − i)
+

ǫβ

2
. (53)

By our choice of W0 and by (51) and Lemma 16, we thus have

P {F−→w ∈ Fn,2}
P {F−→w ∈ Fn,1}

≤ (1 + δ)

(

5
∑

i=1

ρi +

k0
∑

i=6

W

i2e(W − i)

)

+
ǫβ

2

< (1 + δ)2

(

5
∑

i=1

ρi +

k0
∑

i=1

1

i2e

)

+
ǫβ

2

< (1 + δ)2β +
ǫβ

2

≤ β
(

1 +
ǫ

2

)

+
ǫβ

2
= (1 + ǫ)β,

which proves (3) and completes the proof of Lemma 6. 2

6. Proof of Theorem 2

In this section we use Lemmas 11, 12, and 13 to prove Theorem 2.
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Let ε > 0, let δ = ln(2/(2 − ε)) and let k = ⌈2/δ⌉. Let W = {1, k + 1, k + 2, . . .},
the set of positive integers aside less {2, . . . , k}. Observe that given any weights −→w =
(w1, . . . , wn) ∈ Wn, any pendant subtree of weight at most k consists only of weight 1
vertices, so Ec(T−→w , i) = Ec∗(T−→w , i) for each i = 1, . . . , k. Recall from Bollobás (2001),
Page 109, that

∑∞
i=1 ρi = 1

2 . For W ≥ 2k, by Lemma 13 and arguing as in (52), it
therefore follows that

⌊W/2⌋
∑

i=1

Ec(T, i)

i(W − i)
≤ (1 + o(1))

k
∑

i=1

ρi +

⌊W/2⌋
∑

i=k+1

Ec(T, i)

i(W − i)

≤ (1 + o(1))

∞
∑

i=1

ρi +
2

k

≤ 1

2
+ δ

for W sufficiently large. Thus, for this choice of W , by Lemma 12 the assumptions of
Lemma 11 are satisfied with γ = 1/2 + δ. By Lemma 11, therefore, for any fixed integer
j > 0, for W sufficiently large and for all integers i with 1 ≤ i ≤ j, we have

P {F ∈ Fn,i+1} ≤
(

1

2
+ ln

(

2

2 − ε

))i
P {F ∈ Fn,i}

i!
. (54)

Just as Claim 4 followed from Lemma 6 (at the end of Section 4), it follows from (54)
that for W sufficiently large,

P {F−→w is connected} ≥ (1 + o(1))e−(1/2+δ)

≥ (1 + o(1))
(

1 − ε

2

)

e−1/2

≥ (1 − ε)e−1/2. (55)

Finally, consider a bridge-alterable class A of graphs on {1, . . . , W} in which each graph
has girth greater than k and where W is large enough that (55) holds. Then for each
equivalence class [G], each co-ordinate w in the corresponding weight vector −→w is in W ,
and so by (55), P

{

F−→w i
is connected

}

≥ (1−ε)e−1/2. Theorem 2 then follows by Lemma
5.

7. Concluding remarks

Recently, a substantial amount of work has gone into counting the number of random
graphs in a variety of graph classes that are addable; in some cases, this has also led
to precise estimates on the probability of connectedness. Giménez and Noy (2005) have
shown that for a uniformly random planar graph, the probability of connectedness is
approximately 0.963253 (correct to 6 decimal places, as are all the figures in this para-
graph). Similarly, Bodirsky et al. (2005) have shown that for series-parallel graphs and
outerplanar graphs, the probabilities of connectedness are approximately 0.889038 and
0.862082, respectively; and Gerke et al. (2006) have shown that for random K3,3-minor-
free graphs, this probability is approximately 0.963253. For further discussion of the sizes
of minor-closed graph families, see Bernardi et al. (2007); Giménez et al. (2007). All these
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results agree with the conjecture from McDiarmid et al. (2006) that the class of forests
is asymptotically the worst possible example of an addable graph class, from the point
of view of connectivity. (The conjectured value, e−1/2, is approximately 0.606531; our
bound of e−β is approximately 0.582306.) We venture the following, stronger conjecture.
Conjecture 20 For any n and any non-empty weakly addable set A of graphs on {1, . . . , n},
if G is a uniformly random element of A and F is a uniformly random element of Fn,
then

P {G is connected} ≥ P {F is connected} . (56)

This conjecture would of course yield the conjecture in McDiarmid et al. (2006). By
Lemma 5, Conjecture 20 above would imply the following weaker conjecture, which would
in turn still yield the conjecture in McDiarmid et al. (2006) in the special case when A
is bridge-alterable rather than just bridge-addable.
Conjecture 21 For any positive integer weights −→w = (w1, . . . , wn)

P {F−→w is connected } ≥ P {F is connected}

where F is a uniformly random element of Fn.
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O. Giménez, M. Noy, and J.J. Rué. Graph classes with given 3-connected components:
asymptotic counting and critical phenomena. Electronic Notes in Discrete Mathemat-
ics, 29:521–529, 2007.

C. McDiarmid, A. Steger, and D. Welsh. Random planar graphs. Journal of Combina-
torial Theory, Series B, 93:187–206, 2005.

C. McDiarmid, A. Steger, and D. Welsh. Random graphs from planar and other addable
classes. In M. Klazar, J. Kratochvil, M. Loebl, J. Matousek, R. Thomas, and P. Valtr,
editors, Topics in Discrete Mathematics, dedicated to Jaric Nesetril on the Occasion
of his 60th birthday, volume 26 of Algorithms and Combinatorics, pages 231–246.
Springer-Verlag, 2006.

22



J.W. Moon. Counting labelled trees. Number 1 in Canadian Mathematical Monographs.
Canadian Mathematical Monographs, 1970.
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