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ABSTRACT. We show that the problem of representing every odd positive integer as
the sum of a squarefree number and a power of 2, is strongly related to the problem
of showing that p? divides 2P~ — 1 for “few” primes p.

INTRODUCTION

It is frustrating that there is no plausible known approach to the question of deter-
mining whether there are infinitely primes p for which p? does not divide 2P~ — 1.
We know very little of consequence; only the computational result [1] that p* di-
vides 2P~1 — 1 for just the primes 1093 and 3511 of all p < 4.10'2. Naive heuristics
suggest that the number of primes up to z, for which p? divides 2P~! — 1, should
be ~ loglog x; and so we believe that there are infinitely many primes for which p?
divides 2P~ 1 —1, and infinitely many primes p for which p? does not divide 2P~ —1.

In 1910, Wieferich [15] showed that if there are integers x, y, 2 satisfying x? 4+y? =
2P and (p,ryz) = 1 then p? divides 2P~ ! — 1; such primes p are thus known as
“Wieferich primes’. Of course, Fermat’s Last Theorem is now proved [16] so this
result has become a (delightful) historical curiosity.

Recently Paul Erdés has made the following, seemingly unrelated, conjecture
(see section A19 in [9)):

Conjecture 1 (Erdds). FEvery odd positive integer is the sum of a squarefree num-
ber and a power of 2.

There is no significant loss of generality in Erdés’s restriction to odd integers
n. For if n = m + 27 then m is odd, so 2n = 2m + 27!, and vice-versa; and if
4n = m + 27 then 4 divides m so it cannot be squarefree.

In this note, we show that these questions are indeed related.

Theorem 1. Suppose that every odd positive integer can be written as the sum of
a squarefree number and a power of 2. Then there are infinitely many primes p for
which p? does not divide 2P~1 — 1. In fact there then exists a constant ¢ > 0 such
that there are arbitrarily large values of x for which

H{primes p < 2 :2P"1 £ 1 (mod p?)} > c#{primes p < z}.
In the other direction we prove, at the suggestion of Neil Calkin:
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Theorem 2. Assume that there are < 2logx/(loglog x)? primes p < = for which
p? does divide 2P~ —1, whenever x > 3. Then all but O(z/logx) of the odd integers
n < x can be written as the sum of a squarefree number and a power of 2.

Remark. Assuming 3~ »,,-1_; 1/ordy(2) < 5/8 we can make the same deduction
by the same proof.

It would be nicer to have an “if and only if” statement of some kind, rather than
our two results above, which would probably require some strengthening of both of
these results. We hope the reader will embrace this challenge.

Erdés’s conjecture has been verified for all odd integers up to 107 by Andrew
Odlyzko.

In Proposition 3 we give a result giving conditions under which we can guar-
antee that almost all integers, in certain arithmetic progressions, are the sum of a
squarefree number and an element of a given sequence A. This implies Theorem
2 and various other results. For example, there are no known primes for which
2p~1 =3P~ =1 (mod p?). If this is true, then we deduce:

Corollary 1. Suppose that there does not exist a prime p for which p* divides both
2P=1 — 1 and 3P~ — 1. Then almost all integers coprime to 6 are the sum of a
squarefree number and an integer which is the product of a power of 2 and a power
of 3.

One might try to justify Erdos’s conjecture by the following heuristic argument.
The probability that a random odd integer is squarefree is [ (1 —1/ p?) = 8/7%.
Thus the probability that none of n —2,n—4,n—38,...,n—2" is squarefree (under
the assumption that these events are independent) is (1 — 8/7%)" =< n~° where
c = —log(l — 8/m?)/log?2 (since r = logn/log2 + O(1)). Since 8/72 < 4/5,
we have ¢ > log5h/log2 > 2. Hence, we ‘deduce’, by the Borel-Cantelli Lemma,
that at most finitely many n fail to be the sum of a squarefree number and a
power of 2. In fact, one can deduce from similar reasoning that if r(n) denotes the
number of positive integers i for which n — 27 is a positive squarefree integer, then
r(n) ~ (8/m2)logn/log?2 for almost all integers n (we write that r(n) has “normal
order” (8/72)logn/log?2).

However, this reasoning is highly dubious, since the proof of Theorem 1 (in fact,
of Proposition 1 below) rests, appropriately interpreted, on the fact that the events
n—2,n—4,...,n—2" being squarefree, are not independent. By studying the first
two moments of r(n), we show below that r(n) does not have a normal order. In
fact our analysis extends to r4(n), the number of ways of writing n = m + a; with
m a positive squarefree number and a; € A, where A = {a; < ay < ...} is a sparse
sequence of positive integers. Define A(z) to be the number of a; < x.

Theorem 3. Suppose we are given a sequence A of distinct positive integers for
which A(2x) ~ A(z), and an arithmetic progression a (mod ¢*) with (a — a;, q*)
squarefree for all a; € A. Then ra(n) has mean ~ c,A(x) when averaging over the
integers n < x, for which n = a (mod ¢*), where ¢, := [T (1 — 1/p?).

Moreover, these T 4(n) have normal order c,A(n) if and only if A is equidis-
tributed amongst the arithmetic progressions (mod d?), for every integer d which
is coprime to q (that is, there are ~ A(x)/d? integers a; < x with a; =1 (mod d?)
for each 1).
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Remark. Note that the condition (a — a;, ¢?) is squarefree for all a; € A ensures
that it is feasible that n — a; is squarefree for each a;.

Take A ={2,4,8,...} with ¢ =2 and a = 1 or 3. Since the powers of 2 are not
equi-distributed in residue classes (mod d?) for any odd d, we deduce by Theorem
3 that r(n) = r4(n) cannot have a normal order.

We now give an example of a set A which is sparser than the powers of 2, but
for which r4(n) has a normal order.

Corollary 2. Almost all integers are the sum of a squarefree number and an integer
of the form 11 + 22 + ...+ k*. In fact, if n = 2, 3 (mod 4) the number of such
representations has mormal order (8/7*)logn/loglogn; and if n = 0, 1 (mod 4),
the number of such representations has normal order (4/7%)logn/loglogn.

The genesis of Erd6s’s conjecture is from de Polignac’s (incorrect) claim [10]
(retracted in the second reference [10]) that every odd integer is the sum of a prime
and a power of 2. The first counterexample is 127, though Euler had noted the
counterexample 959 in a letter to Goldbach. In 1934, Romanoff [12] showed that
a positive proportion of odd integers can be represented in this way, and in 1950
van der Corput [14] and Erdés [5] showed that a positive proportion of odd integers
cannot be represented in this way. Romanoff’s proof uses the Cauchy-Schwarz
inequality, estimating the mean of the number of representations, and bounding the
mean square; this last upper bound follows from Brun’s sieve followed by showing
that > ,1/d ordg(2) < co. Erdds invented the elegant notion of a “covering system
of congruences”, which we describe in detail in the next section, to find an infinite
arithmetic progression of odd values of n that cannot be written as a prime plus a
power of 2. It is still an open question, of Erdés, as to whether there is a precise
proportion of the odd integers that are so representable (asymptotically), and then
even a informed prediction of what that proportion is (of course the Romanoff
and Erdds results can be used to get non-trivial upper and lower bounds on that
proportion).

Next one might perhaps replace “prime” by “squarefree number” in the above
problem (as Erdds did); an alternative is to replace “a power of 2”7 by “two powers
of 27. Unfortunately, Crocker [2] observed that for any odd integer n = 22" — 1
with m > 3, the numbers n — 2% — 20 with 1 < a < b < 2™ are never prime. To see
this let 2% be the highest power of 2 dividing b — a. Then 92" 1 1 divides 20— + 1,
which divides 2° + 2%, Moreover k < m — 1 so that 92" + 1 divides n, and so 92" +1
divides n — 2% —2°. If these were equal then 22" = 2b 424 4 22" 4 2, and this can be
seen to be impossible by considering this equation mod 16 to restrict a and b. Thus
it is not the case that every odd integer is the sum of a prime and two powers of 2,
though Erdos predicted that perhaps almost all odd integers n can be so described.
We conjecture that all odd integers > 1 are the sum of a prime and at most three
powers of 2. Along these lines, Gallagher [8] showed that the proportion of odd
integers that can be written as a prime plus the sum of k£ powers of two, tends to
1 as k — oo.

We take a lead from this line of investigation to discuss whether one can prove
that almost all odd n are the sum of a squarefree integer plus at most k£ powers of
2, for some k. We prove:
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Theorem 4. Assume that }_ 2 5,-1_y 1/0rdy(2) < co. Then there exists an integer
k such that almost every odd integer can be written as the sum of a squarefree
number plus no more than k distinct powers of 2.

It is completely straightforward to prove the analogy to Gallagher’s result: Every
integer up to 2 is the sum of at most k powers of two. The number of integers
amongst n — 1,n — 2,...,n — 2 divisible by the square of a prime p < 2% is <
D <ok (2% /p?+1) < .49%x2F+0(2F /k) < 281 for k sufficiently large. Of the integers
n < x, the number for which more than 2¥~! of the integers n —1,n —2,...,n —2*
are divisible by the square of a prime p > 2F is

<2U7FY N Y i< > ]%<<k%'

n<T \/z>p>2k 1<i<2k Va>p>2k
p’In—i

Thus all but O(z/k2F) of the odd integers < z can be written as the sum of a
squarefree number and k powers of two.

There are many other intriguing questions of this type asked by Erdds (see section
A19 of [9]): Erdés conjectured that 105 is the largest integer for which n — 2% is
prime whenever 2 < 2F < n (analogously it was shown in [3] that 210 is the largest
integer 2n for which 2n —p is prime for every prime p, n < p < 2n). He showed that
there exist n for which n — 2% is prime for > loglogn such values of k, and asked
whether this could be improved. He also conjectured that for infinitely many n, all
of the integers n — 2F, 2 < 2% < n are squarefree. Erdés conjectured that there are
arbitarily large gaps between consecutive odd numbers that can be represented as
the sum of a prime and a power of 2.

Erdés asked whether there are > x¢ odd integers n < x that are not equal to a
prime plus two powers of two. By modifying Crocker’s construction slightly, this is
easily shown for arbitrarily large x if infinitely many Fermat numbers Fj = 22" 41
are composite, and for all z if {k; 1 — k;} is bounded where Fj, is the sequence of
composite Fermat numbers.

Acknowledgements: We’d like to thank Neil Calkin, Jeff Lagarias, Tauno Met-
sankyla, Andrew Odlyzko and Carl Pomerance for helpful remarks incorporated
into this paper.

Notation: Henceforth A will always denote a sequence {a; < as < ...} of positive
integers. We will let A(x) be the number of a; < z, and A(z;d,b) be the number
of a; < z for which a; = b (mod d).

COVERING SYSTEMS AND ALL THAT

The more detailed proof is that of Theorem 1, which stems from some modifica-
tions of constructions due to Paul Erdés. We will discuss here these constructions,
beginning with the idea behind Erdés’ disproof of de Polignac’s “conjecture” [5].

A covering system for the integers is a finite set of arithmetic progressions, such
that every integer belongs to at least one of these arithmetic progressions. For
example 0 (mod 2);1 (mod 2) or 1 (mod 2);1 (mod 3);0 (mod 6);2 (mod 6).

Now suppose that we can find a covering system with arithmetic progressions
like a; (mod ord,,(2)), for i = 1,2,...,k, where the p; are distinct, odd primes.
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Let ng be the smallest odd integer satisfying ng = 2% (mod p;) for each i (which
is a well defined integer (mod 2]];.,., p:;) by the Chinese Remainder Theorem).
For any n = ng (mod 2[[, ., p;) and for any integer j, we have that j = a;

(mod ord,, (2)) for some i (since we have a covering system above), and so n—27 =
no — 2% = 0 (mod p;). Therefore n — 27 is composite provided it is > p;; and if
this is so for each j with 29 < n, then n cannot be written as the sum of a prime
and a power of 2.

There are several ways to get around the problem that we might have n—27 = p;
for some 7 and j. Usually one imposes an extra congruence on n. Alternately, note
that if n < 2™*! can be so represented then j < m and 1 < i < k, so that
there are < mk such exceptional n. However the number of integers n = ng

(mod 2[[; ;< pi) in this range is > 2™/[[;c,<,pi — 1, so we certainly have
non-exceptional such n if m is chosen sufficiently large.

The question reduces to producing such a covering system. This is easily done
by taking 0 (mod ords(2) = 2), 0 (mod ord7z(2) = 3), 1 (mod ords(2) = 4), 3

(mod ord;7(2) = 8), 7 (mod ord;3(2) = 12), 23 (mod orday;(2) = 24); so we end
up with the arithmetic progression n = 7629217 (mod 11184810).

Define w(p) to be the order of 2 (mod p?). If we were able to construct a covering
system out of arithmetic progressions with moduli w(p), then we could give a similar
disproof of Conjecture 1.

Theorem 5. Suppose that there exists a covering system {a; (mod w(p;))}i<i<m
where the p; are distinct, odd primes. Then a positive proportion of the odd integers
n < x cannot be written as the sum of a squarefree number and a power of 2.

Proof. Let n be any odd integer = 2% (mod p?) for 1 < i < m (the density of such

2

odd integers is 1/ <H1 <i<m, pz-) > 0 amongst the odd integers). For any positive
integer j, select i, 1 < i < m so that j = a; (mod w(p;)) (which is possible by
hypothesis), and thus n — 27 is divisible by p?. Therefore n — 27 is never squarefree
and so n cannot be written as the sum of a squarefree number and a power of 2.

However, we do not believe that such a covering system can exist:

Conjecture 2. There is no finite set of distinct, odd primes {p1,p2,...,pm} and
integers ay,as, . .., a,, such that every integer belongs to at least one of the congru-
ence classes a; (mod w(p;)).

Erdés remarked to us that, given that Theorems 1 and 2 suggest that it will
probably be difficult to prove Conjecture 1, we might try for the weaker result that
“almost all” odd n can be represented as the sum of a squarefree number and a
power of 2. In Theorem 5 we saw that to prove this we will at least need to show
that Conjecture 2 is true, which looks difficult. One encouraging remark is that,
by a slight strengthening of Conjecture 2, we are able to deduce that “almost all”
odd n can be represented as the sum of a squarefree number and a power of 2:

Conjecture 3. There exists a constant 6 > 0 such that, for any finite set of primes
{p1,p2,...,pm} and any choice of integers ay, as, . .., anm, the proportion of positive
integers which belong to at least one of the congruence classes a; (mod w(p;)), is
<1-6.
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Theorem 6. Assume that Conjecture 3 is true. Then “almost all” odd integers
n < x can be written as the sum of a squarefree number and a power of 2.

Proof. Fix integer K and consider odd n in the range 2% < n < 2K+1, Select y =
log K, so that the number of integers n — 2°, 1 < i < K not divisible by the square
of any prime < yis > 6K —27%) > §K /2, using Conjecture 3 and the combinatorial
sieve. Moreover, the total number of pairs (n,4) in these ranges, for which n — 2°
is divisible by the square of a prime > y is < K3 _ 2B+ /2 <« K2K /ylogy;
and thus there are < § K/2 such values of i for all but O(2% /log K loglog K) of the
values of n in our range. For these n, we have some i with n — 2° squarefree, and
the number of failures is thus < x/loglogz.

Note that the condition »_ 1/w(p) < 1 implies Conjecture 3 (with § = 1 —
>, 1/w(p)), which implies Conjecture 2.

Lemma 1. If Conjecture 3 is true then 3, 1/w(p) < oo.

Proof. Select a,’s by induction as follows: Let S, be the set of positive integers
< by = lemfw(q) : 2 < ¢ < p| which do not belong to any of the arithmetic
progressions a, (mod w(q)) for ¢ < p, and note that 6, := |S,|/b, is exactly the
proportion of all positive integers not belonging to any of the congruence classes
ay (mod w(q)) with ¢ < p. Given the choices of a, for each ¢ < p, we select a,

(mod w(p)) so that this arithmetic progression contains as many integers in .S,
as possible. Evidently there must be one such arithmetic progression containing
> |Sp|/w(p) such integers, and thus d; < (1 — 1/w(p))d,, where ¢ is the smallest
prime > p. Starting with ag = 0, and then iterating the above procedure, we find
that 6, < [[,.,(1 —1/w(q)). Now, Conjecture 3 implies that §, > ¢ > 0 for all p,
and so ) 1/w(q) must converge.

DEDUCTION OF THEOREMS 1 AND 2 FROM TECHNICAL PROPOSITIONS

Theorems 1 and 2 follow from stronger, but more technical, propositions.

Proposition 1. Let w(p) be the order of 2 (mod p?). Fiz e > 0. If there exist
arbitrarily large values of y for which

()= () s

p<y

then there are infinitely many odd integers n which cannot be written as the sum of
a squarefree number and a power of 2.

In the other direction we show

Proposition 2. Suppose that

1
2o <t
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Then all but O(z/logz) of the odd integers n < x can be written as the sum of a
squarefree number and a power of 2.

One can see that there is a lot of difference in these hypotheses in their require-
ments for the average size of 1/w(p). Improving this paper would necessitate closing
that gap.

Deduction of Theorem 1 from Proposition 1: Suppose that the conclusion of Theo-
rem 1 is false so that

#{primes p <z : 2P~ £1 (mod p*)} = o(#{primes p < z}).

Thus almost all primes p satisfy 2°~1 = 1 (mod p?), implying that w(p) < p — 1.
Moreover if p = +1 (mod 8) then 2 is a quadratic residue (mod p) so that w(p) <
p_1

5

Now, as is well-known,

<y
and
H (1 1 ) < 1
o _9 Moo iN1/2°
o p—2 (logy)Y/
p=+1 (mod 8)
Therefore
1 1 1
1——— ) < 1—— . 1—- —
1;[( w(p)>_ 1;[ ( p—l) _H ( p—2>
p<y p<y p<y, p==+1 (mod 8)
2P~ 1'=1 (mod p?) 2P~1=1 (mod p?)
1
< llog y)3/2+e

The condition in Proposition 1 is thus satisfied and so there are infinitely many
integers n which cannot be expressed as the sum of a squarefree number and a
power of 2. Theorem 1 follows.

Remark. This argument can be used to show that one can take any constant c, in
the range 1/4 > ¢ > 0, in Theorem 1. One can improve this by considering the
appropriate products over those primes p for which 2 is a cubic residue mod p, or
a quartic residue, or quintic residue, etc. The density of such primes is determined
by the Cebotarev Density Theorem. By such methods we were able to show that

<Zp§y l/ordp(2)> /loglogy — oo as y — oo. This leads us to ask:

What is the true order of magnitude of Hp <y <1 — Wi,(z)) ?

As far as the averaged order of 2 (mod p?) is concerned, we certainly believe
that Zp ﬁ < 00, and that even the hypothesis of Proposition 2 is true.
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Deduction of Theorem 2 from Proposition 2: We write

Z pord Z Z ]1)

p prime n>2 p prime
ord,(2)=n

Now, if ord,(2) = n then p =1 (mod n). Thus p > n and so the total number of
such primes is < log(2" — 1)/log(n + 1) < nlog2/logn.
Therefore, for m = [nlog2/logn)|

1 & 1 "1
ord,(2)=n

log 2 1
(logm+1) < log (ne 08 ) < 28
logn n

3|’—‘

for n > 7 > 2¢. Thus for N > 6,

1 1 logn > logt 1 +log N
E — E - < dt = .
no = n? = /N 2 N
n>N+1 p prime n>N+1
ordp(2)=n

Using Maple, we have determined that

> 1 3 L 0.31586267847633 . .

n -
n<100 p prime
ord,(2)=n

Also (1 4 1log100)/100 = 0.05605170185988 . .. so that

Note that if p? divides 2P~! — 1 then w(p) = ord,(2); otherwise w(p) = p ord,(2).
Therefore

I 1 p—1
2 o= 2 pad@t 2 pod@)

p prime p prime p2|2p—1-1
1
< 0.372
Y ord, (2)
p2|2p—1-1

Now we know that ord,(2) > logp/log2 and that only p = 1093 and p = 3511
satisfy p? | 2P~ — 1 when p < 4-10'2. Also #{p < z : p*> | 2?71 — 1} <



A BINARY ADDITIVE PROBLEM OF ERDOS AND THE ORDER OF 2 MOD p? 9

2log x/(loglog z)? by the hypothesis of Theorem 2, so that

ord,(2) ~ ordigo3(2)  ordssi1(2) log p

p2|2r—1—1 p>4-1012
p’[2P 1
- 1 N 1 N log 2 2log(4 - 10'2)
— 364 1755  log(4-10'?) (loglog(4 - 1012))2
+/ log2d( 2logt 2)
11012 logt  \ (loglogt)
2log 2 o 2log2
<0. 2
= 000332+ (loglog(4 - 1012))2 * [1.1012 tlogt(loglogt)?
2log?2

<0.12 11 = (0.5371568161 ... .

< 0.1255361175 + loglog(4 - 1072) 0.537156816
Thus

Zi<.9091...

~ w(p)

and the hypothesis of Proposition 2 is satisfied.

THE PROOF OF PROPOSITION 1: TWO CONSTRUCTIONS OF ERDOS

Let m = [] p and select N so that 2y = (% — 6) log N. We shall construct an
p<2y

arithmetic progression ¢ (mod m?), such that if n < N and n = ¢ (mod m?) then
(n— 2¢,m?) is divisible by a square of a prime for 1 < i < r, where 2" < N < 27+1,
Since m? < N!7¢ (by the Prime Number Theorem) there exist such integers n,
and the result follows.

We shall actually select arithmetic progressions a, (mod w(p)) for each prime
p < 2y so that every integer in [1,r] belongs to at least one of these arithmetic
progressions (rather like in the “Erdés-Rankin method” [4,11]). Then we select ¢ =
29» (mod p?) for each p < 2y, constructing ¢ (mod m?) by the Chinese Remainder
Theorem (rather like in Erdds’s use of covering congruences [5] in the de Polignac
problem). If we can do all this then we have proved our result; for if 1 < i < r
then i = a, (mod w(p)) for some prime p < 2y. But then 2° = 2% (mod p?) and
son —2'=/(—2% =0 (mod p?).

We shall partition the odd primes < 2y into the sequence of odd primes p; =
3, p2 =5,..., pr <y and the set @ of odd primes in the range (y, 2y]. We select
our a,’s in the style of the Erdds-Rankin method:

Let S1 be the set of positive integers < r. For j = 1,..., k, select a,, (mod w(p;))
so that #{n € S; : n = ap, (mod w(p;))} is maximized and then let S;;; =

Si\{n €8 :n=a, (modw(p;))}. Evidently |[S;;1| < |S;|(1— ﬁpj)) so that
k
1 log N 1
et [T (1= ) <Y (1 1)
bl w(p;) log2 - w(p)

1 log N Y
~_9 1—
= (2 5) 2logy < 6)logy <lel
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by hypothesis. We complete our construction by selecting, for each integer a € Si1,
a different prime p, € @ and taking a,, = a (mod w(p,)).

Remark. By a slight modification of the above proof one can prove an analogous
result about representing n in any arithmetic progression of odd numbers (that is
n = 2a+ 1 (mod 2q) for any positive integers a, q).

THE PROOF OF PROPOSITION 2: EASY SIEVING

The proof of Proposition 2 is based on a simple sieving procedure. We develop
this in a very general form, as it will be useful in proving Theorem 4 and other
generalizations.

Proposition 3. Suppose that for a given sequence of positive integers A, there is
an absolute constant ¢ > 0 such that for any sufficiently large =, for every prime p
there is a non-empty set of arithmetic progressions My(z), each with modulus P2,
and an absolute constant 6, > 0, such that

A(x;p*,m) < 6,A(x) + c for all m € M(x).

Let N(z) be the set of all integers n in the interval x < n < 2z for which n € My(x)
for every prime p; and assume that |N(x)| > x. If Zp 0p < 1, then almost all
integersm € N(x) can be written in > A(x) different ways as the sum of a squarefree
number and some a; in the sequence.

Proof. Consider n € N(z), and let y := A(xz). We shall try to write n = m + q;
where a; < x and m is squarefree. Then the number of integers a; < x for which p?
does not divide n—a; for any prime p <y, is >y—>_ _ (6py+c), by the conditions

on the sequence {a;} above. This amount is > (1 — qu dp, — O(1/ log y)) y >,

by hypothesis.
On the other hand, the number of n in the range x < n < 2z, for which n — q;
is divisible by p? for some prime p > y, is, (noting that we must have p? < 2z),

< Z Z 1< Z z/p* < x/ylogy.

y<p<2z1/2n<2z, p’In—a; y<p<2z1/2

Thus there are O(z/ylogy) integers n in the range x < n < 2z, for which there are
> y values of a; < x with n — a; divisible by the square of a prime > y. The result
follows.

Deduction of Proposition 2. We choose our sequence to be the powers of 2; and
take N (x) to be all the odd numbers less than z. Thus, d, = 0 and J, = 1/w(p) for
all odd primes p. Proposition 2 now follows from Proposition 3, and from its proof
noting that A(z) =< logz.

Corollary 1 follows from Proposition 3 by taking 6, = 1/max{w,(2),w,(3)},
which will be < log2/plog p under hypothesis, and by taking N (z) to be all integers
coprime to 6.

A variant, easily proved by modifying the argument in Proposition 3, is

Corollary 3. Suppose that ) 1/w(p) < oo. Then almost all odd integers are
the sum of a power of two and the product of a squarefree number and a bounded
powerful number.
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DEDUCTION OF THEOREM 4

Lemma 2. Given A and squarefree integer v, assume that for any prime p which
does not divide v, there are infinitely many integers in A which are not divisible by
p. Then, for any given arithmetic progression b (mod d) with (d,v) =1 there is a
finite subset of elements of A whose sum is =b (mod d) and =0 (mod v).

Proof. Suppose p® is the exact power of p which divides d. By the pigeonhole
principle there exists a congruence class 3 (mod vd), with p t 3, such that there
is an infinite subsequence of integers in A which are all = § (mod vd). Let k, be
a positive integer = b/3 (mod p®) and = 0 (mod vd/p*). The sum of the first k
integers of our subsequence is = b (mod p®) and = 0 (mod vd/p*). We do this
for each prime p dividing d, in turn, omitting from the sequence A those elements
already used. The sum of all of these subsequences is thus = b (mod d) and = 0
(mod v), as required.

Proposition 4. Suppose that we are given a sequence of positive integers A and
squarefree integer v. If prime p does not divide v then assume there are infinitely
many integers in A which are not divisible by p. For all primes p assume that
A(z;p*,m) < 0,A(z) for all m, if x is sufficiently large, for some absolute constant
op > 0. If Zp dp < oo then, for some integer k > 1 and all large x, almost
all integers m, which are coprime to v, can be written as the sum of a squarefree
number plus at most k distinct elements from A.

Proof. Let x be sufficiently large and prime ¢ > v such that Zp>  0p <1 /2. Let
dv be the product of the primes < ¢g. If p > ¢ then let M, be all residue classes

(mod p?); if p < q and p { v then let M,(z) be that residue class m (mod p?)
for which A(z;p? m) is minimal. For primes p dividing v we select M, to be all
congruence classes b (mod p?) where p does not divide b.

By Proposition 3 (with &, as above for p > ¢, and equal to 1/p* for p < q)
we find that there is an arithmetic progression B (mod d), such that almost every
integer n = B (mod d) with (n,v) =1 and = < n < 2z can be written in > A(x)
different ways as the sum of a squarefree number and some a; in the sequence.

Now select any congruence class b mod d, and consider integers n in this con-
gruence class which are coprime to v and in the range x < n < 2z. By Lemma
2 there is a finite subset of elements of 4 whose sum, s, is = b — B (mod d) and
=0 (mod v). Thus n — s = B (mod d) and is coprime to v. Since s is absolutely
bounded (as a function of the set A), we may use the result in the paragraph above
to deduce that almost all such n — s may be written as the sum of a squarefree
number and some a; in the sequence. The result follows

Theorem 4 is an immediate corollary with v = 2 and 6, = 1/w(p).

UNCONDITIONAL RESULTS

As is well-known, there are ~ 4x/72 odd integers n < z such that n — 2 is
squarefree. Thus a positive proportion of odd integers can be written as the sum
of a squarefree number and a power of 2. With a little work we can show that
there are c,z/2 odd integers n < x such that n — 2% is squarefree, for some 7 in the
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range 1 < ¢ < r, where ¢, > 0 is a computable constant. For examples, defining

d, = Hp23(1 — k/p?):

c1 =d; = 8/m* = 0.810569. ..

co = 2dy — dy = 0.975870. ..

c3 = 3dy — 3dy + d3 = 0.997851 . ..

¢y = 4dy — 6dy + 4d3 — dy = 0.999860 . . .

s = 5dy — 10dy + 10d3 — 5dy + ds = 0.999993 . . .

c = 6d1 — 15dy + 20d3 — 15dy + 6d5 — dg = 0.999999 . . . .

In fact ¢, will always be the sum of multiples of such Euler products, and those
multiples are easily determined for a given r. However the multiples will not persist
in being binomial coefficients, as above, since the order of 2 (mod p?) will play a
significant role for r» > 7 (since then 32 can feasibly divide both n — 2 and n — 27).
Thus we are unable to prove that ¢, — 1 as r — oo, for much the same reasons
as those behind the proof of Theorem 5, although the numerical evidence above is
striking. Of course if we could prove that ¢, — 1 as r — o0, this would allow us to
deduce unconditionally that “almost all” odd integers may be written as a sum of
a squarefree number and a power of 2.

NORMAL ORDER

Proof of Theorem 3. First note that the condition A(2z) ~ A(x) implies that

A(x) ~ A(z/2) ~ A(z/4) ~ .-+ ~ A(z/2") for any fixed r. Thus } _ a; <

A(x/2")x /2" +(A(7) - A(z/2"))r < 2A(x)/2", and therefore ) _ a; = o(rA(x)).
We have

Yoo oram=D) Y p—a) =) 3 u2(m).

n<z a; <z a;<n<z a; <z m<zx—a;
n=a (mod ¢?) n=a (mod ¢?) m=a—a; (mod ¢?)

Since p? does not divide a; — a for all i, and all primes p dividing ¢, and by using
the combinatorial sieve, the sum over m above is ~ ¢(z — a;)/q? + O(1). Inserting
this above, using the fact that > a; = o(zA(x)), gives that the average order
of r(n) with n <z, n=a (mod ¢?), is ~ cA(x).

Note that r4(n) < A(z), so that [r4(n) — cA(x)| < A(z). Therefore if r4(n) is
to have “normal order” then it must be ~ cA(z). Moreover this is so if and only if
the mean square of |r4(n) — cA(x)|? is o(A(x)?).

To compute the mean of the second moment of r 4(n) we proceed as above:

Yoo A= > > 2 (n — a;)p?(n — aj).

n<zx a;,a;<r max(a;,a;)<n<z
n=a (mod g¢*) n=a (mod g¢?)
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Again using the hypothesis and the combinatorial sieve, the inner sum over n is

(B o (s 2) pp 22

rlq p’lai—a
plq

_ <$ - m?z;(““aj) + 0(1)) H<1 . 32) > f@),

plq p a;=a; (mod d?)
(d;g)=1

where f(d) = p*(d)/]1,4(p* — 2). Inserting this above, and using the fact that
> a;<z @i = 0(zA(z)), gives that the mean of the second moment of r(n) is

NH<1—§> S Y 1A,

d=1 aj,a;<x
(d.q)=1 a;=a; (mod d?)

so that the mean of the second moment is

Now

S <Agx)

ai,a; <z
a;=a; (mod d?)

oo d? 2
2 A(z)
2 72
~ (cA(z)) +H(1 — F) Yo fd)) <A(a:,d )= ) .
piq d=1 =1
(d;g)=1
Now, the contribution to the sum, for each d, is < f(d)A(x)?; and so the contribu-

tion of the terms with d > D is < Y, , A(z)?/d* < A(z)?/D. Therefore, taking
D to be a large integer, we get

d2

fﬁ/lq2 > Iram) —eA@)P = ud(zd) > <A(w; 1) — A§§)>

n<x d<D =1

n=a (mod ¢?) (d,q)=1
A(z)?
Lo (20,

Now if A(z;d?,1) ~ A(x)/d? for each [ and (d,q) = 1, then the right hand side is
o(A(x)?), letting D — co. On the other hand if A(x;d? 1)  A(x)/d? then this one
term contributes > A(z)? to the right hand side. The theorem is thus proved.

Deducing Corollary 2. Let A to be the integers aj := 1' + 22 + ... + k¥ and let
g = 2. The results of [13] imply that the hypotheses of Theorem 3 are satisfied
for a = 2 or a = 3, and that if d is odd then there are ~ A(z)/d? integers a; < x
with a; = [ (mod d?), for every I. Corollary 2 follows in these cases noting that
A(z) ~ logz/loglog x.



14 ANDREW GRANVILLE AND K. SOUNDARARAJAN

Every agp—1 = aq = 0 (mod 4) and a4x+1 = g2 = 1 (mod 4). Thus when
considering a = 0 or 1, we restrict attention to Ayqq or Aeven, respectively, the odd
or even, elements of 4. Once again, the results of [13] imply that the hypotheses
of Theorem 3 are satisfied, and that if d is odd then there are ~ A(x)/d* integers
a; < x with a; = | (mod d?), for every [. Corollary 2 follows in these cases now
noting that A(x) ~ logz/2loglogz.

SQUAREFREE NUMBERS PLUS POWERS OF ODD PRIMES

Lagarias asks about analogous results with powers of 3 or larger primes. One
needs to be a little careful here since the analogy to Conjecture 2, and thus the
obvious analogy to Conjecture 1, are often false: For example, if n = 1 (mod 4)
then n—>5 is divisible by 4 = 22 for every positive integer; in other words, w5(2) = 1
so we get the “covering system” of congruences 0 (mod ws(2)). Another, less trivial
example, would be that if n = 17 (mod 36) then n — 71? is divisible by 4 whenever
i is odd, and n — 71° is divisible by 9 whenever i is even. Thus we need to avoid
the integers n in those arithmetic progressions that arise from counterexamples to
the analogy of Conjecture 2:

For given integer ¢ > 1, define w(p) = wy(p) to be the order of ¢ (mod p?) for
each prime p that does not divide g. Let S; be the set of finite lists of arithmetic
progressions {a; (mod wy(p;)),7 = 1,2,...,m} which form a “covering system”,
but for which no sublist forms a “covering system”.

Define a set 1}, of arithmetic progressions, as follows: First we include each a

(mod ¢) where (a,q) > 1. Next, for each list {a; (mod wy(pi)),? = 1,2,...,m}
in S, let B = [[,<;<,,p? and take A = ¢* (mod p?) for each i; we then include
A (mod B) in T,. Note that if n = A (mod B) then n — ¢7 is never squarefree,
because j = a; (mod wy(p;)) for some i (since we have a covering system of con-
gruences), and thus p? divides n — ¢’.

Note that Conjecture 2 implies that 75 = {0 (mod 2)}.

Conjecture 4. Fiz squarefree integer ¢ > 1. Then S, is finite so that 1} is also
finite. Further, if n is a sufficiently large integer, which does not belong to any of
the arithmetic progressions in 1y, then n can be written as the sum of a squarefree
positive integer and a power of q.

Note that if T, is finite as conjectured, then the set of integers n, which can
possibly be written as the sum of a squarefree integer and a power of g, can be
partitioned into a finite set of arithmetic progressions. Restrict n to one of these
“good” arithmetic progresions and argue as in Theorem 1 and Proposition 1. The
main differences are that we now restrict the product in Proposition 1 to be only
over primes coprime to the modulus of our arithmetic progression, and we replace
the constant there by some sufficiently small constant, depending on ¢. In the
deduction of the appropriate analogue of Theorem 1 we take our second product
to be over those primes p for which ¢ is a quadratic residue (mod p). In this way,
we obtain:

Theorem 7. Fizx squarefree integer ¢ > 1, and suppose that Conjecture 4 is true.
Then there are arbitrarily large values of x for which

#{primes p<z:¢* ' #£1 (mod p®)} > c#{primes p < z},
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where ¢ 1s a positive constant.

In the other direction we might again ask how often integers n (in a good arith-
metic progression) can be written as the sum of a squarefree number and a power of
g. One can prove (using Proposition 3) conditional results analogous to Theorems
2 and 4. For these, we require, at the very least, the following conjecture:

Conjecture 5. Fiz squarefree integer ¢ > 1. Let wy(p) be the order of ¢ (mod p?)
for each prime p that does not divide q. Then Ep'fq 1/wq(p) is bounded.
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