
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A22

THE SQUARE OF THE FERMAT QUOTIENT

Andrew Granville
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1. Introduction

Fermat quotients, numbers of the form (ap−1 − 1)/p, played an important rôle in the study
of cyclotomic fields and Fermat’s Last Theorem [2]. They seem to appear in many surprising
identities, one of the most delightful of which is Glaisher’s observation that
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Recently Skula conjectured that
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It is stunning that such a simple but elegant generalization of (1) should have remained unno-
ticed for so long. In this note we prove (2), and indeed a further generalization.

One might hazard a guess that the ratio
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(mod p)

should also be a simple fixed rational number for other values of k, but calculations reveal that
this is probably not the case.

We will present two proofs of (2), one a substantial simplification of our original proof due to
the anonymous referee, the other a different simplification, but both of which contain formulas
that are perhaps of independent interest.
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2. The main results

Let p be a fixed prime > 3. Define

q(x) =
xp − (x− 1)p − 1

p
, with g(x) =

p−1∑
i=1

xi

i
and G(x) =

p−1∑
i=1

xi

i2
.

(Here, and throughout, x is a variable, and the results below are proved for polynomials in x; of
course one may substitute in integers for x to obtain integer congruences.) Standard arguments
give that G(1) ≡ 0 (mod p). Since 1/r + 1/(p − r) = p/r(p − r) thus 2g(1) ≡ −pG(1) ≡ 0
(mod p2). Also G(−1) =

∑
1≤j≤(p−1)/2(1/(2j)2 − 1/(p− 2j)2) ≡ 0 (mod p).

We will prove the functional equation

(4) G(x) ≡ G(1− x) + xpG(1− 1/x) (mod p),

as well as the two “mod p–identities”

(5) q(x)2 ≡ −2xpG(x)− 2(1− xp)G(1− x) (mod p)

and

(6) −G(x) ≡ 1
p
(q(x) + g(1− x)) (mod p)

which lead to two different proofs of (2): Substituting x = 2 into (5) and then into (6) we
obtain

q(2)2 ≡ −2p+1G(2)− 2(1− 2p)G(−1) ≡ −4G(2) (mod p)

which is (2), and then

−G(2) ≡ 1
p
(q(2) + g(−1)) (mod p)

which gives (2) from Glaisher’s result [1] that g(−1) ≡ −q(2) + pq(2)2/4 (mod p2).

3. Proofs

We begin with the trivial observation that
(
p−1

j

)
(−1)j ≡ 1 (mod p) for all 0 ≤ j ≤ p − 1.

Then

q′(x) = xp−1 − (x− 1)p−1 = −
p−2∑
j=0

(
p− 1

j

)
(−x)j ≡ −

p−1∑
i=1

xi−1 = −g′(x) (mod p).

This, together with the fact that q(x) and g(x) both have degree < p, implies that q(x)+g(x) ≡
c0 (mod p) for some constant c0. Substituting in x = 0 we discover that c0 ≡ 0 (mod p) and
so

(7) q(x) + g(x) ≡ 0 (mod p).
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It is immediate from their definitions that q(x) = q(1 − x) and g(x) ≡ −xpg(1/x) (mod p).
From these observations and (7) we deduce that g(x) ≡ −q(x) = −q(1−x) ≡ g(1−x) (mod p)
and xpg(1− 1/x) ≡ xpg(1/x) ≡ −g(x) (mod p). Now G′(x) = g(x)/x and so

d

dx
(G(1− x) + xpG(1− 1/x)) ≡ −g(1− x)

(1− x)
+ xp g(1− 1/x)

x2(1− 1/x)

=
xg(1− x) + xpg(1− 1/x)

x(x− 1)
≡ g(x)

x
= G′(x) (mod p),

and therefore G(x)−G(1−x)−xpG(1−1/x) ≡ c1 (mod p) for some constant c1. Substituting
in x = 1 we discover that c1 ≡ 0 (mod p) and so (4) holds.

Similarly, from the above, we have

d

dx
q(x)2 = 2q(x)q′(x) ≡ −2g(x)

xp−1 −
p−1∑
j=0

xj

 ≡ −2xp g(x)
x

+ 2(1− xp)
g(1− x)
(1− x)

≡ −2xpG′(x)− 2(1− xp)G′(1− x)

≡ d

dx
(−2xpG(x)− 2(1− xp)G(1− x)) (mod p).

Therefore q(x)2 + 2xpG(x) + 2(1− xp)G(1− x) ≡ c2 + c3x
p (mod p) since this polynomial has

degree < 2p. Substituting in x = 0 and x = 1 we discover that c2 ≡ c3 ≡ 0 (mod p) and we
have proved (5).

Finally note that
p−1∑
r=1

(1− x)r − 1
r

=
p−1∑
j=1

(
p−1∑
r=1

(
r − 1
j − 1

))
(−x)j

j
=
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(
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j

)
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j

=
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j

)
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(
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j − 1

))
(−x)j

j

= p

p−1∑
j=1

{
(−1)j

(
p− 1
j − 1

)}
xj

j2
+

(x− 1)p − xp + 1
p

,

which implies (6), since each (−1)j−1
(
p−1
j−1

)
≡ 1 (mod p) and as g(1) ≡ 0 (mod p).
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