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The primes

2, 3, 5, 7, 11, 13, . . .
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The primes

2, 3, 5, 7, 11, 13, . . .

What? Where? How? Why?
Traditional questions

We will find them in strange places
Motivated by the use of dynamics



Magic squares

We arrange numbers in a square
grid, so that the sum of the rows, and
columns, and diagonals all equal. For
example we can take the numbers
from 1 to 9:

2 7 6
9 5 1
4 3 8

Magic sum is 15



Magic squares

We arrange numbers in a square
grid, so that the sum of the rows, and
columns, and diagonals all equal. For
example we can take the numbers
from 1 to 9:

2 7 6
9 5 1
4 3 8

Magic sum is 15

Magic squares have been identified
for over 4000 years.

Next slide: A 6-by-6 magic square
from the Yuan Dynasty (1271-1368)

And then: Albrecht Dürer’s 1514 en-
graving Melencolia I







Magic squares

2 7 6
9 5 1
4 3 8

Magic sum is 15

How about magic squares of primes ?
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Magic squares

2 7 6
9 5 1
4 3 8

Magic sum is 15

Magic squares of primes

Magic square: Sum of each row, col-
umn, and diagonal, is identical:

17 89 71
113 59 5
47 29 101



Magic squares

2 7 6
9 5 1
4 3 8

Magic sum is 15

Magic squares of primes

Magic square: Sum of each row, col-
umn, and diagonal, is identical:

17 89 71
113 59 5
47 29 101

Are there infinitely many?











Dynamics and primes?

There are many links ...
We’ll start with proving:

There are infinitely many primes

...using dynamical systems
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There are infinitely many primes

Want an infinite sequence of integers

1 < x1 < x2 < x3 < . . .

such that

gcd(xi, xj) = 1 whenever i ̸= j.

——————–
If prime pj divides xj for each j

then p1, p2, p3 . . .

is an infinite seq of distinct primes.



There are infinitely many primes

Want an infinite sequence of integers

1 < x1 < x2 < x3 < . . .

such that

gcd(xi, xj) = 1 whenever i ̸= j.

——————–
If prime pj divides xj for each j

then p1, p2, p3 . . .

is an infinite seq of distinct primes.

Proof: If pi = pj for i ̸= j, then
pi divides xi and pj divides xj,

so that
pi = pj divides gcd(xi, xj) = 1,

Contradiction.
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So how do we find integers

1 < x1 < x2 < x3 < . . .

such that
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There are infinitely many primes

So how do we find integers

1 < x1 < x2 < x3 < . . .

such that

gcd(xi, xj) = 1 whenever i ̸= j?

Dynamical systems!

That is using a map like

x ↪→ x2 − x + 1...

. We begin by studying remainders under this map



Remainders: x ↪→ x2 − x + 1

x = km ↪→ x2 − x + 1 = (k2m− k)m + 1

Remainder 0 ↪→ Remainder 1

x = km + 1 ↪→ x2 − x + 1 = (k2m + k)m + 1

Remainder 1 ↪→ Remainder 1

. And how do we use this?



Remainders: x ↪→ x2 − x + 1

x = km ↪→ x2 − x + 1 = (k2m− k)m + 1

Remainder 0 ↪→ Remainder 1

x = km + 1 ↪→ x2 − x + 1 = (k2m + k)m + 1

Remainder 1 ↪→ Remainder 1

———- Construction —————
Select x1 > 1, say 2, and then

x2 = x21 − x1 + 1,

x3 = x22 − x2 + 1,
. . .

. And the remainders when we divide by xi?



Remainders: x ↪→ x2 − x + 1

x = km ↪→ x2 − x + 1 = (k2m− k)m + 1

Remainder 0 ↪→ Remainder 1

x = km + 1 ↪→ x2 − x + 1 = (k2m + k)m + 1

Remainder 1 ↪→ Remainder 1

———- Construction —————
Select x1 > 1, say 2, and then

x2 = x21 − x1 + 1,

x3 = x22 − x2 + 1,
. . .

When xj is divided by xi (= m):
xi has remainder 0, so that

↪→ xi+1 = x2i − xi + 1 remainder 1
↪→ xi+2 has remainder 1
↪→ xi+3 has remainder 1. . .



xi has remainder 0, so that
↪→ xi+1 has remainder 1
↪→ xi+2 has remainder 1
↪→ xi+3 has remainder 1. . .

Therefore xj has remainder 1 when
divided by xi for all j > i

We deduce that

gcd(xi, xj) =gcd(xi, 1) = 1.

———- Result —————

Let x1 be an integer, define

xi+1 = x2i − xi + 1

for all i ≥ 1. If xj has prime divisor
pj for each j ≥ 1 then

p1, p2, p3 . . .

is an infinite seq of distinct primes.



———- Result —————

Let x1 be an integer, define

xi+1 = x2i − xi + 1
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is an infinite seq of distinct primes.

. Examples?



———- Result —————

Let x1 be an integer, define

xi+1 = x2i − xi + 1

for all i ≥ 1. If xj has prime divisor
pj for each j ≥ 1 then

p1, p2, p3 . . .

is an infinite seq of distinct primes.

———- Examples —————
With x ↪→ x2 − x + 1, we have:

2 ↪→ 3 ↪→ 7 ↪→ 43 ↪→ . . . ,

(Euclid: 2·3+1 = 7, 2·3·7+1 = 43)



———- Result —————

Let x1 be an integer, define

xi+1 = x2i − xi + 1

for all i ≥ 1. If xj has prime divisor
pj for each j ≥ 1 then

p1, p2, p3 . . .

is an infinite seq of distinct primes.

———- Examples —————
With x ↪→ x2 − x + 1, we have:

2 ↪→ 3 ↪→ 7 ↪→ 43 ↪→ . . . ,

(Euclid: 2·3+1 = 7, 2·3·7+1 = 43)

With x ↪→ x2 − 2x + 2, we have:

3 ↪→ 5 ↪→ 17 ↪→ 257 ↪→ . . . ,

The Fermat numbers, 22
n
+ 1



Formulas that only take prime values?

Fermat (1638): 22
n
+1 is prime for

all n ≥ 0:

3, 5, 17, 257, 65537 are all prime.



Formulas that only take prime values?

Fermat (1638): 22
n
+1 is prime for

all n ≥ 0:

3, 5, 17, 257, 65537 are all prime,

but

22
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+ 1 = 641× 6700417 (Euler)



Formulas that only take prime values?

Fermat (1638): 22
n
+1 is prime for

all n ≥ 0:

3, 5, 17, 257, 65537 are all prime,

but

22
5
+ 1 = 641× 6700417 (Euler)

How did Fermat make this mistake?

Howmuch calculation to check whether

22
5
+ 1

is prime?

What about

22
6
+ 1 ?



Even today: The following are primes:

22 − 1 = 3

22
2−1 − 1 = 23 − 1 = 7

22
22−1−1 − 1 = 27 − 1 = 127

22
22
2−1−1−1 − 1 = 2127 − 1.



Even today: The following are primes:

22 − 1 = 3

22
2−1 − 1 = 23 − 1 = 7

22
22−1−1 − 1 = 27 − 1 = 127

22
22
2−1−1−1 − 1 = 2127 − 1.

Conjecture (and challenge)

22
22
22−1−1−1−1 − 1

= 22
127−1 − 1

is prime?
. Are there formulas for the primes? Polynomials?



Formulas for primes?

Polynomial with lots of prime values:

5, 11, 17, 23, 29, but then 35 = 5× 7

so

6n + 5 prime for n = 0, 1, . . . , 4.



Formulas for primes?

Polynomial with lots of prime values:

5, 11, 17, 23, 29, but then 35 = 5× 7

so

6n + 5 prime for n = 0, 1, . . . , 4.

More famous is n2 + n + 41 with

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, . . .

which remains prime until

402 + 40 + 41 = 1681 = 412

.

. Can polynomials only take prime values?



Polynomials with only prime values?

n2 + n + 41

is prime for n = 0, 1, · · · , 39, but
412 + 41 + 41

is divisible by 41.



Polynomials with only prime values?
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is prime for n = 0, 1, · · · , 39, but
412 + 41 + 41

is divisible by 41.

Similarly, if n = 41k, then

n2 + n + 41 = 41(41k2 + k + 1),

so is divisible by 41.



Polynomials with only prime values?

n2 + n + 41

is prime for n = 0, 1, · · · , 39, but
412 + 41 + 41

is divisible by 41.

Similarly, if n = 41k, then

n2 + n + 41 = 41(41k2 + k + 1),

so is divisible by 41.

Therefore n2 + n + 41 is composite
for infinitely many n.



Polynomials with only prime values?

n2 + n + 41

is prime for n = 0, 1, · · · , 39, but
412 + 41 + 41

is divisible by 41.

Similarly, if n = 41k, then

n2 + n + 41 = 41(41k2 + k + 1),

so is divisible by 41.

Therefore n2 + n + 41 is composite
for infinitely many n.

————————-
Argument can be modified to work
for the values of any polynomial f (n).

So, Polynomials cannot take only
prime values
. Fails. How about infinitely often prime?



Can a polynomial f (x) take
prime values infinitely often?

n2 − 1 = (n− 1)(n + 1)

is prime only for n = −2 and 2,
because x2 − 1 is reducible.

So, must assume polynomial f (x) is
Irreducible



Can a polynomial f (x) take
prime values infinitely often?

n2 − 1 = (n− 1)(n + 1)

is prime only for n = −2 and 2,
because x2 − 1 is reducible.

So, must assume polynomial f (x) is
Irreducible

———————————

n2 − n + 2 = 2

((
n

2

)
+ 1

)

cannot be prime, as it’s always even.



Can a polynomial f (x) take
prime values infinitely often?

n2 − 1 = (n− 1)(n + 1)

is prime only for n = −2 and 2,
because x2 − 1 is reducible.

So, must assume polynomial f (x) is
Irreducible

———————————

n2 − n + 2 = 2

((
n

2

)
+ 1

)

cannot be prime, as it’s always even.

So, must assume polynomial f (x) is

Admissible: There is no prime pwhich
divides f (n) for every integer n.



Can a polynomial f (x) take
prime values infinitely often?

Admissible: There is no prime pwhich
divides f (n) for every integer n.

Conjecture: If a polynomial of
degree ≥ 1 is irreducible and admis-
sible then it takes on infinitely many
prime values.

. What do we know about this conjecture?



Can a polynomial f (x) take
prime values infinitely often?

Admissible: There is no prime pwhich
divides f (n) for every integer n.

Conjecture: If a polynomial of
degree ≥ 1 is irreducible and admis-
sible then it takes on infinitely many
prime values.

True for polynomials of degree 1.



Can a polynomial f (x) take
prime values infinitely often?

Admissible: There is no prime pwhich
divides f (n) for every integer n.

Conjecture: If a polynomial of
degree ≥ 1 is irreducible and admis-
sible then it takes on infinitely many
prime values.

True for polynomials of degree 1.

Open for all polyns of degree > 1.

The simplest open example is

x2 + 1.

. Can’t say much more! But as in n2 + n+ 41 example, we can ask...



Can a polynomial f (x) take
prime values infinitely often?

Admissible: There is no prime pwhich
divides f (n) for every integer n.

Conjecture: If a polynomial of
degree ≥ 1 is irreducible and admis-
sible then it takes on infinitely many
prime values.

True for polynomials of degree 1.

Open for all polyns of degree > 1.

The simplest open example is

x2 + 1.

Fix integer m > 1
Are there polynomials whose first

m values are all prime?

. Return to this later. For now, other ways to find primes.



More complicated formulas

Let

p1 = 2 < p2 = 3 < p3 = 5 . . .

be the sequence of primes. Define

α : =
∑

m≥1

pm

10m2

= .2003000050000007000000011 . . . .

Read off the primes from α.

pm = [10m
2
α]−102m−1[10(m−1)2α].



More complicated formulas

Let

p1 = 2 < p2 = 3 < p3 = 5 . . .

be the sequence of primes. Define

α : =
∑

m≥1

pm

10m2

= .2003000050000007000000011 . . . .

Read off the primes from α.

pm = [10m
2
α]−102m−1[10(m−1)2α].

Magical? Interesting? Artificial?



Wilson’s theorem

n is a prime if and only if n divides (n− 1)! + 1.

. Not useful itself but used in...



Matijasevic (1971):

F (a, b, . . . , z) := (k + 2)×
(
1− (n+ l + v − y)2 − (2n+ p+ q + z − e)2

− (wz + h+ j − q)2 − (ai+ k + 1− l − i)2

− ((gk + 2g + k + 1)(h+ j) + h− z)2

− (z + pl(a− p) + t(2ap− p2 − 1)− pm)2

− (p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m)2

− (q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x)2

− ((a2 − 1)l2 + 1−m2)2 − ((a2 − 1)y2 + 1− x2)2

− (16(k + 1)3(k + 2)(n+ 1)2 + 1− f 2)2

− (e3(e+ 2)(a+ 1)2 + 1− o2)2

− (16r2y4(a2 − 1) + 1− u2)2

− (((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2)2
)
.

26 variables, degree 20, reducible.

If a, b, . . . , z ∈ N then

F (a, .., z) positive⇒ F (a, .., z) prime.

Each prime is a value of F !

Practical?
Conway



The number of primes up to x

Gauss, Christmas eve 1849:

As a boy of 15 or 16, I determined
that, at around x,

the primes occur with density 1
ln x.
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The number of primes up to x

Gauss, Christmas eve 1849:

As a boy of 15 or 16, I determined
that, at around x,

the primes occur with density 1
ln x.

#{primes ≤ x} ≈
[x]∑

n=2

1

lnn

≈
∫ x

2

dt

ln t
= Li(x)

≈ x

ln x



Gauss’s guesstimate:

Li(x) :=

∫ x

2

dt

ln t

x π(x) = #{primes ≤ x} Overcount: [Li(x)− π(x)]

108 5761455 753
109 50847534 1700
1010 455052511 3103
1011 4118054813 11587
1012 37607912018 38262
1013 346065536839 108970
1014 3204941750802 314889
1015 29844570422669 1052618
1016 279238341033925 3214631
1017 2623557157654233 7956588
1018 24739954287740860 21949554
1019 234057667276344607 99877774
1020 2220819602560918840 222744643
1021 21127269486018731928 597394253
1022 201467286689315906290 1932355207
1023 1925320391606803968923 7250186214



Gauss’s guesstimate:

Li(x) :=

∫ x

2

dt

ln t

x π(x) = #{primes ≤ x} Overcount: [Li(x)− π(x)]

108 5761455 753
109 50847534 1700
1010 455052511 3103
1011 4118054813 11587
1012 37607912018 38262
1013 346065536839 108970
1014 3204941750802 314889
1015 29844570422669 1052618
1016 279238341033925 3214631
1017 2623557157654233 7956588
1018 24739954287740860 21949554
1019 234057667276344607 99877774
1020 2220819602560918840 222744643
1021 21127269486018731928 597394253
1022 201467286689315906290 1932355207
1023 1925320391606803968923 7250186214

Guess: 0 < Li(x)− π(x) <
√

π(x).



x π(x) = #{primes ≤ x} Overcount: [Li(x)− π(x)]

108 5761455 753
109 50847534 1700
1010 455052511 3103
1011 4118054813 11587
1012 37607912018 38262
1013 346065536839 108970
1014 3204941750802 314889
1015 29844570422669 1052618
1016 279238341033925 3214631
1017 2623557157654233 7956588
1018 24739954287740860 21949554
1019 234057667276344607 99877774
1020 2220819602560918840 222744643
1021 21127269486018731928 597394253
1022 201467286689315906290 1932355207
1023 1925320391606803968923 7250186214

Guess: 0 <

∫ x

2

dt

ln t
− π(x) <

√
π(x).

Riemann Hypothesis: ⇔∣∣∣∣
∫ x

2

dt

ln t
− π(x)

∣∣∣∣ ≤
√
x ln x.

. Back to consecutive prime values



Are there polynomials whose first
m values are all prime?

Remember:

5, 11, 17, 23, 29

or even, 199, 409, 619, 829,

1039, 1249, 1459, 1669, 1879, 2089

= {199 + 210n, 0 ≤ n ≤ 9}
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m values are all prime?

Remember:

5, 11, 17, 23, 29

or even, 199, 409, 619, 829,

1039, 1249, 1459, 1669, 1879, 2089

= {199 + 210n, 0 ≤ n ≤ 9}
Dirichlet (1837): Any linear poly-
nomial mn + a with gcd(a,m) = 1,
takes infinitely many prime values.

Arbitrarily many consecutive prime values?



Are there polynomials whose first
m values are all prime?

Remember:

5, 11, 17, 23, 29

or even, 199, 409, 619, 829,

1039, 1249, 1459, 1669, 1879, 2089

= {199 + 210n, 0 ≤ n ≤ 9}
Dirichlet (1837): Any linear poly-
nomial mn + a with gcd(a,m) = 1,
takes infinitely many prime values.

Arbitrarily many consecutive prime values?

Van der Corput (1939): Infinitely
many linear polynomials whose first
3 values are prime.
Balog (1990): Infinitely many de-
gree d polynomials whose first 2d+1
values are prime.



Are there linear polynomials whose first
k values are all prime?



Are there linear polynomials whose first
k values are all prime?

Green and Tao (2007): Yes. There
are infinitely many k-term arithmetic
progressions of primes

In fact the smallest has all primes

≤ 22
22
22
22
100k

.

Record: 43142746595714191 + 5283234035979900n
for 0 ≤ n ≤ 25.



Are there linear polynomials whose first
k values are all prime?

Green and Tao (2007): Yes. There
are infinitely many k-term arithmetic
progressions of primes
In fact the smallest has all primes

≤ 22
22
22
22
100k

.

Record: 43142746595714191 + 5283234035979900n
for 0 ≤ n ≤ 25.

Rephrase as: There are infinitely many
linear polyns f (x) = ax + b s.t.

f (0), f (1), . . . , f (k) are all prime.

And for higher degree polynomials?



Consecutive prime values of polynomials, I

Green-Tao: There are infinitely many
linear polyns f (x) = ax + b s.t.

f (0), f (1), . . . , f (k) are all prime.

Another example: x2+x+41 prime
for x = 0, 1, 2, . . . , 39.

How about quadratic polynomials with
41 consecutive prime values?



Consecutive prime values of polynomials, I

Green-Tao: There are infinitely many
linear polyns f (x) = ax + b s.t.

f (0), f (1), . . . , f (k) are all prime.

Another example: x2+x+41 prime
for x = 0, 1, 2, . . . , 39.

How about quadratic polynomials with
41 consecutive prime values?

Or 1000 consecutive prime values?

Seems like a very deep question...

Or is it?



Consecutive prime values of polynomials, II

Green-Tao: There are infinitely many
linear polyns f (x) = ax + b s.t.

f (0), f (1), . . . , f (k) are all prime.

Corollary Fix N ≥ 3. There are
infinitely many quadratic polyns f (x)
s.t. f (0), f (1), . . . , f (N) are all prime.
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infinitely many quadratic polyns f (x)
s.t. f (0), f (1), . . . , f (N) are all prime.

Proof : By Green-Tao, select inte-
gers a and b for which

aj+ b is prime for 0 ≤ j ≤ N2+N,



Consecutive prime values of polynomials, II

Green-Tao: There are infinitely many
linear polyns f (x) = ax + b s.t.

f (0), f (1), . . . , f (k) are all prime.

Corollary Fix N ≥ 3. There are
infinitely many quadratic polyns f (x)
s.t. f (0), f (1), . . . , f (N) are all prime.

Proof : By Green-Tao, select inte-
gers a and b for which

aj+ b is prime for 0 ≤ j ≤ N2+N,

so that

a(i2 + i)+ b is prime for 0 ≤ i ≤ N.

Let f (x) = ax2 + ax + b.



Consecutive prime values of polynomials, II

Green-Tao: There are infinitely many
linear polyns f (x) = ax + b s.t.

f (0), f (1), . . . , f (k) are all prime.

Corollary Fix N ≥ 3. There are
infinitely many quadratic polyns f (x)
s.t. f (0), f (1), . . . , f (N) are all prime.

Proof : By Green-Tao, select inte-
gers a and b for which

aj+ b is prime for 0 ≤ j ≤ N2+N,

so that

a(i2 + i)+ b is prime for 0 ≤ i ≤ N.

Let f (x) = ax2 + ax + b.

Extends to arbitrary degree polyns.
2011 result: Can do this for f monic
and degree d .



Balog cubes

Van der Corput (1939): Inf many
arithmetic progressions of primes of
length 3.
Balog (1990): Inf many 3-by-3 squares
of distinct primes, each row and each
column in arithmetic progression.



Balog cubes

Van der Corput (1939): Inf many
arithmetic progressions of primes of
length 3.
Balog (1990): Inf many 3-by-3 squares
of distinct primes, each row and each
column in arithmetic progression.

And 3-by-3-by-3 cubes, eg:
47 383 719
179 431 683
311 479 647

149 401 653
173 347 521
197 293 389

251 419 587
167 263 359
83 107 131

Arithmetic progressions of primes along
each row, column, and layer.

Even 3-by-3-by-. . . -by-3 Balog cubes in arbitrary dimension.



Theorem. There are infinitely many
N -by-N -by-. . . -by-N Balog cubes.

Proof : Green-Tao gives

b+ jm is prime for 0 ≤ j ≤ Nd−1.



Theorem. There are infinitely many
N -by-N -by-. . . -by-N Balog cubes.

Proof : Green-Tao gives

b+ jm is prime for 0 ≤ j ≤ Nd− 1

The (a0, a1, . . . , ad−1) entry of our
Balog cube, with 0 ≤ ai ≤ N − 1
for each i is

b+(a0+a1N + . . .+ad−1N
d−1)m.



Theorem. There are infinitely many
N -by-N -by-. . . -by-N Balog cubes.

Proof : Green-Tao gives

b+ jm is prime for 0 ≤ j ≤ Nd− 1

The (a0, a1, . . . , ad−1) entry of our
Balog cube, with 0 ≤ ai ≤ N − 1
for each i is

b+(a0+a1N + . . .+ad−1N
d−1)m.

Now if

j = a0 + a1N + . . . + ad−1N
d−1

with each

0 ≤ ai ≤ N − 1

then
0 ≤ j ≤ Nd − 1

so each entry, b + jm, is prime.



Magic squares of primes

Magic square: Sum of each row, col-
umn, and diagonal, is identical:

17 89 71
113 59 5
47 29 101

and
41 71 103 61
97 79 47 53
37 67 83 89
101 59 43 73

These are magic squares of primes.

How about n-by-n?
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integers, say with (i, j)th entry,mi,j.
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Magic squares of primes

Magic square: Sum of each row, col-
umn, and diagonal, is identical:

17 89 71
113 59 5
47 29 101

and
41 71 103 61
97 79 47 53
37 67 83 89
101 59 43 73

These are magic squares of primes.

How about n-by-n?

There are n-by-n magic squares of
integers, say with (i, j)th entry,mi,j.

Then square a + dmi,j is magic

Green-Tao theorem ⇒ Magic Square of Primes.

Many other fun corollaries
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Apollonian packings
Starting with (21, 24, 28,−11) use

x = 2(a + b + c)− t

and re-orderings, to find all the num-
bers in the packing!

Sarnak (2010): Infinitely many primes.

Sarnak (2010): Infinitely many pairs
of “kissing” primes.

Can generalize this to other linear
maps of this type, and by allowing
several such maps
Bourgain, Kontorovic (2012):
If these maps do not “repel points
too fast” then there are indeed in-
finitely many such primes
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Gaps between primes, I

Difference 1?

Difference 2?
{3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}.

Infinitely many such prime twins?
That is, n for which pn+1− pn = 2?

Open question

. And how short gaps can we prove? Smaller than average?



Patterns in the primes 1

The primes

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

Euclid: Infinitely many primes.
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The primes

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

Euclid: Infinitely many primes.

You can’t help but notice Patterns in the primes
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

3 and 5 | 5 and 7 | 11 and 13 | 17 and 19 | 29 and 31 | 41 and 43
59 and 61 | 71 and 73 | 101 and 103 | 107 and 109 | . . .
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Pairs of primes that differ by 2

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

3 and 5 | 5 and 7 | 11 and 13 | 17 and 19 | 29 and 31 | 41 and 43
59 and 61 | 71 and 73 | 101 and 103 | 107 and 109 | . . .

The twin prime conjecture. There are infinitely
many prime pairs p, p + 2
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .



Patterns in the primes 13

Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

3 and 7 | 7 and 11 | 13 and 17 | 19 and 23 | 37 and 41 | 43 and 47
67 and 71 | 79 and 83 | 97 and 101 | 103 and 107 . . .
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Pairs of primes that differ by 4

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . .

3 and 7 | 7 and 11 | 13 and 17 | 19 and 23 | 37 and 41 | 43 and 47
67 and 71 | 79 and 83 | 97 and 101 | 103 and 107 . . .

Another twin prime conjecture. There are in-
finitely many prime pairs p, p + 4
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Pairs of primes that differ by 6

5 and 11 | 7 and 13 | 11 and 17 | 13 and 19 | 17 and 23

23 and 29 | 31 and 37 | 37 and 43 | 41 and 47 | . . .

Yet another twin prime conjecture. There are
infinitely many prime pairs p, p + 6
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Pairs of primes that differ by 10

3 and 13 | 7 and 17 | 13 and 23 | 19 and 29 | 31 and 41

37 and 47 | 43 and 53 | 61 and 71 | 73 and 83 . . .?

And another twin prime conjecture. There are
infinitely many prime pairs p, p + 10
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Pairs of primes that differ by 10

3 and 13 | 7 and 17 | 13 and 23 | 19 and 29 | 31 and 41

37 and 47 | 43 and 53 | 61 and 71 | 73 and 83 . . .?

And another twin prime conjecture. There are
infinitely many prime pairs p, p + 10

A common generalization?
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .
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Generalized twin prime conjecture.
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns? Last digits

11, 13, 17 and 19 | 101, 103, 107 and 109

191, 193, 197 and 199 | 821, 823, 827 and 829, . . .
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns? Last digits

11, 13, 17 and 19 | 101, 103, 107 and 109

191, 193, 197 and 199 | 821, 823, 827 and 829, . . .

Prime quadruple Conjecture.
There are infinitely many quadruples of primes

10n + 1,+3,+7,+9 .
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns? Sophie Germain pairs

Sophie Germain used prime pairs

p, q := 2p + 1
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Other patterns? Sophie Germain pairs

Sophie Germain used prime pairs

p, q := 2p + 1

2 and 5 | 3 and 7 | 5 and 11 | 11 and 23 | 23 and 47

29 and 59 | 41 and 83 | 53 and 107 | 83 and 167 | . . . ;

Sophie Germain pairs Conjecture. There are
infinitely many prime pairs p, 2p + 1
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Generalized twin prime conjecture.
(De Polignac, 1849) For any even integer h ,

there are infinitely many prime pairs p, p + h .

Prime quadruple Conjecture.
There are infinitely many quadruples of primes

10n + 1,+3,+7,+9 .

Sophie Germain pairs Conjecture. There are
infinitely many prime pairs p, 2p + 1

A common generalization?



Patterns in the primes 25

Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.
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Careful!
Prime pairs p, p + 1? Or p, p + h with h odd?

x, x + h a Dickson 2-tuple =⇒ h even
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Question. Are there infinitely many
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Prime pairs p, p + 1? Or p, p + h with h odd?

x, x + h a Dickson 2-tuple =⇒ h even

Prime triples?

One of n, n + 2, n + 4 is divisible by 3
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Careful!
Prime pairs p, p + 1? Or p, p + h with h odd?

x, x + h a Dickson 2-tuple =⇒ h even

Prime triples?

One of n, n + 2, n + 4 is divisible by 3

Prime p is an obstruction if
p always divides P(n) = (a1n + b1) . . . (akn + bk)
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Prime p is an obstruction if
p always divides P(n) = (a1n + b1) . . . (akn + bk)

The set a1x + b1, . . . , akx + bk is admissible if there is
no obstruction, and all ai > 0.
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Question. Are there infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk ?

If so, a1x + b1, . . . , akx + bk is a Dickson k-tuple.

Prime p is an obstruction if
p always divides P(n) = (a1n + b1) . . . (akn + bk)

The set a1x + b1, . . . , akx + bk is admissible if there is
no obstruction, and all ai > 0.

Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .
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Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .

Spectacular new progress.
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Dickson’s Conjecture. If a1x + b1, . . . , akx + bk
is an admissible set then there are infinitely many
prime k-tuplets a1n + b1, . . . , akn + bk .

Spectacular new progress.

Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible
set then at least two of

a1n + b1, . . . , akn + bk

are prime, for infinitely many integers n.

Note: Only two of the ain + bi are prime, not all.
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Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible
set then at least two of

a1n + b1, . . . , akn + bk

are prime, for infinitely many integers n.

Let each ai = 1. If p1 < . . . < pk are the k smallest

primes > k then x + p1, . . . , x + pk is admissible.
By Zhang’s Theorem, infinitely many n with two of

n + p1, . . . , n + pk
prime. This pair of primes differs by

≤ pk − p1 .
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Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible
set then at least two of a1n + b1, . . . , akn + bk are
prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely
many pairs of prime numbers

p < q ≤ p + B .
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Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible
set then at least two of a1n + b1, . . . , akn + bk are
prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely
many pairs of prime numbers

p < q ≤ p + B .

Corollary. [Given gap between primes]
There exists an integer h, 0 < h ≤ B such that there
are infinitely many pairs of primes p, p + h .
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Yitang Zhang. (2013) There exists an integer k
such that: If a1x + b1, . . . , akx + bk is an admissible
set then at least two of a1n + b1, . . . , akn + bk are
prime, for infinitely many integers n.

Corollary. [Bounded gaps between primes]
There exists a bound B such that there are infinitely
many pairs of prime numbers

p < q ≤ p + B .

Corollary. [Given gap between primes]
There exists an integer h, 0 < h ≤ B such that there
are infinitely many pairs of primes p, p + h .

True for at least 1
4% of all even integers h.
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .

Apr 2013: Zhang k = 3 500 000, B ≤ 70 000 000
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .

Apr 2013: Zhang k = 3 500 000, B ≤ 70 000 000

Oct 2013: Polymath 8a k = 632, B = 4 680
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .

Apr 2013: Zhang k = 3 500 000, B ≤ 70 000 000

Oct 2013: Polymath 8a k = 632, B = 4 680

Nov 2013: Maynard k = 105, B = 600
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The records page

Corollary. There exists an integer k such that if
x+ b1, . . . , x+ bk is an admissible set then there are
infinitely many prime pairs

p < q ≤ p + B with B := bk − b1 .

Apr 2013: Zhang k = 3 500 000, B ≤ 70 000 000

Oct 2013: Polymath 8a k = 632, B = 4 680

Nov 2013: Maynard k = 105, B = 600

Jan 2014: Polymath 8b k = 55, B = 272
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Corollary. If x + b1, . . . , x + b55 is an admissi-
ble set then there exists bi < bj such that

n + bi, n + bj are a prime pair, infinitely often

Narrowest admissible 55-tuple: Given by x + {0, 2, 6
12, 20, 26, 30, 32, 42, 56, 60, 62, 72, 74, 84, 86, 90, 96, 104

110, 114, 116, 120, 126, 132, 134, 140, 144, 152, 156, 162,

170, 174, 176, 182, 186, 194, 200, 204, 210, 216, 222, 224,

230, 236, 240, 242, 246, 252, 254, 260, 264, 266, 270, 272}
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Green, Tao and Ziegler

No attack on
p, p + 2 (twin prime);
p,N − p (Goldbach),
p, 2p+1 (Sophie Germain twins).

These are all difficult pairs: Here
one requires primes p and q for which

ap + bq = c

for some fixed non-zero a, b.

Green-Tao-Ziegler, 2012:
The prime k-tuplets conjecture holds

for any admissible k-tuple of linear
forms that does not contain a diffi-
cult pair.
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Example 2: b, b+ a+ 1, b+ 2a+ 4
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manymonic polynomials f (x) of de-
gree d, for which f (0), f (1), . . . , f (m)
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Green-Tao-Ziegler Theorem

The prime k-tuplets conjecture for
any admissible k-tuple of linear forms
that does not contain a difficult pair.

Consequence: Existence of infinitely
manymonic polynomials f (x) of de-
gree d, for which f (0), f (1), . . . , f (m)
are all prime.

Example 3: p, q, 2p + 3q, 2p− 3q
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with area

A := rs(r + s)(r − s).
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Three, if s = 6 and r−6, r, r+6 are
all prime.

. Difficult pairs. No chance of proving this.
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Pythagorean triples

A Pythagorean triangle has sides

r2 − s2, 2rs, r2 + s2

with area

A := rs(r + s)(r − s).

How few prime factors canA/6 have?

Three, if s = 6 and r−6, r, r+6 are
all prime.

Ben Tsou (2007, junior thesis)A/6
has four prime factors infinitely of-
ten: Take r = 2p, s = 3q when

p, q, 2p + 3q, and 2p− 3q

are all prime.

This follows from theGreen-Tao-
Ziegler Theorem



Green-Tao-Ziegler Theorem

The prime k-tuplets conjecture for
any admissible k-tuple of linear forms
that does not contain a difficult pair.

Further consequences:
You find them!


