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Abstract: We consider what one can prove about the distribution of
prime numbers in arithmetic progressions, using only Selberg’s formula.
In particular, for any given positive integer ¢, we prove that either the
Prime Number Theorem for arithmetic progressions, modulo ¢, does
hold, or that there exists a subgroup H of the reduced residue system,
modulo ¢, which contains the squares, such that 6(x,q,a) ~ 2z/¢(q)
for each a ¢ H and 0(z;q,a) = o(z/¢(q)), otherwise. From here, we
deduce that if the second case holds at all, then it holds only for the
multiples of some fixed integer ¢y > 1. Actually, even if the Prime
Number Theorem for arithmetic progressions, modulo ¢, does hold, these
methods allow us to deduce the behaviour of a possible ‘Siegel zero’
from Selberg’s formula. We also propose a new method for determining
explicit upper and lower bounds on 6(z, ¢, a), which uses only elementary
number theoretic computations.

1. Introduction.

Define 6(x) = > p<z log p, where p only denotes primes, and for positive integers a

and ¢, let

0(z;q,a)= Y logp.

p<w
p=a(mod q)

The Prime Number Theorem, which states that there are ~ z/logx primes p < x
(or equivalently, 6(x) ~ z), was first conjectured by Legendre and Gauss near the start
of the last century. By the mid-19th century, Cebyéev had shown how to obtain strong

upper and lower bounds on #(x) and Riemann had outlined an analytic approach to this
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question. At the end of the century, Hadamard and De La Vallée Poussin finally proved
the Prime Number Theorem, their work based on that of Riemann. Mathematicians, such
as Bohr, Hardy and Ingham then observed how the Prime Number Theorem is, intrinsi-
cally, equivalent to the associated analytic problem, and so asserted that no “elementary”
proof was feasible. It thus came as a surprise when, in the late forties, Selberg [Sel] and
Erdés [Erl] constructed an “elementary” proof, though Ingham [In] later showed that it

is essentially equivalent to the earlier analytic one of De La Vallée Poussin.

The proofs of Selberg and Erdos, which are based on Selberg’s formula

(1.1) O(x)loga:—l-ZO <E) log p = 2zlog x + O(x),

p<z p
are completely combinatorial in nature. To illustrate this, Erdos [E2| showed that, for any
sequence S (= {1 < p; < ps < ...}) of real numbers which satisfies (1.1) (where we let
f(x) be the sum of log p over those elements p of S that are < z, and similarly take the

sum in (1.1) over such p), we have

(1.2) Z logp _ logxz 4+ O(1) and 6(z)~ x.
p<zx, peS
Selberg [Se2] extended his arguments to arithmetic progressions, using the analogous
formula
T a 2 T
1.3 0(x;q,a)logx + 9(—;q,—) logpz—mlogm—l—O(—),
13)  Oaaaogat 2, 0] 5@ 5@

p<x

p)(q

proving that 0(x; q,a) ~ z/¢(q) whenever (a,q) = 1. However, in his proof, he also had to
establish that

(1.4) 3 (%) loip < D

p<z

for any integer D # 0 (where <%> is the Jacobi symbol), and related it to the question via
the law of quadratic reciprocity. Of course (1.4) is equivalent to showing that L(1,x) # 0



for all real quadratic characters y, a fact that surely does not follow from (1.3). So, herein,
we consider the question of what one can actually prove if one is only given the formula

(1.3):

Theorem 1. Given only that (1.3) holds, there are two possibilities for the behaviour of
0(x;q,a) as  — oo:

(I) 0(z;q,a) ~x/p(q) whenever (a,q) = 1.

(II) There exists a subgroup H = H, of the reduced residue system (mod q), containing
the squares, and of order ¢(q)/2, such that

) _ J2x/9(q) + O(x/¢(q)logx) whenever a & H ,
0(z;9,0) = {O(a:/gb(q)log x) whenever a € H or (a,q) > 1.

The proof of a generalization of this Theorem will occupy the bulk of the paper. Here

we note a simple consequence:

Corollary 1. Suppose that (1.3) holds for any positive integer q. If Case (II) of Theorem
1 holds for ¢; and qs, then it holds for ged(qy, g2). Thus all integers q for which Case (II)
holds are multiples of some qqy for which Case (II) holds.

Proof: Define subgroups J; and Jy of the multiplicative group of residues modulo ¢ =
lemlgi, g2, so that a € J; if and only if a (mod ¢;) belongs to H,,. Then, as 0(x;/,a) <
0(x; q;,a), we see that 0(z; ¢, a) = o(x) whenever a € J; U Jy: however, as a consequence
of Theorem 1, we know that no arithmetic progression modulo ¢, can have 6(z; ¢, a) larger
than 2x/¢(¢) asymptotically, and so at least ¢(¢)/2 arithmetic progressions a modulo ¢
must have 0(x; ¢, a) >¢ x. Therefore |J; U Jo| < ¢(¢)/2 = |J1| = |J2|, which implies that
Ji1 = Jo. Thus the subgroups H,, modulo ¢; and H,, modulo g2, define the same set of
integers, and so must actually define a subgroup of the multiplicative group of residues

modulo ged(qi, g2). Case (II) of Theorem 1 then follows for ged(gy, g2).

This proof may be modified to give the standard result about the scarcity of ‘Siegel

zeros’, as follows: It is well-known that there exists a character modulo ¢ with a ‘Siegel



zero’ (that is, L(s,x) has a real zero 8 > 1 — ¢/log ¢, for some sufficiently small constant
¢ > 0) if and only if 8(z;¢,a) < & x/¢(q) for a range of values of z > ¢ and any a € H,,
where H, is the subgroup of the multiplicative residues modulo ¢ on which x equals 1 (and
where £ > 0 and A are suitably fixed) — see [HB] for precise results (for instance, one can
take any ¢ > (1 — f)log x).

We shall show that it is impossible to have values Q < ¢1,¢2 < Q?, * = QF and
£1+¢e2 < 1 with B sufficiently large, such that 6(x; ¢;,a;) < €; x/¢(q;), for each a; € Hy,,

unless H,, = H,,. For, if not, then let ¢ be the lcm of ¢; and g2, and consider ¥ =
> 0(z;q,a) over all a ¢ Hy, U H,,. Clearly

> x—¢(Q1)51 ° _¢>(QQ)€2 ° :x(l— 61_;62).

2 p(qr) 2 T P(ge)

On the other hand, Friedlander’s proof in [Fr] implies that (1.3) holds uniformly for = > ¢*

with error term bounded by the main term times O((log q/log z)'/?). Therefore taking
x = ¢P in (1.3) and summing over the ¢(q)/4 values of a ¢ H,, U H,,, we obtain ¥ <
{1/2 + O(1/B'/?)}x. Comparing the upper and lower bounds for ¥ gives the desired

contradiction.

Our main result is a little more general than one might expect. The purpose of stating
such an ‘abstract’ generalization of Theorem 1 is to ensure that it is clear what information

we use in the proof.

Theorem 2. Suppose that we are given a finite, abelian group G and an infinite set of real
numbers S, together with a map a : S — G for which a(ab) = a(a)a(b) for all a,b € S,
such that, for all g € G we have

2xlog x

2 _
(1.5) <E log “p + g logplogq = e + O(z).
p<z, peS pq<z, p,q€S
a(p)=g a(pg)=g

Then there are two possibilities for the behaviour of §,(z): =) log p, as

p<z, pES, a(p)=g
T — 00:



(I) 04(x) ~ =z/|G| for each g € G.
(IT) There exists a subgroup H of G, of rank 2, such that

0 (1’): 2x/|G|+O(l'/logm) ifgg H ;
g O(z/log x) ifge H .

We remark that our proof here bears many similarities to that in [Erl].

It is clear that Theorem 1 follows from Theorem 2, by taking S to be the set of primes
that do not divide ¢, and a(p) = a where a is the residue class that p belongs to, modulo

q- We can also prove a result analogous to Corollary 1:

With G, S and a as in Theorem 2, suppose that we are given subgroups K; and K
of G, and let K3 =< K;, Ko >. Define G; to be the group of cosets of K; in G, and «;(p)
to be the coset of K; to which a(p) belongs. By summing (1.5) over the elements g of a
given coset of K;, we see that (1.5) holds for each G;. If Case (II) of Theorem 2 holds for
both G; and G5, then we can use the same argument as in the proof of Corollary 1, to

show that Case (II) of Theorem 2 holds for G3. We deduce

Corollary 2. If Case (II) of Theorem 2 holds for G, then there exists a subgroup T of G,
such that Case (II) of Theorem 2 holds for G/K where K is a subgroup of G if and only
if K is a subgroup of T'.

We now consider the group character x = xg of G, which is really just the charac-
teristic function of H written multiplicatively (and so can certainly be thought of as an

elementary object). Explicitly we define it as

J1 if g € H;
XH(g)_{—l if g H.

Thus (IT) may be re-phrased as 0,4(z) = (1 — xu(9))z/|G| + O(x/log z).

If one wishes to show that (II) of Theorem 1 is impossible, then one must show that a
‘significant’ number of primes belong to those arithmetic progressions modulo ¢, that are

in H,. However once one has done so then an immediate (elementary) deduction is that



L(1,xyg) # 0. Thus ruling out (II) for every g, is equivalent to proving that L(1,x) # 0,
for all real, quadratic, Dirichlet characters y. A number of straightforward methods have
been proposed to do this, by Gel’fond, Bombieri and others. Selberg’s proof in [Se2]| is

deduced from (1.4); and we discuss this and other proofs in section 3.

It seems likely that Theorem 2 can be used to provide an elementary proof of the
Cebatorev density theorem: One starts by using Deuring’s method to reduce all cases
(abelian and non—abelian) to the case of cyclic extensions, and then one applies a suitably

modified version of Theorem 2.

Most recent work on our subject has concentrated on improving the error term in
the Prime Number Theorem (see [Di] for an informative review of the work of Wirsing,
Bombieri, Diamond and Steinig, and others). A number of different elementary proofs of

0(x) ~ = have appeared and we discuss some of these in the next section.

In [Sh3], Shapiro showed that the condition 6(x;q,a) ~ x/¢(q) for each (a,q) =1 is

equivalent (in an elementary way) to

M(x;q,a):= Z pu(n) = o(x), for each (a,q) = 1.

n<z
n=a ( mod gq)

Thus an alternate approach to these questions is through the identity
M(z;q,a)logz = — Y M(z/p;q,a/p)logp + O(x).
p<z, p)( q

However it turns out that this does not help us decide between (I) and (II) since we prove

in section 9:

Corollary 3. In case (I) of Theorem 1 we have M (x;q,a) = o(x) for each (a,q) = 1. In
case (II) of Theorem 1 we have M (x;q,a) ~ xu(a)vyx/q, for each (a,q) = 1, where

6 2
= 1— ———
Vq 7_‘_21_[( p‘l‘l)

peEH



is a positive constant.

Remark: By definition we see that v, = 1/(g (1), where (g (s): = ((s)L(s, xm)-

There are already many papers in the literature that provide explicit upper and lower
bounds for f(z) and M(z) (for instance, by Ceby¢ev, Ramanujan, Kalmar, Diamond and
Erdés, and many others), and some work has been done on 6(z;¢q,a). But, in the case
of 0(x;q,a), the bounds make much use of analytic methods (see [Mc]); in particular,
requiring information about the zeros of the associated L-functions. We shall exhibit a
new method to obtain explicit upper and lower bounds, which uses only counts of primes

in the computation. Actually our result works for the more general equation (1.5):

Theorem 3. Given (1.5), there exists a computable constant 7 > 0 such that

0q() ‘ On(y) ‘ T
1.6 9 — 1| < max -1 + ,
(16) z/|G| zoiyézg y/|G] log zg

for any x > xy > 2 and g € G.

(Remark: If the explicit dependancies of the ‘O’ in (1.2) and (1.5) on G are O(k¢g) and
O(kgz), respectively, then 7 = 7¢ < 1 + Kg.)
The following modification, of Theorem 3, will presumably give much better bounds

in practice:

Theorem 3°’. Given (1.5), there exist computable constants T,7* > 0 such that

a1 < {2+ & Zlo )

IOS?JSQES heq

log log -\ /2
o o (28T
log log x

foranya:Za:(Q)zéLandgeG.

Equations (1.1) and (1.5) seem, at first sight, somewhat strange criteria to expect of

our sequence S. In fact, in analogy with the natural numbers, we can explain why these



are plausible: Given S define N to be the set of all products of the form n = [],., pi",
where [ is any finite subset of the positive integers, and each a; > 1. Given o and G define
a(n) = [Tier a(pi)®, and p(n) = (—1)I1 if each a; = 1, and 0 otherwise. Finally define
N(z) to be the number of elements in N that are < z, and Ny(z) to be the number of
such n for which a(n) = g. If there exist constants ¢ > 0 and ¢ > 0 such that

N(z) = cz 4+ O(x/log *" ), then by following the proof of the corresponding formulae in
[Sh1] and making the obvious modifications, we can prove that (1.1) holds. If, in addition,
we know that N, (z) = cx/|G|+O(z/log ***x) for each g € G, then we deduce (1.1), (1.2),
and then following the method of proof of (1.3) given in [Sel], we may obtain (1.5).

Of course, the material in the paragraph above leads us to the subject of Beurling’s
‘generalized prime numbers’ [Be|. Indeed Beurling was able to deduce the Prime Number
Theorem if 3 + ¢ above is replaced by 3/2 + ¢, and gave counterexamples for when it is

replaced by 3/2. A good review of work in this area may be found in [BD].

Our main result here (Theorem 2) may be interpreted as saying that there are two
‘stable solutions’ for sequences S satisfying (1.5): Either that the images of the sequence
(under the map «) are equi—distributed among the elements of G, or else there is a subgroup
H of G of rank 2 such that the images of almost all elements of S belong to the complement
of H. Theorem 3 gives us some further information: If, for some interval of the form
[z0, 23], we are in the first case, then we remain there thereafter. Thus an interesting
possibility arises: Up to some point we are in the second case, and then the situation
becomes a little ‘unstable’, and we ‘collapse’ in to the first case. This has a direct analogue
in understanding the distribution of primes in arithmetic progressions to a moduli ¢ that

has a ‘Siegel zero’:

Suppose that L(1—v, x) = 0, where x is the primitive real quadratic character modulo
q, for some v < ¢/log q (for some suitably small positive constant ¢ > 0). Then, by the

explicit formula for primes in arithmetic progressions, one has (see pgs. 54-56 in [Bo2)),

1—v

oa) T O (m)

0(x;q,a) = % ~ x(a)




whenever x > ¢ (where A is a fixed absolute constant). Thus, if vlogz — 0 as & — oo
then we are in the second case, with almost all primes < x belonging to those residue
classes a (mod ¢) with x(a) = —1; but, as vlog = gets larger and moves up to a constant,
and then off to oo, we ‘collapse’ into the second case, with the primes < x equi—distributed

among the arithmetic progressions (mod gq).

In section 7 we will discuss this phenomenon (somewhat informally), sketching a proof
of the following result which shows that the ‘collapse’ must happen at the same rate as

above (if it occurs at all).

Theorem 4. Assume the hypothesis of Theorem 2. Fix ¢ > 0. There exists a constant
xq (depending only on the ‘level of uniformity’ in (1.5)), such that if case (I) of Theorem
2 holds, but 0,(y) — y/|G|| > ey/|G| for some y > x| and a € G, then there exists a
subgroup H of G of rank 2, and values 1 > wgy > vy > 0 such that

l—wgy

o (@) = oo v ) = e (@)

for all x > xz¢ and all g € G.

(1.7)

We would like to replace (1.7) by the statement

L7y JORIEE XH<9>% o (%) ,

for some fixed vy > 0. In section 8 we will show that one can deduce (1.7)" from the
hypothesis of Theorem 4, provided one can do so for the quotient group G/H; in other
words, to prove Theorem 4 with the conclusion (1.7)’ for any group G, it suffices to do so
just for the group G of two elements. This will lead us to pose, in section 8, a problem of

which the solution would solve this and another, related, problem.

We have seen, in Theorem 4, that (1.5) can be used to account for the effect, on esti-
mates for 6,(x), of certain zeros of the L-functions corresponding to the group characters
of G. However, it is unlikely that (1.5) could be used to account for the effect of other

zeros, further to the left in the complex plane, on estimates for 6,(z). This is because



their effect, for  larger than a large power of |G|, will be O(x/|G|); and so could not be
detected by an ‘identity’ with that same error term (as in (1.5)). Indeed even (suitable)
modifications of the much stronger elementary identities of Diamond and Steinig [DS] have

too large error terms to overcome this difficulty.

In conclusion, if one were able to establish (1.3) uniformly for log z/log ¢ — oo then,
by plausible strengthenings of the arguments in this paper, and by solving the problem
posed in section 8, one might hope to deduce that the following are the only possibilities

for the behaviour of #(z; g, a) in this range:

(Ia) There exists ¢ > 0 such that

ex/¢(q) < 0(z;¢,0) < (1—e)x/d(q)
and 0(z;q,a) ~ x/d(q);
(Ib)  There exists a subgroup H = H, of the reduced residue system (mod ¢) of order
®(¢)/2, and a constant v, > 0, such that

T 1-vy

x x
0(x;q,a) = — — xu(a —+O(7);
(0) =5 X gy O\ Gaon s
(IT) There exists a subgroup H = H, of the reduced residue system (mod ¢) of order
#(q)/2, such that

O(z;q,0) = {1_XH(G)+O(IO;:6)} ¢>qu)'

Moreover if Case (II) holds for some ¢, then it only holds for those ¢ that are multiples of
some fixed go > 1, and (Ib) does not occur at all. If Case (II) never holds then (Ib) cannot

hold for two moduli g1, g2 in an interval of the form [Q, Q?], unless it holds for ged(q1, ¢2).
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2. Elementary Proofs of the Prime Number Theorem—A brief

survey.

We start this section with a sketch of the original elementary proof:

Define L and U to be, respectively, the liminf and limsup of 8(x)/x as z — oo. By

(1.1),
f(a)logz > 2zlogz — Y (U +o(1)) % log p + O(x)

p<z

> {2—-U+o(1)} zlogz
using Merten’s result: >  _  logp/p = logz + O(1). Choosing z large so that 6(z) =
{L + o(1) }x we see that U + L > 2. Now, by (1.1) again,

O(x)logz < 2zxlogz — Z {L+ 0(1)}%10gp + O(z)

p<z

< {2—=L+o0o(1)} zlog z.

This time choosing z so that (z) = {U + o(1) }x we get L + U < 2 and, together with the

above, this gives

(2.1) L+U=2.

Now, choose x large so that 8(x) = {U + o(1) }z. Then, by (1.1),

§:<9(%)—L%)mgp:o@bgm

p<z

and so 0(x/p) ~ L z/p for “almost all” primes p < z (i.e. those not in a set of primes

p < x for which > log p/p = o(log z)).

From here the argument runs, essentially, as follows: Choose such a p,, say with py <
x® and let zp = z/p. Then, by (1.1), we deduce in a similar fashion that 6(z/q) ~ U x¢/q
for “almost all” primes ¢ < xy. Then, by finding p and ¢ so that xy/q and z/p are close

together, we get a contradiction unless L = U, and so L =U =1 by (2.1).



That we can choose such values of p and ¢ was proved by two different, though closely
related methods — in [Erl] and [Sel]. Today, Selberg’s method, which is less direct, but
far less complicated, is the one used by most researchers (see [LV] for a clear exposition),

though our work here is based on Erdos’s method.

It has long been known that the Prime Number Theorem is equivalent to the assertion

that

M(z)i= Y uln) = ofa)

n<x

This allowed Postnikov, Linnik and others to use the formula

(2.2) M(z)log z = —ZM <g> log p+ O(x)

p<z

in place of (1.1), in their elementary proofs of the Prime Number Theorem. Daboussi

[Dal] used the related inequality

(2.3) M (z,y)logz < Z M(%,y)logp—lr Z log (z/n),

pr<z,p<y n<z
pIn=p<y

where M (z,y) =) n<z i(n). In both cases the final, and essential step in the argu-
pln=p<y
ment, is very similar to that of Selberg (for instance, examine the proof of (2)’ in [Dal]).

Recently, Hildebrand [Hi] introduced a seemingly new proof, quite unlike anything
given previously: He used the large sieve to show that the summatory function of any
real valued multiplicative function f of modulus < 1 cannot change value quickly in long

“short” intervals. This implies fairly easily that M (z) = o(z).

The best result deduced from (1.1) is claimed by Dusumbetov [Dul], who showed that
0(x) = 2+ O(z/(log x)! %), for any fixed € > 0. He also claimed a result of corresponding
strength for 6(z;q, a) in [Du2].



3. Ruling out case (II) of Theorem 1 — A brief survey.

We wish to show that (II) is impossible in Theorem 1, for every value of ¢. Thus, for

instance, we need only prove that > __ ped, (log p)/p > log x.

The first, and most elegant method, is due to Selberg [Se2] (we slightly alter his proof
to avoid the word ‘character’): Let @ be the set of odd, squarefree divisors of ¢q. Using
the law of quadratic reciprocity, it is an elementary exercise to show that, for any

(—1)@=D/2Q if 4 does not divide ¢,
D eqd -QuUQ if 4 does divide ¢, but 8 does not divide ¢,
—2Q U —-QUQU2Q if 8 divides g,
the set Hp = {a :(a,q) =1 and (%) = 1}, is a subgroup of (Z/qZ)* of rank 2. Moreover
each of these subgroups is distinct, and so we have all subgroups of (Z/qZ)* of rank 2,
by a simple counting argument. Thus the subgroup H in (II) must be precisely the same
as Hp for some integer D (which divides 4¢q). However the result in (II) then contradicts

(1.4).

Selberg obtained (1.4) by evaluating the product

N = H lu? — Dv?|,

lu|</z/2
lv|<y/z/2|D|

missing out the term with v = v = 0, in two different ways (in fact, Selberg did not give
(1.4) uniform in D, but the modifications to his argument are straightforward): First he

showed, by simple analysis, that log N = 2Z (logz + O(1)). Second, he evaluated the

VD
power to which each prime p divides D: Primes p with <%) = —1, only divide those terms
u? — Dv? where p divides both u and v, and so do not contribute much to the total. For
primes p with (%) = 41, Selberg used an elegant lattice point counting method to show

that they divide N to the power 4z/ pV/D plus a small error term. He thus deduced that

1 1
> in = g logz + O(D),

pse. (B)=1




and then (1.4) follows from (1.2).

Shapiro gave two different arguments that rule out Case (II), both of which rely on
counting primes in algebraic number fields: For a given algebraic number field K, let
Ok (z) = Y No<.10g (Np) where p is a prime ideal of K and N its norm. In [Shil],
Shapiro verified the identity

Ok (x)logx + Z Ok (Nip) log (Ngp) = 2zlog x 4+ O(z);

Np<lz
then Erdos’s Theorem (that is (1.2)) implies that Ok (z) ~ z, the Prime Ideal Theorem.

Take K to be the ¢th cyclotomic field. Any prime ideal in K, which does not divide ¢
nor belong to the rational primes, divides a prime =1 (mod ¢). Thus, as each such prime
splits into ¢(¢) prime ideals, Ok (z) ~ = implies that 0(z;q, 1) ~ x/$(q), which contradicts

(IT). Shapiro’s second approach was to use the easier estimate

log N

g 08 pzloga:-{—O(l).
Ng

Np<lz

From this one can easily deduce that 6(x;q,1) > x/¢(q), contradicting (II).

However both of these approaches rely on proving some quantitative version of the
fact that there are ~ cx ideals a of K with Na< x. As far as I know, this can only be
achieved in an ‘elementary way’ by counting the ideals in each individual ideal class, by

counting lattice points in certain ellipses, in a similar spirit to Dirichlet.

Gel’fond, Bombieri, Bateman and others (see [Bol], for instance) used a method to

give lower bounds on L(1,x), based on the combinatorial formula

DRI I B DU E
d|n

n>1 n>1

together with the observation »_;, x(d) = 1 if n is a square, and is > 0 otherwise. Thus
for 1 > = > 0 the sum above is > Zn>1$"2, and we obtain a suitable inequality by

multiplying through by (1 — x) and then choosing = close to 1.



Daboussi’s [Da2| elementary proof starts from the inequality
M (z,y;a,q)[logz < Y

X a
M(E,y;ﬁ,q) logp+ > log(z/n)
k

p"<z,p<y n<z,p|n=p<y
n=a(mod q)

p)(q

where

M(z,y;a,q)= Y pln),

n<zx
pln=p<y
n=a(mod q)
which generalizes (2.3) in the spirit of (1.3). In his paper, Daboussi avoids the use of
characters; however, he quotes a result from [Sh3] that was shown to be equivalent to the
non—vanishing of the associated L-series at s = 0, in [Sh2,II] (and thus at s = 1, by the

functional equation): Specifically, Daboussi’s Lemma 7 uses Shapiro’s result,

(3.1) > pln)| O,4(1).

n<x
n=a(mod q)

However, Shapiro (in a remark after the proof of Lemma 4.1 in [Sh3]) writes that this “is
equivalent to the statement that L(0, x) # 0 for x # xo0, and hence in turn equivalent to
the statement that for all a, (a,q) =1,

logp 1 .
Z b - gb(q)logac-l—O(l).

p<z
p=a(mod q)

Corradi [Co] makes this much more explicit by showing that if (3.1) holds for any one
arithmetic progression b (mod ¢) then, for all (a,¢) = 1, we have M (z; ¢, a) = o4(x), which
was proved to be equivalent to 6(z;q,a) ~ x/¢(q) in [Sh3|. Indeed, Corradi generalizes

this to any multiplicative function, whose values lie inside or on the unit circle, in place of

L4



4. Some preparatory lemmas.

We shall note here a couple of straightforward consequences of the definitions of S, G

and «, and previous results.
Lemma 1. If (1.5) holds then (1.2) holds.

To prove this note that by summing (1.5) over all g € G we obtain (1.1), and then we
may apply the results of [Er2], as explained in the introduction, to get (1.2).

Lemma 2. Equation (1.5) may be re-written in the following different ways:

2zlog x
(4.1) 0y4(x)logz + Z Oga(p)—1 <—) logp = ﬁ + O(z);
p<z, peS
x 2zlog x
(4.2) Og4(x)logz + 2 Z Oga(p) -1 <—) logp = Gg + O(z);
<z'/2, pes p | |
p<zl/?, p
x
(4.3) (GQ(x) |G|> logzx + Z (09a(p)1 (—) - m) logp = O(x);
p<z, peS p
T T
(4.4) (9 (x) — )logaj + 2 <c9 alp)-1 (—) - )logp = O(x),
/%) =g 2 o (5) -5

for any ¢ in the range 0 < ¢ < 2, with ¢+ ¢ = 2. Moreover, if H is a subgroup of G of
rank 2, and g ¢ H then, for o = +1,

x 2xlog x
(4.5) Oy(x)logz + 2 Z Oga(p)—1 (]—)) logp = rel + O(z).

p<z, peES
xH (a(p))=0c

These may all be proved from (1.5) using (1.2) to handle any new sums that arise.

Lemma 3. If (1.5) holds then, for 0 <y < x and any g € G, we have

(4.6) 0,(z+y) — 0,(z) < |2G|+o( r >

log x

This follows from subtracting (4.1) from the same equation with z replaced by = + y.



5. Explicit estimates — the proof of Theorem 3.

The proof of Theorem 3: Define, for each x > 1,

o <y<a

by () —1‘ and A*(z) = max A(y),

where A = 1/4/2. Taking ¢ = 1 in (4.4), and choosing g € G to maximize the absolute

value of the first term there, we get

Alogz <2 A% () 3 8P 4 oAty Y B2 4 oyl

p<gl—> p zl-A<p<pl/2

(where the sums are over p € S), and so, for z = y, we have

(5.1) Al) < 2-VDA*(Y) + (VE-DA*WY) + o( ! )

log x
using (1.2) (which is allowed by Lemma 1).

Now, for any y in the range = >y > 2, we have
A*(y) < max {A%(z),A%(2*)} and  A*(y*) < max {A%(2?), A (z'/2)};

and so, by substituting this into (5.1) for each y in this range, we deduce that

A*(z) < (2—V2)max {A*(z), A*(2M)} + (V2—1)max {A*(z}), A*(z/?)} + O ( ! ) :

log x

which implies

A*(2) < max {A*(2Y), A*(@/2)} + O (102;9;)'

The result follows from an easy induction argument, by taking this equation for

_2V2 4 . 4V2 8
T=25"",20, %" Ty, -

Corollary 4. Let

M = lim sup max
r—oo0 9€G

e



If M # 0 then, for any x > 4, there exist values y,y_, in the range z'/* < y,,y_ < =,

and g4, g—, such that

IN

(5.2)- 0y (y-) < (1= M)y-/|G| + O(y-/logz)

(5.2)+ and O (y+) = (1+M)y,/|G| + O(y+/log z).

We thus note that 0 < M < 1, and, for whatever value M takes,

T T

lixrgiorolf I;lelg <09(a:)/@) =1-M and lial;nj;p Iéleaé <09(m)/@> = 1+ M.

Proof: Taking zo = z'/? in (1.6), we see that there exists y in the range x > y > zl/?

and A € G such that

On(y) ' 27
-1 > M — ;
y/|G| - log

so that either (5.2)_ or (5.2)4 holds. We shall suppose that (5.2) holds (the rest of the
argument, if (5.2)_ were to hold, is exactly analogous, with the obvious changes of signs

and reversal of inequalities), and that (5.2)_ is false; in other words that

04(2) > (1 — M)z/|G| + Cz/logz,

for any fixed C' > 0, for all g € G, and any z in the range y > z > y'/?

c¢=1in (4.4) we see that the left side of (4.4) is thus

- ylogy (C|G| - 21+ O(M)
e log x ’

. Taking r = y and

which contradicts (4.4) if C' was chosen sufficiently large.

Corollary 5. Given the Hypothesis of Theorem 2, suppose we already know that there
exists a subgroup H of G, of rank 2, such that 0,(z) = (1 — xu(9))x/|G| + o(z) for all
g € G. Then 04(z) = (1 — xu(g9))x/|G|+ O(x/log z) for all g € G, and

(5.3) 3 ler _ on)

peS; a(p)eH p




Proof: By the hypothesis M = 1 (in Corollary 4), and so, by Corollary 4, there exist
arbitrarily large values of = for which there is an element g € G such that 0,(x) = 2z /|G| +
O(x/log x): by the hypothesis it is clear that g ¢ H, if x is sufficiently large. It is also
clear from the hypothesis that if y is sufficiently large (say > z() then for any h ¢ H we
have 0,,(y) > y/|G|. Thus by (4.5) we have

log p 1
Z = - E: ega(p)l( )lng< O(1).
p<z/xg,pES p x p<x,pES
a(p)eH a(p)€EH

But this is true for arbitrarily large values of z, and so (5.3) follows.

Now, for any g ¢ H and = > 1, (4.1) gives that 0,(x) < 22/|G| + 0(z/log x) < z/|G].
Thus, by (4.5),

2z
(@—093:) < 2 Z 99a(p)1< )logp—l—O()

p<z, peS
a(p)eEH

lo
<L x Z 8D + 1] <€ z,
peS, a(p)eH p

by (5.3). Thus we have proved that 0,(z) = 22/|G| + 0(x/log x) for any g ¢ H.
Finally if ¢ € H then

1
> Yoot 1( )logp <z Yy S«

b
p<z,peS S H
b peS, a(p)e

by (5.3); and, by the above estimate for ;,(x) when h ¢ H,

x
Z Bgatr)- 1( )logp = 2 Z Oga(p)— <2_9) logp + O(x)

p<z,peS <z1/2
Pz ,pES
a(p)gH a(p)gH

=2 > <|%E|+O(lozx)) loip + O(z)

p<el/2 pes
a(p)¢H

2xlog x
= —— + 0O(x),
| ()




where we compute the sum over p using (1.2) and (5.3). Inserting the two estimates above

into (4.5) gives 0,4(z) = 0(x/log x), which completes the proof of the result.

Sketch of the proof of Theorem 3’: If we now define

By(e) = 7 -1 and Aw) = o Y 1Al

geG
then one can prove (in an almost identical way to Theorem 3), that

T
Az) < A
@< s 80 + o

uniformly for all g > 2. We next show that

1/2
(5.4) Ag(z) < max Az') + O<<loglﬂ) )

zl/2<g' <z log x

for each g € GG, and so complete the proof of Theorem 3’:

2J _

/2 chosen so that there exists an integer .J with (1+6)2/ = z;

Let 6 < (loglog x/log x)
and let d; = (1 + 6)7 for each j. By (4.4) with ¢ = ¢’ =1 we obtain

log p
[Ag(z)logz < 2| Y Agagy)2(z/p) ot O(1)

p<zl/?

J—-1
<23 |3 Apo/dy) >

7=0 |heG dj<p<djij
a(p)=h
J—1 1ng
(5.5) +olX | X oo | max 1An(@/dg) = An(a/p)]
7=0 \d;j<p<dji1 heG

The first term here is

J—1
log p

< max > {ZIAghl(w/dj)H ZAghl(m/dj)}

j=0 dj<p<djyq p heG heG

a(p)=h
J—1
2 1 0(y)

< —~ log (1446 — A =2
< S igestien+o(g)f e {mes s+ |50 1]}



by Lemma 3. The result then follows from this estimate and noting that |Ap(z/d;) —
Ap(z/p)| < 0 (by Lemma 3), so that the term in (5.5) is easily bounded.

6. The proof of Theorem 2.

We start by proving

Proposition 1. Given the hypothesis of Theorem 2, and M as defined in Corollary 4, we
have either M =0 or M = 1.

For the rest of this section we shall assume that M # 0, else we will end up in case (I)
of Theorem 2. We will choose arbitrarily small constants ¢, d, 7, v, subject to the following

constraints:

_ ) 2(1 4+ M) Te?
< <2 Sl Ml < .
0 < (1fM7£1then)T_12/log((1_M)), 7_2|G|2

€< == c

5|G|’ 2’
If M # 1 then we choose them in the order above; if M = 1 then we may choose them in
the order 4,7, = 7. We also define d; = (1+6)? for each j > 0. With such definitions we

may state

Proposition 2. Suppose that there exists a € G and x = dj for some J, such that
Oo(x) > (1 4+ M — v)z/|G|. Then there exists a set 1T'(= 1Ts,) of integers j in the range
7J < j < (1 —r71)J, of size > (1 — 37)J, such that, for each j € T there exists a set
Bj(= Bj,j.a) of |G|/2 elements of G, such that

Ifb € B; then

1+ M 2
Oap(dy—j—1) > (W - 26) dyjo1 and  By(djs) — Ou(d;) < 2L (djgr — dy);
Ifb ¢ B; then
1—M + 2¢ 2 _¢
Oasp(dy—j-1) < %d‘]_j_l and  Op(dj11) — 0b(d;) > ( e ) (dj1 —d;)



Proof: Substituting 0,(z) > (1 4+ M — v)z/|G| into (4.3) with ¢ =1+ M gives

Ooaim-1(x/p) log p - ,
Z{ e M)} p = Meez+OW):

p<z
Now, by Theorem 3, the term inside the brackets here is > —1/log (z/p); therefore there
exists a set of integers, 1', as described in the hypothesis, for which

(6.1) 3 {Ha/b(fc/p) _(1_M)}1ogp < o

x/p|G]| p T

dj<psdjiq
a(p)=b

for each b € G. Now define B; above to be the set of those b for which 0/,(d;—;—1) >
(1—M +2¢)d;—j—1/|G|. For these b, we have

dJ_ i—1 dJ_' i
Oup(x/p) > (1-M+2e)—2— > 1-M+e)—L > (1-M+e)—:
/ c G PlC
for all p in the interval (d;, d;+1]. Thus, by (6.1),
S e v
dj<p=dji1 p =7
a(p)=b
and so
o7y 27
(6.2) Op(dj1) = Ob(d;) < ——djyr < — (dj1 = dj).

Now by (1.2), and the fact that for any j € T" we have d; > 27,

djt1 — dj = 0(djt1) — 0(d;) + o(d;)
= > A{0(dj1) — Ou(di)} + D> {06(djs1) — 05(d;)} +o(d;)

beB; bZB;

oy 2
(6.3) < |Bj|€—de+1 +{IG| - | B|} € (dj11 —dj) +o(dy)



by (6.2) and Lemma 3 respectively. Thus |B;| < |G|/2. Write d for d;_;_1. Then, by
(12),

d+o(d) = 0(d) = Y bap(d)+ Y basp(d)

beB; bZB;

d d
(6.4) < |Bj|{1+M+O(1)}@ + (|G|—|Bj|)(1—M+26)@

by Corollary 4 and the definition of Bj, respectively. Therefore |B;| > |G|/2, and so
|B;j| = |G|/2. However this implies that the last inequality in each of (6.3) and (6.4) are
both, in fact, equalities (asymptotically) and so we get the first and last inequalities in
Proposition 2 from (6.4) and (6.3), respectively. This completes the proof of Proposition
2.

Proof of Proposition 1: Suppose that M is not 0 or 1. By Corollary 4, we know that

the Hypothesis of Proposition 2 is satisfied for arbitrarily large values of x.

Choose N so that (14 6)" > 2(1+ M)/(1 — M), so that for > (1 — 3N7).J integers
T7J <3 <(1-r7)J,eachof 7/,j'+1,...,j + N are elements of T. We now show

Lemma 4. Bj/ = Bj/_|_1 = ...= Bj'+N'

Proof: If not, there would exist an integer j (with 0 < j — 5/ < N) and b € G, such that
be B; but b ¢ Bj;q. Thus, by Lemma 3, and then by Proposition 2,

2 4=
@(d,]—j—l _ dj_j—2) > Qa/b(dj_j_l) — ea/b(dJ—j—Q) + O <10g;)
1+ M (1— M + 2)
> (o —2e) o - S D drnsea + ol

which is impossible.



Continuation of the proof of Proposition 1: If b ¢ B;/ then, by Lemma 1,

(14+ M) (1—-M)

deq_]v — de’ + O(dj’) > eb(dj’-FN) - eb(dj’)

= Z_ {eb(dj’+i+1) - eb(dj’-l-i)}

2—¢)
|G|

N

Z (dj’—l—N_dj’)

Dividing this through by d;/ /|G|, and re-arranging, we obtain
1+M—c+o0(1) > (1—M —¢e)(1+ )N, which is clearly false, by the definition of N.

We now re-state Proposition 2, given Proposition 1 and that v < 7&2/2|G|* (by

assumption):

Proposition 2. Suppose that (I) of Theorem 2 does not hold. Then M = 1. Now,
suppose that we are given a € G and x = d; for some J, such that 0,(z) > (2 — v)z/|G|.
Then there exists a set T'(= T,) of integers j in the range 7J < j < (1 —7)J, of size
> (1 —37)J, such that, for each j € T there exists a set Bj(= Bj, ja) of |G|/2 elements of
G, such that

Ifb € B; then

2

g
Ga/b(dJ,j,l) > (@ — 26) d(],j,1 and eb(dj+1) — 9b(dj) < —

|G|2 (dj+1 - d])a
Ifb ¢ B; then

2¢e 2—¢
Oasp(ds—j—1) < @dJ—j—l and  Oy(dj11) — Ob(d;) > ( Il ) (dj+1 —dj).

An easy consequence of this and Corollary 4 is



Corollary 6. Suppose that (I) of Theorem 2 does not hold, and fix ¢ > 0. For any
sufficiently large X there exists a value of x (= d; for some I) in the range X <z < X5,
and a set A of |G|/2 elements of G, such that 0,(x) > (2 — ¢)z /|G| for each a € A.

Proof: By Corollary 4, we know that there exists a value of y in the range X°/* <y < X°
and g € G, such that 0,(y) = 2y/|G| + O(y/log y). Thus we may satisfy the hypothesis of
Proposition 2, with all the constants arbitrarily small, in particular € < ¢/2|G|. Selecting
any j € 1" with j < J/10, our result follows with I = J—j—1 and A = B;, by Proposition
2.

Our next result is

Proposition 3. Assume that (I) of Theorem 2 does not hold, and v > ¢ are given,
sufficiently small, positive constants (we shall take y = § in the proof). Suppose that we are
given x (= dj for some J) and a set A of |G|/2 elements of G, such that 0,(z) > (2—~)z/|G]|
for each a € A. Then there exists 1 > 0 (which is = 6'/?°), and a subgroup H(= H;) of
G of rank 2, such that A = G\ H. Moreover there exists a set ¥ (=% ;) of integers j in
the range nJ < j < (1 —mn)J, of size > (1 — 3n)J, such that, for each j €%,

If b€ H then

Op(dy—j—1) < —dj—j—1 and Ob(dj+1) — Ob(dj) < 5

2n
G|

If b ¢ H then

2
Ob(dy—j-1) > <@ = 277) dj—j—1  and  Op(djs1) — Ob(d;) > G (dj1 —dj).

We will prove this after completing the proof of Theorem 2: As a consequence of

Proposition 3 we prove



Corollary 7. Assume the hypothesis of Proposition 3 with x = d; sufficiently large.
There exists a subgroup H (= Hy) of G, of rank 2, such that for any z in the range
x> 2z>x" and any g ¢ H, we have the lower bound

z

(6.5) 0a(2) > (2 = 2000|G) .

Proof: Select k so that dy < z < dj41; thus J/11 < k < J. From Lemma 3 we can

immediately deduce that if d; < p < d;41 and k > j+2 then (remembering that ¢ is fixed)

04(2/p) 1
(6.6) 2 /PG < 2 + O(m):

for any g € G (and note that 6,(z/p) = 0 for larger p). Moreover we have

(6.7)
3 logp _ Z Og(dj+1) = 0g(dj) _ [d+0O(1/j) by Lemma 3;
p d; = | dn/2|G] by Proposition 3 for j €%.

dj <p=djiq
a(p)eH

beH

Now, from (4.5) with 0 = 1 and then, on the next two lines by (6.6) and (6.7)

respectively, we have, for g ¢ H,

0,(2) logp Oga( )—1(z/p)
[ logz = 9P + O(1
‘ 2z/1G|| 8 ; p 2/nlG] .
a(p)EH

VA
i
—N
[\)
_|_
Q

()} 5 o

dj<p<d;ji1
a(p)eH

mfero (i)} + X faro(Beity))
+ — + + -+ —
2|G| = k—j T i k—3J

5
< |—C;7|k + 66m|G|J + O(log J) < 1001|G|log z,

IN

<

where >’ denotes a sum over values of j ¢%, and the result follows.

Completion of the proof of Theorem 2: Suppose that (I) does not hold and fix
positive constants v > ¢ and n < 1/1000|G|?. If X is sufficiently large then take ¢ = v in



Corollary 6, and then, by Corollary 7 (with J = I'), we know that there exists a subgroup
Hyx of G such that for all ¢ ¢ Hy, and for all z in the range X1/ > z > X1/10 (which is
guaranteed to be a subrange of x > z > /10 as X > 2 > X/5), the lower bound (6.5)
holds. Thus, for each g ¢ Hx, we have 0,(z) > (2 —1/5|G|)z/|G|, and, for each h € Hx,

we have

On(z) < 0(z) = > O4(2) < 2/9/G,

9g¢Hx

if X is sufficiently large, using (1.2). So we see that each Hx distinguishes those 6,(2)
that are < z/5|G|, from those that are > 9z/5|G|: therefore by considering z = X3/20 in

this way, we see that Hx = Hox, and so Hx = Hox = Hyx = ... = H, say.

In the last paragraph we proved that there exists a subgroup H of G, of rank 2, such
that if z is sufficiently large then the estimate (6.5) holds, for all ¢ ¢ H. However, this
is true for all fixed n > 0, and so, as 6,(2) < (2 + o(1))z/|G| by Lemma 3, we see that
04(z) ~ 22/|G| for all g ¢ H. Furthermore, if h € H then, by (1.2),

On(2) <0(2) = Y 04(2) = o(2).

g¢H
Thus 0,(z) = (1—xu(g))xz/|G|+o(x) for all g € G, and so the result follows from Corollary
5.

The proof of Proposition 3: For now we shall define ¥ ; to be the intersection of the
sets T'(= Tj,), as a runs through the set A (where T, is as in Proposition 2): for the
actual statement of Proposition 3, this definition is amended to the intersection of our set
here with the interval [nJ, (1 —n)J]. It is then clear, by taking 6 =~ and n > 7 = ¢ (and
sufficiently large) in Proposition 2, for each a € A, that Proposition 3 follows provided we
can prove that B; = H for each j €¥;, and A = G \ H; thus the remainder of the proof
is essentially a complicated exercise in elementary combinatorial group theory. The proof
is easiest described in a sequence of steps:

First, taking 7 > 0 arbitrarily small (and certainly < 1/20|G|?), define § = v =

25

P, e=1=0% =9, =1 =7

, € =T =n°.



Now, for any given j € T ,, the value of 05(dj+1) — 6y(d;), given by Proposition 2,
makes a clear distinction between those b that belong to Bj ;,, and those that do not.

Thus this set must be the same, no matter what the choice of a and J. In other words,

(1)’ Ifje T‘]’a N le’a/ then Bj’J’a = Bjyjlya/.

Thus we may denote this set Bj, independent of a and J.

Similarly, for any given j € T4, the value of 6,/,(d;—;_1), given by Proposition 2,
makes a clear distinction between those group elements that belong to the set {a/b: b €
B;}, and those that do not. Thus this set must be the same, no matter what the choice

of j,a and J, as long as J — j is fixed. In other words,
(ii): If j €Ty, and j' € Tyr o, with J — j = J' — j', then B; = (a/ad’)B;.

Now, if we take j = j/, J = J' and a,a’ € A in (i) and (ii), then we find that
B; = (a/d")B; for any a,a’ € A. Thus H :={a/d' : a,d’ € A} is a set of |G|/2 elements
with A = aH and B; = b;H for any a € A and b; € B;. But then it is clear that H
is a subgroup of G of rank two, as it is finite, abelian, contains 1 and has order |G|/2
(all trivially), and is closed (for if h,h’ € H then, for «’ = ah and a” = da'h’, we have

hh' = a"/a € H). So, we have proved

(iii): Assuming the hypothesis of Proposition 3, we know that there exists a subgroup
H(= Hjy) of G of rank 2, such that A = aH for any a € A. Moreover, if j €T then the
conclusions of Proposition 2 hold for B; = b;H, for any b; € B;.

Thus, to complete the proof of Proposition 3, it only remains to prove that a ¢ H,

and b; € H for all j €.

Now, for any 7 €%, it is clear that the hypothesis of Proposition 3 is fulfilled with
the same value for ¢, but with 4" as above, A’ = (a/b;)H and J' = J —i—1, by (iii). Now
suppose that j' €Ty and j =i+ j' + 1 €%;. Therefore, by (iii) (applied to J') and then
(ii), we have

bi+jr+1H = Biyjq1 = (a/(a/bi))Bj = bibj H.



Thus, we have proved,
(iv): Ifi, i+j+1€%T;and j €¥5-,_1 then b4 ;1 H = b;b;H.
This is the key to our proof. The idea now is to select values of i and j in (iv), so as
to prove that all of these b; € H. The first step is to show
(v): Ifj,j+d,j+ 2d €¥;, and we can find k such that k +j+d+ 1, k+ j + 2d +

1%, k%) g 1NTj_j 2q-1,and k+de¥;_; 1NTy_;_q-1, then bj12qH = b;H.
From the hypothesis in (v), we can apply (iv) on four occasions, to get
bibraH = bjiktdr1H = bjrqbpH, and bjygbpyaH = bjirt2d+1H = bjtoqb H.
Multiplying these two equations together, and noting that g € H for any g € G (by

elementary group theory), we obtain (v).

Now, in order to apply (v), we need to guarantee the existence of k that satisfy the

hypothesis. If we restrict our search to only those k satisfying
7] < k+j+d+1 < k+j+2d+1 < (1-7")J,

then, by the definition of the sets ¥, all but at most (12 + 3|G|)7’J such values of k satisfy
the hypothesis of (v). Thus

(v)’: Such a k exists if j + 2d < (1 — (15 + 3|G|)7")J.

Now suppose that j, j+2r €T s, with j+2r < (1 —(15+43|G|)7’)J. First note that we
can certainly select s such that each of j+s, j+2s, j+r+s €%, and < (1—(15+3|G|)7")J.
But then applying (v) to the triples j,j 4+ s,j + 2s and j + 2s,j + 7 + 5,5 + 2r we get
bjH = bjiosH = bj1o,H. In other words (using the definition of T in the Proposition,
with n > (15 + 3|G|)7"),

(vi): Ifi,j €T, have the same parity, then b;H = b; H.

In other words there exist g,¢’ € G such that, for any j €%, if j is odd then
b;H = gH, and if j is even then b;H = ¢'H.



Now, as T contains more than three—quarters of the integers < J, we see that there
exists j < J/2 such that j,j + 1 €% ;. We claim that B; = B,1, for if not then there
exists b € Bj, ¢ Bj;1 so that, by Proposition 2,

2 2¢e
Oasp(dr—j—1) = Oaqsp(ds—j—2) > (— - 28) dj—j—1— 74dj—j—o2,
/ J / J |G| J |G| J

which clearly contradicts Lemma 3. Therefore bj1H = b;H, and so we may take ¢’ = g.
Moreover, substituting this fact into (iv), we see that gH = ¢g?H = H. Thus we have
proved that B; = H for all j €% ;.

Finally by computing the value of the sums

"f Oy(djs1) — On(d;)  Op(dy)
P d; dy : dj

using Proposition 2 for j €T, (in the sum on the left side), for J —j —1 €% (in the sum
on the right side), and Lemma 3 to bound the terms otherwise, it is clear that the set

aH # H, which concludes the proof.

7. Detecting Siegel zero effects — The ideas behind Theorem 4.

Let’s suppose that |0,(z) — 2/|G|| > (1 — v/2)x/|G| for some a € G, and sufficiently
large x > x1. From Theorem 3 we then deduce that for any x( in the range 2o < zg < z,

there exists y in the range zop < y < x3 and b € G, such that |0,(y) —y/|G|| > (1—7)y/|G].

Next, by the methods of Propositions 2 and 3, and of Corollary 7, we deduce that,
corresponding to each such y, we have a subgroup H, of G, of rank 2, such that for any
2 in the range y'/6 < 2z < y%/6, the equation (6.5) holds for any g ¢ H,. However (6.5)
defines H, and so, as the intervals, defined for y, overlap, all of the H,’s are the same, that

is they equal H, say. Therefore we have shown (writing 1 for /2, and v for 300n|G|? in

(6.5)),



If 10,(z) — 2/|G|| > (1 =~v1)z/|G| for some a € G and = > x1 then, for all z in the
range 7o < z < 2°/6, we have |0,(z) — 2/|G|| > (1 — ¥2)2/|G| for each g € G. Reversing

the logical order here we deduce

Proposition 4. If there exists a value of z > x9 for which |0,(z) — z/|G|| < (1 —72)z/|G]|

for some g € G, then
g = /1

for all z > max {z1, 25/°} and each a € G.

In other words, if §,(2) # o(z/|G|) nor (24+0(1))z/|G|, for some g € G and sufficiently
large z, then 6,(z) will never stray that far from its expected value thereafter. Moreover,
we will show that if 0,4(2) # o(z/|G]) nor (2 + o(1))z/|G|, then 6y(x) converges to x/|G|
extremely rapidly for x > z: The idea will be to establish that if vy < M < M(1+ \) <

1 — 7, (for some value of A depending on ;) and

0a(y)
(7.1) —1'§M(1+)\)
y/|G]
for all y > xpr(142), then
0a()
. Za) )<
(72) 2/1G] 1‘ =M

for all z > zp = a::]"w(l ) As a consequence (iterating these inequalities several times)

we deduce that

0o ()
z/|G|

(7.3)

_1‘ <y o4+ I—p)A+n)7es8r0 < gy + 277,

for some constant v > 0. This gives the upper bound in (1.7): the lower bound is proved

trivially by taking wy sufficiently close to 1.

Proof of (7.3): We need to prove that (7.1) implies (7.2). We shall assume that (7.1)
is true and (7.2) is false, so that we have a value of x > z); and g € G such that

04(x) > (1 + M)z/|G| (an equivalent argument works if 0,(z) < (1 — M)x/|G|). We



deduce a contradiction along the lines of Proposition 1, though we have to take a little
more care with uniformity: We start by specifying the constants in Proposition 1 (and so

Proposition 2 also), in terms of 71 and |G|:
c=m/5lGl, d=2/2, T=¢c/20log (8/1), A= ~2/5000|G[log (8/).
Let c =1+ M in (4.4), so that

3 {%a(za)l(ﬂf/p) —(l—M)} 2p _ o).

paats2 z/p|G] p

As each term inside the large brackets is > —AM by (7.1), we deduce that

0 yaim—1(x/p) log p M\
max O,L—I—M} < —— logz + O(1).
> max {o, P - an |82 < TR g + 00

Therefore there exists a set of integers, 7', containing at least (1—27).J/2 values of j, 7.J/2 <
Jj < J/2, such that

0
Z max < 0, M _ (1 . M) log p < M Nlog (1 + 5) N c

dj <p<dj;i
a(p)=b

for each j € T and b € G. Given such a j, define B; to be the set of b for which
Og/p(ds—j—1) > (1 = M + 2¢)d;_;_1/|G|. Imitating the proof of Proposition 2 we obtain

2M A\

ET

Op(dj+1) — Ob(dj) <

(djy1 —dj),

for b € B;. For the given values of the constants, the arguments in (6.3) and (6.4) also
carry through, so that |B;| = |G|/2; and then we also obtain versions of the remaining two

inequalities in Proposition 2:

1+ M MM
Og/p(dy—j—1) > (

W—&‘—T‘*‘O(l)) dJ_j_l ibeBj,
2—¢ .
and Qb(de) — Qb(dj) 2 ( |G| ) (dj_|_1 — dj) if b € Bj.




We now follow the rest of the proof of Proposition 1: First we choose N to be the smallest
integer > Zlog <,y—81), sothat 7 < 1/6N and (1+6)" > 2(1+M+MA—¢)/(1—M—MX—¢).
Therefore we can choose j' € T with J/3 < j/ < J/2. Lemma 4 follows, and then the rest
of the contradiction from using (7.1) to bound both 6 (d; 4 n) and 6y(d;).

8. Reducing to the case |G| =2, and an open question.

The reduction: Let’s suppose that case (I) of Theorem 2 holds, but that there is some
large value of y, as in the hypothesis of Theorem 4. By (7.3), this would be impossible
unless we had a subgroup H of G of rank 2, such that, for some wide range of values of x,

‘almost all’ elements of S have their image in H (under the map «). Thus, if we define

Ou(z) = =>  xu@logp = — > xu(9)fy(@),

p<z geqG

then, in the above ‘wide range of values of 2’, we have 6,(x) ~ (v — xu(9)0u(x))/|G|. It

is thus useful to have the following result:

Theorem 3”. Given (1.5), there exists a computable constant T > 0 such that

1 (z —xu(9)0u(z)) 1 (y —xu(9)0u(y)) T
- _ < Z _
T 09 (.’L‘) |G| = z;’%l?gmg y 0h (y) |G| lOg 7o )

for any x > xy > 2 and g € G.

This is proved in a very similar way to Theorem 3, though we need the following
identity, which may be obtained by summing —xg(g) times (4.2) over all elements of

g€ G:

(8.1) Ou()loge + 2 Y On (g) xu(plogp = O(z).

p<zl/?



Thus, as a consequence of Theorem 3”, and the comments just above that, we see that
if we could only prove that 0y (x) = 2'~"# 4 o(x), in the range = > |G| then Theorem 4
would follow. But this statement is equivalent to Theorem 4 in the case that we take G’
to be the group G/H of two elements. We have thus reduced Theorem 4 to the case where

G has two elements.

Let us now look at equations of the form (8.1) a little more closely: For any group

character y of G define

o(x, x) 0(z) -2 when x = xo,
x = .
X deG x(9)04(x) = Zpﬁw x(p)logp otherwise,

where we write x(p) for x(a(p)), and xq is the ‘principal character’. Summing x(g) times

(4.1) over all g € G we obtain

(3.2) Oaloga + [ B/t )d8(tx) = Ofa).
1
From Lemma 3 we deduce

Lemma 3°. If x is a character of G of order m then

x
8.3 0 —0 < Cm O ,
(5.3 0o +3:0 = 0w )] < eny + 0 ()
where ¢,,, = 1 for m = 1,2 and

< 1.

[ (2/m) cosec(m/m) if m > 3 is even,
em = (1/m)cot(m/2m) if m > 3 is odd,

To see this note that, by Lemma 3, ¢,, is the maximum of |a|, where a = a¢ +
a1l +as® + ...+ ay, 1¢™7L over all sets of real numbers (a;)™; with 0 < a; < 2/m
and ) . a; = 1, where ¢ = e2i™/™  For such an «, it is clear that if the angle subtended
between o and (¥ is less than that subtended between o and ¢7, and a; # 0then ap = 2/m,
else we could take o with a;- — min {2/m,a; + a;} and a, = max {0,a; + aj, — 2/m},

and have |a'| > |a|, which is impossible. Thus for even m, such a value of « is given by



ag = a1 = ...= Gpyo_1 = 2/m, a; = 0 otherwise. For odd m two possibilities arise: first
that ag = a1 = ... = a(m_3y/2 = 2/m, a(m_1y2 = 1/m, a; = 0 otherwise, which gives
rise to ¢p; second that ag = a(n_1)2 = 3/2m, a1 = a2 = ... = a(m_3y2 = 2/m, a; =0

otherwise, which gives a value ¢,, cos(w/2m). Note that in each case ¢,, = 2/m 4+ O(1/m).

Lemma 3’ explains why the only significant difficulties in our proofs occur with regard
to characters of order 2; it is straightforward to deduce that 6(z, x) = o(z) from (8.2) and
(8.3) when ¢, < 1.

Write R(z) = 0(x,x), when m = 1 or 2, so that R(x) is a real-valued function.
Equations (8.2) and (8.3) now read as

(8.2) R(z)logz + /11 R(z/t)dR(t) = O(x),

(8.3) Rx+y)—R@)| <y + O (1;)

From the methods of section 6 and 7, we have seen that if R(z) = —x + O(z/log x) does

not occur then R(x) = o(x). This implies both the Prime Number Theorem and our main

Theorem here. We would like now to be able to deduce that if |R(x)| > ex for x > xg

(where xg depends only on the constants implicit in the ‘O’s in (8.2)" and (8.3)’), then
1—v

(8.4) R(z) = — . + o(x) for all x > x,
—v

for some constant v, 1 > v > 0. The methods of the previous section only give the weaker

1—vp 1—vso

T

+o(z) < R(z) < —

+o(z),

1—14 1—ws

for some 1 > vy > v; > 0. A proof of (8.4) seems to be the most interesting open problem

that arises from our work here.



9. The proof of Corollary 3.

Let z = flogz and P = P(z) = _ I Hp. Note that if n is squarefree then
p<z, pe

xu (n)u(n) = (1 — 2)#{pinpet}

_ Zd|(n,P) N(d)Qw(d) if each prime p € H, that divides n, is < z,
Zd|(n,P) H(d)2w(d) + O(1) otherwise,

where w(d) is the number of prime factors of d. Therefore

xu(a) > pn) = ) S ou@® ol YY1

n<z n<z d|(n’P) z<p<x n<z
n=a ( mod gq) n=a ( mod gq) pEH n=a (mod gq)
n squarefree pln

(9.1) = > p(d)2¥@ > 1L+ 0| ) (3+1) ,

d‘P m<z/d, (m,d)=1 z<p<z
m=a/d ( mod gq) pPEH
m squarefree

writing n = dm. We thus need to estimate

> 1= ur) Y we Y1

m<y, p(m)#0, (m,d)=1 7"|d s<(y/7~)1/2 m<vy, rsQ\m
m=b ( mod gq) 7(3,(1):1 m=b ( mod gq)
9.2 = Y_4+oq
(92) = 3 utr) u(s) L5+ 0y
rld s<(y/m)1/?

(s,d)=1

Now

s<(§;)1/2 M‘S) - l}d <1 - 1%> "o <W>
(s,d)=1 p

and so the main term in (9.2) is

Y 1 1 y1/2 1
IO I (=55) o525 )

pld p*d



with error term

<3O <y

rld s<(y/r)1/2 r|d

Substituting these estimates into (9.2), and then into (9.1) with y = z/d and b = a/d, and

noting that, by (II), >

1/p < 1/log z < 1/log log z, we get main term

pEH, p>z
1 1 1 x
g0 I) - beoladen)
%M() ng P l}d P’ ! loglogz ) | q
p

with error terms

x 1/2 1 2 2 1/2 xr
w(d) _) - 1/2 _ “ < 1/2 _cz / e
<<Zd| 2 (d Z rl/2 x ”(1 pl/2 ) =T € < gloglog x’

and

r|d p|P p

X x €T
S (2 01) € g e <
s<pzs pq gloglogz  log“x  qloglogx
pe

if x is sufficiently large. This completes the proof.
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