ABC IMPLIES NO “SIEGEL ZEROS” FOR L-FUNCTIONS
OF CHARACTERS WITH NEGATIVE DISCRIMINANT

ANDREW GRANVILLE AND H. M. STARK

1. INTRODUCTION.

Oesterlé and Masser’s abc-conjecture asserts that for any given € > 0, if a, b and
c are coprime positive integers satisfying a + b = ¢ then ¢ <. N(a, b, c)!™¢, where
N(a,b,c) is the product of the distinct primes dividing abc. Their conjecture has
a wide variety of interesting, sometimes surprising, consequences (such as Fermat’s
Last Theorem, other than perhaps finitely many examples). Vojta [14, page 84]
showed how to formulate the abe-conjecture in arbitrary number fields (from which
Elkies [5] elegantly deduced Faltings’s Theorem). We will describe a version of this
conjecture after introducing the basic notation.

Given a number field K we define Ag :=|D K|1/ [K:Q] where D is the discrim-
inant for the field extension K/Q. For non-zero numbers aq,as,...,a, € K we
define the (absolute) height and the conductor of {ay,as,...,a,} to be

H(ay,ay,....an) = [ [max (lai]lo, lazllv, - [anl,) and
v

N(ay,ag,...,a,) = Ng(ay,az,...,a,) = H ||p||;1,
pel

respectively, where v ranges over all the normalized valuations of K, and I is the
set of prime ideals p of K for which [|ai||y, [|a2|p, .- -, [lan||p are not all equal. More
precisely, v ranges over the prime ideals p of K with ||p|[, = Normg q (p)~ /K,
and over all of the embeddings v : K — C with ||al|, = |a¥|"/,

We will now describe Elkies’ reformulation of Vojta’s conjecture (though one
should note that he did not require uniformity over different number fields in the
proof in [5]). Note that the conjecture that we state does follow from Vojta’s
“General Conjecture” 5.2.6 in [14] under the additional assumption that [K : Q] is
bounded.

The uniform abc-conjecture for number fields. For any given ¢ > 0, if a +
b+ c =0, where a,b and c are algebraic numbers in some number field K then

(1) H(a,b,c) <. (AgN(a,b,c))'Te.

Remark. We stress that the value of H is independent of the field K. On the other
hand both terms on the right side of (1) are dependent on K and one might ask
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2 ANDREW GRANVILLE AND H. M. STARK

whether the conjecture over some high degree field extension could possibly imply
a stronger criterion for an equation defined in a subfield, than the conjecture in
that subfield. In fact if L is a number field containing K, then Ax < A whereas
Nk(a,b,c¢) > Np(a,b,c). However AxNg(a,b,c¢) < ApNp(a,b,c), so (1) is most
stringent when K is the field of definition of a and b.

In this paper we will apply the uniform abc-conjecture to the very large solutions
of Diophantine equations that arise from modular functions and deduce a lower
bound for the class number of imaginary quadratic fields. This extends an idea
of Chowla [1,2] who indicated, via a conjecture of Hall, how unlikely it is that
Q(y/—p) has class number one, since Weber [15] showed that there would then be
an enormous solution in integers to 23 —py? = —1728 (in fact where z is the integer
nearest to e"VP/3),

Theorem 1. The uniform abc-conjecture for number fields implies that

) hd) 2 {0} YL 3 L

logd o=, @

reduced

for any fundamental discriminant —d < 0 (that is, an integer which is not divisible
by the square of an odd prime, with —d = 1 (mod 4), or 8 or 12 (mod 16)). The
sum is over quadratic forms (a,b,c) of discriminant —d = b* — 4ac, with —a < b <
a<cor0<b<a=c (that is, reduced).

Mabhler [11] showed that if (2) holds then the Dirichlet L-function L(s, x4), where
Xd = (;d), has no real zero in the interval 1—c¢/logd < s < 1, for some sufficiently
small constant ¢ > 0 (actually Mahler showed a little less than this but it is not
hard to suitably modify his proof). We will refer to such zeros as “Siegel zeros”.
We can thus deduce:

Theorem 2. The uniform abc-conjecture for number fields implies that there are
no “Siegel zeros” of Dirichlet L-functions for characters (_—d) with —d < 0.

Our proof provides no insight into the question of “Siegel zeros” of Dirichlet
L-functions for characters (4) with d > 0. Indeed there is no suitable analogous
theory of modular functions for positive discriminants.

If we knew that the uniform abc-conjecture holds with an explicit constant, then
our estimate in Theorem 1 could be given explicitly. As a consequence we would be
able to solve several outstanding problems about quadratic fields. For example, one
would be able to determine all of Euler’s “convenient numbers” (numeri idonei),
which are those d for which there is just one ideal class per genus, in the ideal class
group of Q(v/—d).

Using a result of Selberg and Chowla [12], we will obtain, in Section 3, an
unconditional asymptotic formula relating the quantities in (2):

Theorem 3. For any fundamental discriminant —d < 0 we have

K log log d 2 L'(1,xq) 1V 1
@ ned={5+0 (5 )} (F mari)  Tea 2w

reduced
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The estimate given in (2) is asymptotically the same as the lower bound of
(3), if L'(1,xa)/L(1,xa) = o(logd). Indeed this quantity is O(loglogd) if the
Riemann Hypothesis is true for L(s, xq) (as we will prove at the beginning of
section 3.1). Thus, under this assumption, we have an infinite sequence of “best
possible examples” in the uniform abc-conjecture, running through a sequence of
number fields with rapidly growing degree.

We note that if we were to replace A by A4, for some A > 1, in the conjectural
estimate (1), then we can obtain analogous, though slightly weaker, results.

Elkies suggested to us that one might apply our same methods to other Dio-
phantine equations arising from modular functions. In Section 4 we examine one
other example and this leads to another proof of Theorems 1 and 2, and another
infinite sequence of “best possible examples” in the uniform abc-conjecture, run-
ning through a sequence of number fields with rapidly growing degree. Perhaps if
one takes algebraic points on any given modular curve, which arise from modular
functions (for example, Heegner points), and then map those points to P! using a
Belyi map as in [5], one obtains other such “best possible examples” in the uniform
abc-conjecture.

Zagier suggested to us that one might apply similar methods to other differences
of singular moduli, using the beautiful and restrictive formulae of [9] to obtain
bounds. We have not succeeded, as yet, in so producing any new examples, though
this does seem to be another good avenue to pursue. We will discuss this further
in section 4.

Remark on Notation: Throughout ¢ > 0 will be assumed to be an arbitrarily small
fixed constant. However it may be a different € from one line to the next.

As usual A < B and B > A both mean that there exists a constant ¢ > 0 such
that A < ¢B for all such A and B. We write f < g when f < g and g < f.

The value of an infinite sum ) p» OVer Zeros of an L-function, should be under-
stood to mean imr—.cc 3_ . () <7

2. COMPLEX MULTIPLICATION.

For 7 in the upper half plane, set ¢ = €?"7. As explained by Weber [15],
the classical theory of complex multiplication tells us about special values of the
j-invariant,

3
(1 +2403 5, (de d3) qn> 1
4) ()= 51 — = 4 744 4+ 196884 + . . .
gl 1—q) q

n>1

and the functions (1) and ~3(7) related to j(7) by
(5) J(r) = 72(7)? = 73(7)* + 1728,
Suppose that —d is a fundamental discriminant. The value of j(7) at 7 =

_HQ\/__d or ‘/Q__d (as —d =1 or 0 (mod 4)) is an algebraic integer whose conjugates
—b+vd
2a

are the numbers j(7*), where 7* runs through the values as ax? +bry +cy?



4 ANDREW GRANVILLE AND H. M. STARK

runs through a complete set of representative quadratic forms from each equivalence
class of positive definite binary quadratic forms of discriminant —d.

Weber [15] notes that if the class number h(—d) = 1 then ¥o(7) and ~3(7)/v/—d
are both integers, and indeed very large integers by (4). Chowla [1,2] observed that
this is very unlikely to happen in view of the relation (5). Indeed Chowla so deduced
that there are only finitely many d with h(—d) = 1 by applying Hall’s conjecture to
the Diophantine equation emerging from (5). Hall’s conjecture is a consequence of
the original abc-conjecture, and it is an easy exercise to make the same deduction
directly from the original abc-conjecture. The uniform abc-conjecture for number
fields allows us to extend Chowla’s observation to the general case, by working in
a field containing both ~2(7) and ~3(7).

If d is relatively prime to 6 then Weber showed that v2(7) and ~3(7) both belong
to the field M = k(j(7)), where k := Q(v/—d). This field is the Hilbert class field
of k, which is the maximal unramified abelian extension of k; as such we have
Ay = Ap = v/d. We now bound the discriminant of the field containing v»(7) and
v3(7), no matter what the value of ged(6, d).

Lemma 1. If K = k(v2(7),v3(7)), where T is as above, then Ax < 6v/d.

Proof. For many of the facts used in this proof see [15] and [13]. Both ~,(7) and
v3(7) are in the field of modular functions of level 6; that is, both are invariant
under T'(6), and the coefficients of the Fourier expansion at each cusp all belong to
the field of sixth roots of unity. Thus both v2(7) and v3(7) are in L, the ray class
field of k£ (mod 6), by Shimura’s Reciprocity Law (actually these facts were already
well-known to Weber [15]). Thus K C L and Ag < Ap. Now, by the conductor-
discriminant formula, the relative discriminant of L/k is given by Dy, = Hx fxs
where the product is over all characters y of the ray class group (mod 6) of k, and
fx is the conductor of x. Moreover f, divides 6 for all such x, and so Dy, divides

6124 which implies that Ay, /A < 6. The result follows since Ay = V.
Remark: A more careful analysis would allow us to reduce the factor of 6.

Proof of Theorem 1. Note that for any algebraic integer a one has N(a,1) <
H(a, 1), so that in a solution to

(5") v3(7)? = 42(7)3 + 1728 = 0
we have
N (72(7)%,73(7)?,1728) < N (72(7), 1) N (73(7), 1)
< H(v2(7), 1)H(v3(7), 1)
= H(’VQ(T)Sv )1/3H(’YS( ) ) 1)1/2

< H(ya(7)3, y5(7)?, 1728)%/9,

Therefore, by applying the uniform abc-conjecture to (5') in the field K, and using
Lemma 1 to bound Ag, we deduce that

H(72(7)%, v3(7)?,1728) <. d>*e.
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Therefore, by (5), we have
(6) H(j(r),1) < H(j(r),4(r) — 1728,1728) <. d***.

We now determine a lower bound for H(j(7),1). Gauss [6] showed that there

is a representative 7* of every ideal class with a < \/d/3 (and this corresponds to
the reduced quadratic form in every equivalence class of binary quadratic forms).

Since |1/¢| = e™V/, we deduce from the g-expansion for j(7*) in (4) that

max{|j(*)], 1} = e™V¥/.

Remembering that in the definition of height the valuations were normalized to
take account of the degree of the field extension, we thus have

1/h(—d)
(1) H((r),1) = (Hmax{U(T*)L 1}> = exp (h(id) 2 Wf) '

a

Comparing this with (6) implies Theorem 1.

Remark. Assuming the Generalized Riemann Hypothesis for L(s, x) (so that we
can take L'(1, x)/L(1, x) = O(loglog d) in Theorem 3) we deduce that H(j(7),1) =
d®(log d)°™)| from (7). Assuming the uniform abc-conjecture, the proof of Theorem
1 implies that Ng (72(7), 1) Nk (y3(7), 1)) > H(j(7),1)}=°M) /@' /2 = ¢°/2+°(1) On
the other hand Ny (12(7),1) < H(y2(7),1) = H(j(r),1)/? = d(logd)°M), and
similarly N (v3(7),1) < H(y3(7),1) < H(j(7),1)Y/2 = d*/?(log d)°"). Combining
these estimates gives

I
e

(32(7), DD = g1oh)
(3a(r), D = g/ 2+)

(8) Nk (72(1), 1)
and NK(73(T)7 1)

I
o

The number J := Normpg,g(72(7)) has many extraordinary algebraic proper-
ties, as shown by Deuring [4] and Gross and Zagier [9]. Since Nk (y2(7),1) =
H(v2(1),1)*t°(M) one might guess that the height and conductor of .J are of roughly
the same size. One can show that H(J) = H(vyo(7), 1){1HeMHKQ and it is evident
that the prime divisors of N(J) and Ng (y2(7), 1)@ must be the same. However
N(J) is by definition squarefree, whereas the prime factors p of Ny (y2(7), 1)@
may occur with multiplicity, perhaps even high multiplicity, corresponding to the
number of different prime ideals of K lying above p which divide 75(7). Indeed
we show in section 5 that N(J) = H(J)°") assuming the Generalized Riemann
Hypothesis.

3. FORMULAE FOR L-FUNCTIONS — THE PROOF OF THEOREM 3.
Throughout this section we let y be the character yq := (_—d)

3.1. Evaluating L-functions at s = 1.
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For any y > 2 we have, by partial summation,

(9) L/ - > M) logp bgp —/oo d¢(§’X)+O(logy),

p prime 4

where, as usual, ¥(t,x) = > mo, x(p™)logp. If we assume the Generalized Rie-

mann Hypothesis for L(s, x) then ¥ (t,x) = O(t'/?log®(dt)) (as in section 20 of
[3]), and so the right side of (9) is O(loglogd), when y = log* d.

Another approach, using the explicit formula (17) and the functional equation
(13) of pages 82 and 83 of [3], bearing in mind that y is real, so that the zeros of
the L-function are symmetric about the lines Re(s) = 1/2 and Im(s) = 0, yields

r'(ly 1 1
— =+ —logd = Z —+co
LLx) 2 p: L(p, x)*O
B
=) St > moataw
2 2
p=BE R p=pB+ivy, v#0 B+

where ¢g = ${log(m) + 0 + (x(—1) + 1) log 2} > 0 and 7 &~ 0.577215665.. .. is the
Euler-Mascheroni constant. Notice that every term here is positive since 0 < § < 1
and so, by pairing up the zeros g + iy and 1 — 3 — ivy, we get

5 n 1-0 S 1
ﬁ2+,y2 (1_B)2+72 1+,-)/2

The number of zeros with |y| < T is {T/7+O(1)} log(dT'/2er) (page 101 of [3]), and
so there are > log d zeros with Tj) < || < 275, for sufficiently large 7. Combining
these last two estimates we thus deduce that

L'(1 1
(1,) + —logd > logd.

(10) L(1,x) 2

This estimate will prove useful in the next subsection when we prove Theorem 3.

Remark 1: By pairing the p and p terms together, we deduce from (4) of page 102
of [3], that L'(0, x)/L(o, x) = >_, Re(1/(c — p))+O(log d) uniformly for 1 < o < 2.
Since 0 <Re(1/(1—p))<Re(1/(c —p)) when 0 = 1+1/logd and |1 —p| > 1/logd,

we obtain (L) . % )
s X o, X

= + 0 <10 d+ ) ,
L(LX) 1_5 8 L(Uv X)

where (3 is the “Siegel zero”, if it exists (otherwise there is no term 1/(1 — (3) here).
However |L' (o, x)/L(0, x)| < |¢'(0)/{(0)| < logd, so we obtain

Lty _ 1
L(L,x) 1-8

+ O(logd).

In fact if (1 — §)logd = o(1) then one can modify this argument to improve the
error term to o(logd).
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This estimate, combined with Theorem 3, implies Mahler’s result discussed in
the introduction. Related estimates have been obtained in [7] and [8]; and our
remark above can be deduced directly from (4.2) in [10].

Remark 2: Under the assumption of the Generalized Riemann Hypothesis we may
deduce, from formulae above, that the estimate

1 1
Z - = ilogd—i-O(loglogd)
p: L(p,x)=0

holds uniformly for all quadratic characters x (mod d).

3.2. The Selberg-Chowla formula.

In this subsection we will prove theorem 3. In [12] Selberg and Chowla give a
highly convergent expansion for Epstein’s zeta-function which can be deduced as a
consequence of Kronecker’s limit formula (when summed over all ideal classes).
They deduce from this an identity, given on the last line of page 109 in [12]

(which contains an important typographical error where we2mni(bjtiv/ldl)/2a;0 g

. i bi+iv/]d .
pears incorrectly as “627””%]_"”). Now a < 4/d/3 for any reduced binary

quadratic form (a,b,c) of discriminant —d, so that |exp(2imn(b + ivd)/2a)| =
exp(—mnv/d/a) < 1/C™ where C = exp(m+/3), and therefore

Z |Zd (2imn P gz Zd C%:Z%:.oomgoomo&...
dln

n>1 n>1 \ dln d>1

Thus one can deduce from Selberg and Chowla’s identity that

2

) =" 1, = osla P(=d)
L'(Lx) = ((%) a+\/a(§c) log( /d)-|—O( 7 )

reduced reduced

By adding wh(—d)logd/2v/d to both sides, and noting that each log(v/d/a) > 1,

we obtain

wh(—d) (L’(l,x) 1 ) 2 | 1
11 + —logd | = — “+0| — log(Vd/a) |,
0 " i T2 ) =6 2w t0| g 2 s
reduced reduced

using Dirichlet’s class number formula, L(1, x) = wh(—d)/V/d for d > 4.

We now bound the error term in (11). Let p(a) denote the number of reduced
binary quadratic forms (a, b, ¢) of discriminant —d, for some integers b and c. Let
p1(a) denote the number of distinct solutions b mod 2a to b> = —d (mod 4a). By
the Chinese Remainder Theorem we have pi(a) < [, 4,{1+ (=d/p)}, and, in fact
p(a) < r(a), the number of distinct divisors of a. Now, b is, by definition, the
least residue in absolute value from a residue class mod 2a of solutions to b* = —d

(mod 4a); therefore p(a) < pi(a). On the other hand if [b] < a and b* = —d
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(mod 4a) with a < v/d/2 then when we define ¢ := (b? + d)/4a we get ¢ > a so
that (a,b,c) is a reduced form. Therefore if a < v/d/2 then p(a) = pi(a).
Since log(v/d/a) is a decreasing function in a, we thus deduce that

Z log(Vd/a) = Zp )log(Vd/a) < Zr(a)log(\/g/a),

(a,b,c) a>1 a<A
reduced
where A is chosen to be the smallest integer for which ) | _ 4 7(a) > h(—d). Dirichlet

showed that >, r(a) ~ Alog A so that A ~ h(—d)/log(2h(—d)). Therefore, by
partial summation, using Dirichlet’s estimate, the error term in (11) is

< —= Z ) log(Vid/a) < Alog 4 log(Vd/A)

a<A \/7
h(—d) log log d { h(—d)logd}
< o log h(— max 4 1, Az@)osd |
NE g(h( & ) log d N

However, by (10), the left side of (11) is > h(—d)logd/v/d; and, since there is
always the principal form, with a = 1 the main term on the right side of (11) is
> 1. Therefore the above estimate for the error term in (11) does imply (3) after
suitable re-arrangement, and thus we have proved Theorem 3.

4. SOME SUGGESTED GENERALIZATIONS.

4.1. The )-function.

In an email dated August 22nd, 1994, Elkies suggested that one might try the
same approach with the A-function. Any elliptic curve E can be written in the
form y? = 42(z — 1)(x — X). There are, generically, six choices for ), the roots of
the equation

(12) flz) :=256(2% — x4+ 1)® — j(E)(2? — ),
where j(FE) is the j-invariant of the elliptic curve E. If X is a root of (12) then the

six roots are
A LA T=X 1/(L=X), A=1/A A/(A=1).

Let A be the root of (12) which is largest in absolute value. If |A\| < 2 then all
of the roots of (12) have size between 1/2 and 2, and so [],)—o max{1, o} =< 1.
If |A] > 2 then max{l, ||}, max{1,|1 — A|} =< |A|, whereas max{1,|a|} =< 1 for
a=1/X\ 1/(1=X), (A=1)/\, or A/(A—=1). From (12) we have j < |A|?, so that

(13) [T max{1 lal} = max{L,][}.
f(a)=0

Now A\ satisfies the equation A+ (1 —\) = 1. Moreover A and 1 — X are evidently
2-units, by (12), so that N(\,1 — A\, 1) < 1. Therefore the uniform abc-conjecture
implies that H(\, 1 — \,1) <. A7, where L = M()).
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Now, A always belongs to the ray class field (mod 2), which is of degree < 3
over M, so that [L : M] < 3. It can be shown that [L : M] equals each of 1,2 and
3 infinitely often. In the case that [L : M] = 3 then by studying automorphisms
we find that the the equation in (12) splits into two cubics, the first with roots
A, (A=1)/A,1/(1=)), the other with roots 1/A; A/(A—1),1—=\. Thus H(A\,1-\,1) <
H(j(1),1)*/6. Combining the last two estimates thus gives

H(j(1),1) <. ASTe.

This implies (6) since Az, < d/? (as in lemma 1).
We will return to this, and the cases where [L : M] = 1 or 2 in a subsequent
paper.

4.2. Differences of singular moduli.

In an email dated December 2nd, 1994, Zagier asked us whether similar methods
might be applied to other differences of singular moduli (the value of j at a quadratic
imaginary number 7). In [9], Gross and Zagier showed that the norm of differences
j(m1) — j(m2) have only small prime factors and then often to quite high powers
(indeed they show how to determine to what exact power each prime appears),
when the discriminants of 7 and 75 are relatively prime (see the remark after the
proof of Theorem 1, above). Our proof of Theorem 1 may be viewed as applying
the uniform abc-conjecture to the equation

() =3(0) + (@) = j(w)) = (i(7) = j(w)),

where i? = —1 and w?+w+1 = 0, since j(i) = 1728 and j(w) = 0. Thus, in general
one might look at

(14) (1(11) = 3(72)) + (J(72) = §(73)) = (§(m1) — 4 (73)),

especially if the corresponding discriminants are pairwise coprime, since we then
have a considerable amount of information available from [9]: moreover if

K = Q(j(Tl),j(Tz),j(T3), \/—dl, \/—dg, \/—d3) then AK = \/d1d2d3 and [K : Q] =
8h(—d1)h(—d2)h(—ds).

As yet we have been unable to succeed with this strategy, perhaps because we
used the fact, in the proof of Theorem 1, that the relative discriminant for the field
extension containing j(7)'/3 and (j(7) — 1728)'/2 over M is absolutely bounded
(see Lemma 1), whereas we have not determined an analagous property in general.

Another possibility would be to consider (14) when 7y, 79, 73 are all unequal but
have the same discriminant, since Gross and Zagier [9] also give formulae to describe
the discriminant of the minimum polynomial for j(7).

5. ESTIMATES FOR THE NORM OF j(7).
Let A := |Normgy;(+y)/0(j(7))|, and J := Norm g (72(7)) as above.
5.1. The height of J.
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We will show that H(A) = H(j(r),1){1+eMW(=4) assuming the Generalized
Riemann Hypothesis, from which it follows that H(.J) = H(yo(7), 1)1 Te(}HK:C]
by appropriate scaling. Now, from (7) we have that

[Normygj(r)) /(i |—Hmax{lj )|, 1} min{[j(7*)[, 1}

= exp (sz +O(h )Hmm{b )|, 1}.

We thus need to understand “small values” of j(7): The only zero of j(7) occurs
at w, a primitive cube root of unity inside the fundamental domain for SL(2,7Z).
In fact j has a zero of order three there so that |j(7)| < |7 — w|?® in a small ball
around w. Thus if 7% = (=b + v/—d)/2a and |j(7*)] is sufficiently small then, as
b] < a < /d/3 for a reduced form,

()] = (1= (bl /al®* + |v/d/3/a = 1> < ((/d/3 = [b]) /a)®
g b| Sv 3p2\ * 3a 1
“(“Tm) (%) > (%) >3

since we must have |b|,a < /d/3 for this to be small.

Therefore if |j(7*)| < 1/log”d then \/d/3 — a < V/d/log®d and so the num-
ber of such forms is < Zog Ti—aev/d/ 1Ongp(a) < Zog i< vd) logsdr(a) <
Vid/log? d; and so their total contribution to []_. min{[j(7*)|,1} is O(Vd/logd)

The contribution of the remaining forms is > 1/ loggh(_d) d. Thus we have proved
that

A =exp (ﬂ'\/a (Zé%—O(@)) + O(h(— )loglogd)>

(15) = exp (M (Zl {L+o <loi§§d)}>>’

the last error term obtained by substituting (10) into Theorem 3 to get the upper
bound h(—d) < (Vd/logd) >, 2. More accurately, Theorem 3 under the assump-
tion of the Generalized Rlemann Hypothesis becomes

3h(—d)(logd + O(loglog d)) = mV/d ) _ 2

Using this formula to estimate the main term in (15) gives
(16) H(A) = (d(log d)O(l))Sh(fd) = H(j(r), 1){1+o(1)}h(7d)’

by (8), as desired.
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5.2. The conductor of J.

For simplicity suppose that d is prime and —d = 1 (mod 6). By the remarks
between (1.5) and (1.6) in [9] we see that N(J) is the product of those primes ¢ = 2
(mod 3) for which 3d can be written as 3d = 2 + fy? + 30z where z,y and z are
integers with y + 2z even. In other words ¢ is the unique prime = 2 (mod 3) which
divides 3d — x? to an odd power. We deduce that ¢ < 3d/4.
We will get an upper bound for the number, v, of distinct prime factors of N(J)
as follows: For given small k > 0, let L be the set of primes ¢ < d" for which ¢ = 2
(mod 3) and (—d/¢) = —1. Then

v < |L| + #{x < V3d : Either £}3d — 2? or ¢*|3d — 2% for all £ € L}
(17)

<<|L|+\/8H<1—%)<<\/3€€1_[L<1_%)2

teL

by the fundamental lemma of the small sieve. If £{ 3d and ¢ < d* then

(1) (2 ) )1

Thus, since d is prime,

) »
() = {00 0-3) () (- 42)
~ dH( d/€)><1_(3d7€/4)> -
og
Inserting this into (17) we obtain
1/2

(18) log N(J) <wvlogd <« +/dlogd H(l—l—(_i/@) <1_%)

0<d

Below we will prove that

(19) Z H( )( <d/p) 1odpf<[d(1+

p<Vd

")
so that, by (15),

log H(J) <log H(A \/72 v\/_logdH( d/p))

p<d
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Dividing this into (18) we obtain

log N(J) [Teca (1= (—d/0)/0) (1 — (3d/)/0)\ "/
log H(.J) < < Z log d )

(20)

unconditionally. Notice that the terms in the Euler product with (—=3/¢) = —
contribute a bounded amount. Thus the Euler product is < [[,(1 — (—=d/¢)/¢)?* <
log d where the product is over those primes ¢ < d with / =1 (mod 3). Thus (20)

is o(1) unless
1
g 7 < 1.
t<d
(=3/0)=(=d/0)=1

It can be shown that this never happens under the assumption of the Generalized
Riemann Hypothesis. Thus we formally state:

If the Generalized Riemann Hypothesis is true then N (J) = H(J)°("),
Proof of (19). : From section 3.2 we have

P gy s Dalte )

(asbac) a>1 a<\/_ a<\/_
reduced
< H ( {1+ d/P)})7
p—1
p<Vd

which implies the upper bound implicit in (19). In the other direction we have

n) s s s

-1
p<+d p (a,b,¢) m<+Vd a<+/d/2
(—d/p)=—1 reduced plm = (—=d/p)=—1
2w(n)
>
n<\/_/2

since every integer n < d may be written in the form am where p|a if (—d/p) =1,
and p|m if (—=d/p) = —1, and as py(a) > 2°(@ for such a. Now 2¢(") equals the
number of squarefree divisors d of n, and so is at least the number of pairs d, r,
each < /z with dr = n and d squarefree. Therefore

w(n)
SET: Y Y It
n<e i<y Cr<yE

d squarefree

Combining these last two displayed equations, with = = \/E/ 2 gives, via Mertens’

theorem,
1 2
- 14+ =
Sl (h).
(aabﬂc) pS\/E
reduced (—d/p)=1
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which gives the lower bound implicit in (19).
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