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MULTIPLICATIVE FUNCTIONS
IN ARITHMETIC PROGRESSIONS
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Dedicated to Paulo Ribenboim on the occasion of his 80th birthday.

RÉSUMÉ. Nous développons une théorie des fonctions multiplicatives (avec les
valeurs sur ou à l’intérieur du cercle d’unité) en progressions arithmétiques analogues
à la théorie bien connue des nombres premiers en progressions arithmétiques.

ABSTRACT. We develop a theory of multiplicative functions (with values inside
or on the unit circle) in arithmetic progressions analogous to the well-known theory of
primes in arithmetic progressions.

1. Introduction

1.1. Historical preliminaries
A central focus of multiplicative number theory has been the question of how

primes are distributed in arithmetic progressions (see e.g. [4]): There are π(x) primes
up to x, of which π(x; q, a) belong to the arithmetic progression a (mod q), and

π(x; q, a) ∼ π(x)

φ(q)
(1.1)

as x → ∞, whenever (a, q) = 1. Here φ(q) stands for the Euler φ–function. In
other words, the primes are eventually equidistributed amongst the plausible arithmetic
progressions (mod q). In applications it is important to know how big x must be, as a
function of q, for (1.1) to hold. Unconditionally we can only prove (1.1) for all q when
x is enormous, larger than exponential of a (small) power of q, whereas we believe it
holds when x is just a little bigger than q, that is x > q1+ε. We can prove a far better
range for x if we ask whether (1.1), or a weakened version of it, holds for most q: Fix
ε > 0. There exists A such that∣∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣∣ ≤ ε π(x)

φ(q)
(1.2)

for all (a, q) = 1 and for all q ≤ x1/A, except possibly those q that are multiples of
some exceptional modulus r (which depends only on ε and x). We do not believe that
any such r exists, but if it does then r ≥ log x, so the result (1.2) applies to most q.
Moreover, if q is divisible by r we can still get an understanding of the distribution of
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primes in the arithmetic progressions (mod q), albeit rather different from what we had
expected: There exists a real character ψ (mod r) such that(

π(x; q, a)− π(x)

φ(q)

)
= ψ(a)

(
π(x; q, 1)− π(x)

φ(q)

)
+O

(
ε
π(x)

φ(q)

)
,(1.3)

whenever (a, q) = 1 and r divides q, with q ≤ x1/A.

In the literature (e.g. [3, 15]) exceptional moduli are derived and discussed in terms
of L-functions and egregious counterexamples to the Generalized Riemann Hypothesis
known as Siegel-Landau zeros. Our goal here is to develop this same theory without
L-functions and in a way that generalizes to a wide class of functions. The first step of
our approach comes in recognizing that results about the distribution of prime numbers
can usually be rephrased as results about mean values of the Möbius function µ(n)
or the Liouville function λ(n), both multiplicative functions (see, e.g. [23]), as we run
through certain sequences of integers n. To see this, write the von Mangoldt function as

Λ(n) =
∑
d |n

µ(d) log(n/d)

(where Λ(pe) = log p for prime p and integer e ≥ 1, and Λ(n) = 0 otherwise), which
is deduced from log = 1∗Λ by Möbius inversion. Now log is a very “smooth” function,
so that estimates for the sum of Λ(n) for n in an arithmetic progression, follow from
estimates for the mean value of µ in certain related arithmetic progressions. Thus (1.1)
is equivalent to the statement that the mean value of µ in any arithmetic progression
(mod q) tends to 0 as we go further and further out in the arithmetic progression [23];
and indeed (1.2) is tantamount to the fact that∣∣∣∣∣∣∣∣

∑
n≤x

n≡a (mod q)

µ(n)

∣∣∣∣∣∣∣∣ ≤ ε
x

q
(1.2b)

for all (a, q) = 1 for all q ≤ x1/A, except those q that are multiples of some exceptional
modulus r.

If q is a multiple of r then the corresponding result for µ(n) is more enlightening
than (1.3). It is well known that if (1.3) holds then L(1, ψ) is surprisingly small, which
can hold only if ψ(p) = −1 for many of the “small” primes p. In other words we have
µ(p) = ψ(p) for many small primes p, which implies that µ(n) displays a bias towards
looking like ψ(n). But then µ(n) tends to look like ψ(n) = ψ(a) for n ≡ a (mod q),
so its mean value over such integers n tends to be like ψ(a). All of these vagaries can
be made more precise, but for now we content ourselves with the appropriate analogy
to (1.3): ∑

n≤x
n≡a (mod q)

µ(n) = ψ(a)
∑
n≤x

n≡1 (mod q)

µ(n) +O

(
ε
x

q

)
(1.3b)

whenever (a, q) = 1 and r divides q, with q ≤ x1/A. The key point is to see that µ
pretends to be ψ, at least at small values of the argument in this exceptional case. This
notion generalizes very well.
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This paper is concerned with determining, for multiplicative functions f such that
|f(n)| ≤ 1 for all n, estimates for the mean values

1

x/q

∑
n≤x

n≡a (mod q)

f(n)(1.4)

when (a, q) = 1. We will show that for any fixed ε > 0 there exists A such that∣∣∣∣∣∣∣∣
∑
n≤x

n≡a (mod q)

f(n)

∣∣∣∣∣∣∣∣ ≤ ε
x

q
(1.2c)

for all (a, q) = 1 for all q ≤ x1/A, except possibly those q that are multiples of some
exceptional modulus r. Moreover, if such a modulus r exists, there is a character ψ
(mod r) such that if q is a multiple of r with q ≤ x1/A, then∑

n≤x
n≡a (mod q)

f(n) = ψ(a)
∑
n≤x

n≡1 (mod q)

f(n) +O

(
ε
x

q

)
(1.3c)

whenever (a, q) = 1.

There are examples of f for which exceptional characters do exist: indeed we sim-
ply let f(n) = ψ(n) or even f(n) = ψ(n)nit for some |t| � 1/ε. Thus, in this theory,
exceptional characters take on a different role in that they exist for any f which pretends
to be a function of the form ψ(n)nit. This pretentiousness can be made more precise in
terms of the following distance function D = D1 between two multiplicative functions
f and g with |f(n)|, |g(n)| ≤ 1:

Dr(f(n), g(n);x)2 :=
∑
p≤x
p - r

1− Re f(p)g(p)

p
·

This distance function is particularly useful since it satisfies the triangle inequality

Dq(f1(n), g1(n);x) + Dr(f2(n), g2(n);x) ≥ Dqr((f1f2)(n), (g1g2)(n);x),

which may be proved by squaring both sides and using the Cauchy-Schwarz inequality
(see Lemma 3.1 of [15], or the general discussion in [16]).

The main thrust of this paper has been anticipated by Elliott [7]; indeed he obtains
stronger results than we do here (we will give details below). However our method of
proof is somewhat different, arguably easier, so it seems to be worth recording. In a
further article, the second two authors [17] re-develop Elliott’s original argument and
are able to get best possible results in several of the results mentioned below.

1.2. More precise results
Throughout f is a multiplicative function with |f(n)| ≤ 1 for all n, and x ≥ Q,

A ≥ 1 are given. Of all primitive characters with conductor below Q, let ψ (mod r)
be that character for which

min
|t|≤A

Dr(f(n), ψ(n)nit;x)2(1.5)
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is a minimum.1 Let t = t(x,Q,A) denote a value of t that gives the minimum value in
(1.5)

Theorem 1.1. With the notation as above we have, when a (mod q) is an arith-
metic progression with (a, q) = 1 and q ≤ Q, that∑

n≤x
n≡a (mod q)

f(n)� Error(x, q,A)(1.2d)

if r does not divide q, and∑
n≤x

n≡a (mod q)

f(n) =
ψ(a)

φ(q)

∑
n≤x

(n,q)=1

f(n)ψ(n) +O
(
Error(x, q,A)

)
(1.3d)

if r does divide q. Here we may take either Q = x1/A with log x ≥ A ≥ 20 and

Error(x, q,A) =
x

q
· 1√

logA
,

or Q = log x and A = log2 x with

Error(x, q, log2 x) =
x

q(log x)1/3+o(1)
+

x

(log x)1−o(1)
·

Throughout let χ0 be the primitive character mod q; and here let χ = χ0 if r does
not divide q, and χ = ψχ0 if r does divide q. Then (1.2d) and (1.3d) can be expressed
in one equation as∑

n≤x
n≡a (mod q)

f(n) − χ(a)
∑
n≤x

n≡1 (mod q)

f(n)� Error(x, q,A).(1.3e)

We can deduce the following bound from Corollary 2.2 below, which is useful in bound-
ing (1.3d) of Theorem 1.1:

(1.6)
1

φ(q)

∑
n≤x

(n,q)=1

f(n)ψ(n)

� x

q

(
(1 + Dq(f(n), ψ(n)nit;x)2)e−Dq(f(n),ψ(n)nit;x)2 +

1

(log x)1/4

)
.

We see that (1.2c) and (1.3c) follow immediately from this theorem. The theorem
gives more than (1.2c) and (1.3c) as we get results here with some uniformity, and
somewhat stronger results when x is larger than eq.

The constant “1/3” in Theorem 1.1 cannot be improved, as we will show in [17].
To explain the idea we need to construct a multiplicative function f for which there are
two different characters χj , j = 1, 2 such that

D(f(n), χj(n);x)2 ∼ 1

3
log log x.

1If there are several possibilities for ψ, simply pick one of those choices.
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(In [17] we show that no other characters contribute much in Theorem 1.1, so that this
construction indeed works.) To do this let χ be any character of order 3, and define
f(p) = 1 when χ(p) = 1, and f(p) = −1 otherwise. Then

D(f(n), χ(n);x)2 = D(f(n), χ2(n);x)2 =
∑
p≤x

2− χ(p)− χ(p)

p
∼ 1

3
log log x

as required.

Elliott [7] gave an exponentially stronger version of our Theorem 1.1 when x is
small, obtaining

Error(x, q,A) =
x

q
· 1

A1/4−ε

uniformly for A� 1. (Actually he proved something a little more complicated but our
claim can easily be deduced from [7] and the ideas herein.) In [17] we will improve the
constant “1/4” and further develop Elliott’s ideas. It is worth noting that the same circle
of ideas allowed Elliott to give a new proof of Linnik’s Theorem [8] without explicit
mention of zeros of Dirichlet L-functions.

Otherwise earlier work in this area focused on the equidistribution of f(n) in arith-
metic progressions; that is, on obtaining bounds for

(1.7)
∑
n≤x

n≡a (mod q)

f(n)− 1

φ(q)

∑
n≤x

(n,q)=1

f(n)

whenever (a, q) = 1. Following Elliott [7] we now know that it is necessary to change
focus, to key in on how “pretentious” the given characters are, since Theorem 1.1 im-
plies that (1.7) will not necessarily be small for moduli q divisible by an exceptional
modulus r (in other words, the “expected” asymptotics can be incorrect). This issue
can be seen in two of the older key articles in this subject. Elliott [4, 5] showed that
(1.7) is� x(log log x/ log x)

1
8 for all q except possibly for multiples of a certain ex-

ceptional modulus r: note that this is non-trivial only in the range q ≤ (log x)
1
8
+o(1).

Hildebrand [18] showed that (1.7) is� x/(q
√

logA) for all q ≤ x1/A except possibly
for the multiples of at most two exceptional moduli r and r′. Our result improves both
of these, giving the same bound on (1.7) in the same range as Hildebrand, but at worst
in terms of one exceptional moduli, and also understanding what happens when q is
divisible by the (putative) exceptional modulus. Our proof derives from that of Hilde-
brand – our improvements here stem more from moving our focus away from bounding
(1.7), to classifying when (1.4) can be large, rather than from any particular technical
innovations.

One can see many of the ideas in this paper, and particularly the dichotomy between
the two cases, appearing in work on elementary proofs of the prime number theorem. In
particular Selberg [22] essentially shows that there is no exceptional modulus by giving
(what is equivalent to) an elementary proof that the minimum in (1.5) cannot be too
small. This is developed in [11] more along the lines given here.
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Daboussi and Delange [3] determined when

lim
x→∞

1

x/q

∑
n≤x

n≡a (mod q)

f(n)(1.8)

exists, for a given progression a (mod q) with (a, q) = 1. If f(n) = nit for some
t 6= 0, or ψ(n)nit for some character ψ (mod q) then (1.8) evidently does not exist; or
even when f(n) pretends to be ψ(n)nit. Otherwise it does:

Corollary 1.2. If f is unpretentious, that is D(f(n), ψ(n)nit;∞) = ∞ for all
characters ψ and real numbers t, then∑

n≤x
n≡a (mod q)

f(n) = o(x)(1.9)

as x→∞, for any a (mod q) with (a, q) = 1. If there does exist a primitive character
ψ (mod r) and a real number t for which D(f(n), ψ(n)nit;∞) <∞, then ψ and t are
unique. In this case (1.9) still holds if r does not divide q. However, if r divides q then∑

n≤x
n≡a (mod q)

f(n)

=
(
1 + o(1)

) ψ(a)x1+it

q(1 + it)

∏
p-q

(
1− 1

p

)(
1 +

f(p)ψ(p)

p1+it
+
f(p2)ψ(p2)

p2+2it
+ . . .

)
as x → ∞. In particular if f is real-valued and χ is that real character (mod q) for
which ∏

p

(
1− 1

p

)(
1 +

f(p)χ(p)

p
+
f(p2)χ(p2)

p2
+ . . .

)
is maximized,2 then

lim
x→∞

1

x/q

∑
n≤x

n≡a (mod q)

f(n) = χ(a)
∏
p-q

(
1− 1

p

)(
1 +

f(p)χ(p)

p
+
f(p2)χ(p2)

p2
+ . . .

)
.

1.3. Mean values of multiplicative functions, twisted by Dirichlet
characters

Traditionally one estimates mean values of functions in an arithmetic progression
by using characters, as in the identity∑

n≤x
n≡a (mod q)

f(n) =
1

φ(q)

∑
χ (mod q)

χ(a)
∑
n≤x

f(n)χ(n) .(1.10)

We therefore give estimates on such characters sums.

2Note that |
∏

p≤x(1− 1/p)(1 + g(p)/p+ g(p2)/p2 + . . . )| � exp(−D(1, g(n);x)2).
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Theorem 1.3. Define ψ as above. For fixed Q ≤
√
x and A = log2 x the estimate

∑
n≤x

f(n)χ(n)� x
( logQ

log x

) 1
20

holds for all characters χ of conductor q ≤ Q, except perhaps those induced from ψ.
Moreover the estimate ∑

n≤x
f(n)χ(n)� x

(log x)1/3+o(1)

holds for all characters χ of conductor q ≤ log x, except perhaps those induced from ψ.

When q is small compared to x (that is q ≤ log x) we may obtain good estimates
on (1.4) by using Theorem 1.3 in (1.10). Moreover Theorem 1.3 for large moduli q
suggests that Theorem 1.1 should hold for these moduli, but deriving this from (1.10)
is not straightforward since many characters are now involved.

We now record one more consequence of this circle of ideas. Let f be a real-valued
completely multiplicative function with |f(n)| ≤ 1 for all n. Proving a conjecture of
Hall, Heath-Brown and Montgomery, Granville and Soundararajan showed in [13] that∑

n≤x
f(n) ≥ (δ1 + o(1))x,

uniformly for all f , where o(1)→ 0 as x→∞, and

δ1 = 1− 2 log(1 +
√
e) + 4

∫ √e
1

log t

t+ 1
dt = −0.656999 . . .

Further this lower bound is best possible, and is attained when f(`) = 1 for all primes
` ≤ x1/(1+

√
e), and f(`) = −1 for x1/(1+

√
e) < ` ≤ x. For any totally multiplicative

function g with each g(`) = 1 or−1 and any x, there exists infinitely many primes p for
which

(
`
p

)
= g(`) for all primes ` ≤ x, as may be proved using quadratic reciprocity

and Dirichlet’s theorem for primes in arithmetic progression. Thus taking g = f we
see that there exist primes p such that at least 17.15% of the integers below x are
quadratic residues (mod p). Here 17.15% is an approximation to δ0, and this constant
δ0 = (1 + δ1)/2 = 0.1715 . . . is best possible. We now give a generalization of this
result to arithmetic progressions.

Corollary 1.4. Let a (mod q) be a progression with (a, q) = 1. Then

lim inf
x→∞

{
inf
p
p-q

1

x/q

∑
n≤x

n≡a (mod q)

(
n

p

)}
=

{
δ1 if a ≡ � (mod q),

−1 if a 6≡ � (mod q).

Colloquially, if a ≡ � (mod q) then at least 17.15% of the integers n ≤ x such that
n ≡ a (mod q) are quadratic residues (mod p) for any prime p.
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2. Hallowed Halász

Our main results rest on the large sieve and development of Halász’s pioneering
results on mean values of multiplicative functions, given here after incorporating sig-
nificant refinements due to Montgomery and also Tenenbaum [24] (and see [14] for an
explicit version).

Theorem 2.1 (Halász). For any T ≥ 1 we have
1

x

∑
n≤x

f(n)� max
|t|≤T

(
1 + D(f(n), nit;x)2

)
e−D(f(n),n

it;x)2 +
1√
T
·

Halász’s result shows that if the mean value of f is large, then f(p) pretends to be pit

for some small value of t, the quantity D giving an appropriate measure of the distance
between f(p) and the values pit. Note that if f(p) = pit then the mean value of f is
indeed large since

∑
n≤x n

it ∼ x1+it/(1 + it) as x→∞.

We need the following consequence of Theorem 2.1.

Corollary 2.2. For 1 ≤ T ≤ (log x)
1
2 select t as in Theorem 2.1. If r is an integer,

smaller than or equal to
√
x, then(

1
φ(r)
r x

) ∑
n≤x

(n,r)=1

f(n)�
(

1 + Dr(f(n), nit;x)2
)
e−Dr(f(n),nit;x)2 +

1√
T
·

Halász’s theorem allows us to estimate
∑

n≤x f(n)χ(n), and deduce that this mean
value is small unless f pretends to be χ(p)pit for some small t. We will show in
Lemma 3.1 below that f can pretend to be χ(p)pit for at most one character χ (mod q)
provided q is not too large, and hence Halász’s theorem implies Theorem 1.3 for large
moduli q.

Proving an old conjecture of Erdős and Wintner, Wirsing [25] showed that every
real-valued multiplicative function f with |f(n)| ≤ 1 has a mean value; and it is natural
to ask whether this holds as n ranges over an arithmetic progression: that is, whether
(1.8) exists? We determined this mean value in Corollary 1.2 above, and then gave the
analogy to Wirsing’s result for arithmetic progressions. These results rest on a further
beautiful result of Halász, which gives a qualitative version of Theorem 2.1.3

Theorem 2.3 (Halász). If D(f(n), nit;∞) <∞ for some real number t, then∑
n≤x

f(n) =
(
1 + o(1)

) x1+it
1 + it

∏
p

(
1− 1

p

)(
1 +

f(p)p−it

p
+
f(p2)p−2it

p2
+ . . .

)
,

as x→∞, where the o(1)→0 in a manner that depends on f . If D(f(n), nit;∞) =∞
for all t then

∑
n≤x f(n) = o(x) as x→∞

3Although unrelated to the main topic of this paper, we take this opportunity to mention a beautiful,
but not widely known consequence of these results of Halász and Wirsing. LetG be a finite abelian group,
and let f : N → G be multiplicative. Then for any g ∈ G the density limx→∞

1
x
#{n ≤ x : f(n) = g}

exists! This is stated as a Conjecture “of the sixteen year old Hungarian mathematician I. Ruzsa” by
Erdős [9].
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Let S be a subset of the unit disc such that | arg(1 − z) | ≤ θ < π/2 for all z ∈ S
(here we take the argument to always be between −π and π). We can also deduce from
Theorem 2.3 that if f is such that f(p) ∈ S for all p, then the limit in (1.8) exists
(extending Theorem 1.3).

Proof of Corollary 2.2. By Theorem 4 of [14] and the last two displayed equa-
tions in the proof of Corollary 3 of [14],4 we have, for t selected with Dr(f(n), nit;x)
minimal and d ≤

√
x,

∑
n≤x/d

f(n) =
1

d1+it

∑
n≤x

f(n) +O

(
x

d

log log x

(log x)2−
√
3

)
.

We deduce, from the combinatorial sieve that, for r ≤
√
x,

r

φ(r)

∑
n≤x

(n,r)=1

f(n)

=
∏
p|r

(
1− f(p)

p1+it

)(
1− 1

p

)−1∑
n≤x

f(n) +O

((
r

φ(r)

)2

x
log log x

(log x)2−
√
3

)
.

There is no loss of generality in setting f(p) = pit for each prime p dividing r, and so
we deduce the result since 2−

√
3 > 1/4. �

3. Pretentious characters are repulsive

We show that f cannot pretend to be two different functions of the form ψ(n)nit:

Lemma 3.1. For each primitive character ψ with conductor below log x select
|t| ≤ log2 x for which D(f(n), ψ(n)nit;x) is minimal, and then label these pairs so
that (ψj , tj) is that pair which gives the j-th smallest distance D(f(n), ψj(n)nitj ;x).
Let rj be the conductor of ψj . For each j ≥ 1 we have

Drj (f(n), ψj(n)nitj ;x)2 ≥
(

1− 1√
j

)
log log x+O

(√
log log x

)
.

Proof. This is essentially Lemma 3.4 of [16], except that there we dealt with the
case where f itself was a character, and took all tj = 0. The same proof applies, and

4We take this opportunity to correct an error in the statement of those two equations: in each, one
should divide the sum on the right side of the equation by the number of terms in the sum.
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for completeness we give the details. Note that

D(f(n), ψj(n)nitj ;x)2 ≥ 1

j

j∑
k=1

D(f(n), ψk(n)nitk ;x)2

≥ 1

j

∑
p≤x

1

p

j∑
k=1

(
1− Ref(p)ψk(p)pitk

)
≥ 1

j

∑
p≤x

1

p

(
j −

∣∣∣ j∑
k=1

ψk(p)p
itk
∣∣∣).

By Cauchy-Schwarz we have that(∑
p≤x

1

p

∣∣∣ j∑
k=1

ψk(p)p
itk
∣∣∣)2 ≤ (∑

p≤x

1

p

)(∑
p≤x

1

p

∣∣∣ j∑
k=1

ψk(p)p
itk
∣∣∣2).

The first factor above is equal to log log x + O(1), while the second term is bounded
above by ∑

p≤x

1

p

(
j +

∑
1≤k,`≤j
k 6=`

ψk(p)ψ`(p)p
i(tk−t`)

)
= j log log x+O(j2),

upon using the prime number theorem in arithmetic progressions. For the transition
from D to Dr simply note that

∑
p|r 1/p� log log log log x. The Lemma follows. �

Corollary 3.2. If m is a positive integer for which fm is real-valued and

D(f(n), ψ(n)nit;x)2 ≤ 1

16m2
log log x

with |t| ≤ 1
m log2 x, then ψm is real and |t| � 1

m
√
log x
·

Proof. Let m = 1. Taking complex conjugates we have

D(f(n), ψ(n)nit;x) = D(f(n), ψ(n)n−it;x).

By Lemma 3.1 this is impossible unless ψ = ψ, that is ψ is real. Now, by the triangle
inequality we have

D(f(n)2, n2it;x) ≤ 2D(f(n), ψ(n)nit;x).

As f2 ≥ 0 we have

D(f(n)2, n2it;x)2 ≥
∑
p

1/p

where the sum is over those primes p ≤ x with cos(2t log p) < 0. Since we get the
“expected” number of primes in intervals [y, y + y1−δ] for some fixed δ > 0, we can
deduce that ∑

p

1

p
≥ 1

2

(
log log x− log(max{1/|t|, log |t|}) +O(1)

)
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for |t| log x ≥ 1, which implies that |t| � 1/
√

log x, as required. For larger m we use
the triangle inequality to note that

D(f(n)m, ψm(n)nimt;x) ≤ mD(f(n), ψ(n)nit;x)

and the result then follows from the m = 1 case. �

Lemma 3.3. With the hypothesis of Lemma 3.1, we have

Dr2(f(n), ψ2(n)nit2 ;x)2 ≥
(

1

3
+ o(1)

)
log log x .

Proof. The proof of Lemma 3.1 gives

D(f(n), ψ2(n)nit2 ;x)2 ≥
∑
p≤x

1

p

(
1−1

2

∣∣∣ 2∑
k=1

ψk(p)p
itk
∣∣∣) =

∑
p≤x

1

p

(
1−1

2

∣∣∣1+χ(p)pit
∣∣∣),

taking χ = ψ2ψ1 and t = t2 − t1. By the prime number theorem for arithmetic
progressions, this equals

1

φ(q)

∑
a (mod q)
(a,q)=1

∫ log x

1

(
1− 1

2

∣∣∣1 + χ(a)eitv
∣∣∣) dv

v
+ o(log log x) .

If χ has order m > 1 then there are exactly φ(q)/m values of j (mod m) for which
χ(a) = e2iπj/m, and so our integral equals, taking v = 2u,

1

m

m−1∑
j=0

∫ log x

1

(
1−

∣∣∣ cos(tu+ πj/m)
∣∣∣) du

u
+ o(log log x) .(3.1)

Now consider
∫ log x
1 | cos(tu+ β)|du/u for arbitrary β. If u ≤ ε/t then

cos(tu+ β) = cos(β) +O(ε) .

The contribution of u in the range ε/t < u < 1/(εt) to the integral is O(1). For
u ≥ 1/(εt) we cut the range up into intervals [U,U + 2π/t), and use the fact that
1/u = 1/U +O(1/U2t), to obtain∫ U+2π/t

U
| cos(tu+ β)| du

u
=

∫ U+2π/t

U

{
1

2π

∫ 2π

w=0
| cosw|dw +O(1/tu)

}
du
u
·

The total error that arises here is �
∫
u≥1/(εt) du/(tu

2)� ε. We deduce that (3.1)
equals log log x times

α · 1

2π

∫ 2π

w=0
(1− | cosw|)dw + (1− α) · 1

m

m−1∑
j=0

(1− | cos(πj/m)|) + o(1)

for some α in the range 0 ≤ α ≤ 1. Now

1

2π

∫ 2π

w=0
(1− | cosw|)dw = 1−

∫ 1/2

−1/2
cos(πθ)dθ = 1− 2/π .
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Moreover,

1− 1

m

∑
−m/2<j≤m/2

cos(πj/m) =

{
1− 1/(m sin(π/2m) if m is odd,

1− 1/(m tan(π/2m) if m is even.

The minimum occurs for m = 3, and the result follows. �

Our next lemma (which is essentially Proposition 7 of [16]) formulates a similar
repulsion principle involving characters of substantially larger conductors, at the cost
of obtaining a smaller separation.

Lemma 3.4. Let χ (mod q) be a non-principal character (with q ≥ 3), and t ∈ R.
There is an absolute constant c > 0 such that for all x ≥ q we have

Dq(1, χ(n)nit;x)2 ≥ 1

2
log
( c log x

log(q(1 + |t|))

)
·

Consequently, if f is a multiplicative function, and χ and ψ are any two characters with
conductors q, r ≤ Q, respectively, such that χψ is non-principal, then for x ≥ Q we
have

Dq(f(n), χ(n)nit;x)2 + Dr(f(n), ψ(n)niu;x)2 ≥ 1

8
log

(
c log x

2 log(Q(1 + |t− u|))

)
·

Proof. For completeness we sketch the proof. We consider

dχ,t(n) =
∑
ab=n

χ(a)aitχ(b)b−it.

The proof of the Pólya-Vinogradov inequality is easily modified to show that∑
n≤N

χ(n)� (φ(q)/q)
√
q log q .

Using this and partial summation, we see that∑
n≤x

χ(n)nit = xit
∑
n≤x

χ(n)− it
∫ x

1
uit−1

∑
n≤u

χ(n)du

� φ(q)

q

√
q(log q)(1 + |t| log x) .

Therefore, grouping the terms ab = n according to whether a ≤
√
x or b ≤

√
x < a,

we obtain ∑
n≤x

dχ,t(n)�
(
φ(q)

q

)2 √
qx(log q)(1 + |t| log x) .(3.2)

We write

d(n) =
∑
`|n

dχ,t(n/`)h(`)
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where h is a multiplicative function with h(p) = 2 − 2 Re(χ(p)pit), and notice that
|h(n)| ≤ d4(n) for all n, where d4(n) is the divisor function counting the number of
factorizations of n into four factors. Then

x log x+O(x) =
∑
n≤x

d(n) =
∑
`≤x

h(`)
∑
n≤x/`

dχ,t(n) .

When ` ≤ x/(q2(1 + |t|)2) we use (3.2) to bound the sum over n. For larger ` we use
the fact that |dχ,t(n)| ≤ χ0(n)d(n) where χ0(n) is the principal character (mod q).
Let B = (log q)q/φ(q). Thus if x/B ≤ ` ≤ x then

∑
n≤x/`

|dχ,t(n)| ≤
∑
n≤x/`

d(n)� x

`
log(ex/`)

� x

`
logB � x

`

q

φ(q)
log log q � x

`
log q

(
φ(q)

q

)2

,

since q/φ(q)� log log q. Now, if N > B then∑
n≤N

χ0(n)d(n) =
∑
ab≤N

(ab,q)=1

1

�
∑
a≤
√
N

(a,q)=1

∑
b≤N/a
(b,q)=1

1�
∑
a≤
√
N

(a,q)=1

φ(q)

q

N

a
�
(
φ(q)

q

)2

N logN

by the sieve which we use for ` in the range x/(q(1+ |t|))2 ≤ ` ≤ x/B with N = x/`.
Combining these estimates we obtain

x log x �
∑

`≤x/(q(1+|t|))2
|h(`)|

(
φ(q)

q

)2√
qx/` (log q)(1 + |t| log(x/`))

+
∑

x/(q(1+|t|))2<`≤x

|h(`)|
(
φ(q)

q

)2 x

`
log(q(1 + |t|))

�
(
φ(q)

q

)2

x log(q(1 + |t|))
∑
`≤x

|h(`)|
`
·

Since ∑
`≤x
|h(`)|/`� exp

(∑
p≤x
|h(p)|/p

)
= exp

(
2D(1, χ(n)nit;x)2

)

we obtain the first statement of the Lemma.
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To obtain the second estimate note that the triangle inequality gives

(Dq(f(n), χ(n)nit;x) + Dr(f(n), ψ(n)niu;x))2

≥ (Dqr(f(n), χ(n)nit;x) + Dqr(f(n), ψ(n)niu;x))2

≥
∑
p≤x
p-qr

1− Re |f(p)|2χ(p)ψ(p)pi(t−u)

p

≥ 1

2

∑
p≤x
p-qr

1− Reχ(p)ψ(p)pi(t−u)

p
,

and now we appeal to the first part of the Lemma. �

4. The results for small moduli

Proof of Theorem 1.3 for small moduli. Select ψ as at the start of section 1.2
with Q = log x and A = log2 x. Let χ′ be the primitive character that induces χ
(mod q). By assumption χ′ 6= ψ. By Lemma 3.3 we know that for all |t| ≤ log2 x,

D(f(n), χ′(n)nit;x)2 ≥
(1

3
+ o(1)

)
log log x .

Plainly,

D(f(n), χ(n)nit;x)2 = D(f(n), χ′(n)nit;x)2 +O
(∑
p|q

1

p

)
≥
(1

3
+ o(1)

)
log log x .

Theorem 1.3 for small moduli now follows from Halász’s Theorem 2.1. �

Proof of Theorem 1.1 for small moduli. From the discussion above, we know that
for any χ (mod q) not induced by ψ we have (for all |t| ≤ log2 x) the inequality

D(f(n), χ(n)nit;x)2 ≥
(1

3
+ o(1)

)
log log x .

By a similar argument, Lemma 3.1 implies that for all but at most
√

log log x characters
(mod q) we have

D(f(n), χ(n)nit;x)2 ≥ log log x+O
(√

log log x
)
,

for all |t| ≤ log2 x. Therefore, from (1.10), Halász’s Theorem 2.1 and these estimates,
it follows that, for r - q, we have∑

n≤x
n≡a (mod q)

f(n)� x

q(log x)1/3+o(1)
+

x

(log x)1−o(1)
·
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When r
∣∣ q there is an extra contribution to (1.10) from the character ψ̃ (mod q) which

is induced by ψ (mod r). Thus in this case we obtain∑
n≤x

n≡a (mod q)

f(n) =
ψ(a)

φ(q)

∑
n≤x

f(n)ψ̃(n) +O
( x

q(log x)1/3+o(1)
+

x

(log x)1−o(1)

)
,

which gives the result. �

Proof of Corollary 1.2. If f is unpretentious then the result follows from Theo-
rem 1.1 for small moduli and (1.6); and similarly if f is pretentious but r does not
divide q. If f is pretentious and r divides q then the result follows from (1.3d) and
Theorem 2.3. To see that ψ and t are unique, suppose we have another pair ψ′ and t′

so that D(ψ′(p)pit
′
, ψ(p)pit;∞) < ∞ by the triangle inequality, and thus L(s, ψ′ψ)

has a pole at 1 + i(t′ − t), which is false. Finally, if f is real-valued then, by taking x
arbitrary large in Corollary 3.2, we discover that ψ is real, and t is zero, and the result
follows. �

Proof of Corollary 1.4. If |
∑

n≤x,n≡a (mod q)

(
n
p

)
| � x/q, then∣∣∣∣∣∣

∑
n≤x,n≡b (mod q)

(
n

p

)∣∣∣∣∣∣� x/q

whenever (b, q) = 1 by two applications of (1.3e). Select c (mod q) so that ψ(c) is
as close as possible to i and let b ≡ a/c (mod q); we then deduce from (1.3e) that ψ
must be real since both sums are real (see also Corollary 3.2). Therefore (1.3d) tells us
that our sum is

(ψ(a)/φ(q))
∑
n≤x

(n
p

)
ψ(n) + o(x/q) .

This is
(ψ(a)/q)

∑
n≤x

g(n) + o(x/q)

where g is the multiplicative function with

g(p) =

{(
n
p

)
ψ(p) if p - q,

1 if p | q,

by Proposition 4.4 of [13] (with φ = π/2 and ε = log q/ log x).

Now suppose that a 6≡ � (mod q), so that there is a real character ψ (mod q) for
which ψ(a) = −1. There exist infinitely many primes p for which

(
`
p

)
= ψ(`) for any

prime ` - q with ` ≤ x, by quadratic reciprocity and Dirichlet’s theorem. In this case∑
n≤x

n≡a (mod q)

(
n

p

)
= ψ(a)

(x
q

+O(1)
)

= −x
q

+O(1),

and so the result follows.

Now suppose that a ≡ � (mod q). Then ψ(a) = 1 for all real characters ψ
(mod q) and so our sum is (1/q)

∑
n≤x g(n) + o(x/q). The result then follows from
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Corollary 1 of [13], the minimal value being obtained by selecting prime p so that(
`
p

)
= 1 for all primes ` ≤ x1/(1+

√
e) and

(
`
p

)
= −1 for x1/(1+

√
e) < ` ≤ x as

described in section 1.3, and with ψ being the trivial character (mod 1), so that∑
n≤x

n≡a (mod q)

(
n

p

)
=

1

φ(q)

∑
n≤x

(n,q)=1

(
n

p

)
+ o(x) =

(
δ1 + o(1)

)x
q
·

(The reader can either directly verify the last equality, or consult [13].) �

5. The case of large moduli

Proof of Theorem 1.3 for large moduli. Let us take T = (log x/ logQ)
1
10 in The-

orem 2.1. Suppose that there exists a character ψ with conductor ≤ Q and∣∣∣∑
n≤x

f(n)ψ(n)
∣∣∣ ≥ x( logQ

log x

) 1
20
.

From Theorem 2.1 we conclude that for some real number |t| ≤ T we have

D(f(n), ψ(n)n−it;x)2 ≤
( 1

20
+ o(1)

)
log

log x

logQ
·

From Lemma 3.4 it follows that for any character χ with conductor below Q and χψ
non-principal, we have

D(f(n), χ(n)n−iu;x)2 ≥ 1

14
log

log x

logQ
,

for all |u| ≤ T . Appealing to Theorem 2.1, we obtain Theorem 1.3 for large moduli.
�

We now embark on the proof of Theorem 1.1 for large moduli. It is convenient to
define

F (x; q, a) =
∑
n≤x

n≡a (mod q)

f(n) .

We will study F (x; q, a) using the large sieve. First we show that for many moduli r,
the distribution of f(n) for n ≤ x, n ≡ a (mod q), is uniform in sub-progressions
(mod r).

Proposition 5.1. Let 1 ≤ a ≤ q. For η > 1/
√

log x, the set B(a, η) of bad moduli
1 < r ≤

√
x/q for which∑∗

ψ (mod r)

∣∣∣ ∑
n≤x/q

f(nq + a)ψ(n)
∣∣∣ ≥ ηx

q
,

(where
∑∗

denotes, as usual, a sum over primitive characters) satisfies∑
r∈B(a,η)

1

φ(r)
≤ 2

η2
·(5.1)
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Let G(a, η) denote the set of good moduli r ≤
√
x/q, that is those r which are square-

free and not divisible by any element in B(a, η). If r ∈ G(a, η) with (r, q) = 1 then

F (x; q, a) = rf(r)F (x/r; q, a/r) +O
(x
q

(
ηd(r) +

(
1− φ(r)

r

)))
.

Here a/r denotes the residue class ar−1 (mod q).

Proof. By Cauchy’s inequality and then the large sieve (as in Theorem 7.13 of [19])
we have∑

r≤
√
x/q

1

φ(r)

( ∑∗

ψ (mod r)

∣∣∣ ∑
n≤x/q

f(nq + a)ψ(n)
∣∣∣)2

≤
∑

r≤
√
x/q

∑∗

ψ (mod r)

∣∣∣ ∑
n≤x/q

f(nq + a)ψ(n)
∣∣∣2

≤ 2
x

q

∑
n≤x/q

|f(nq + a)|2 ≤ 2
(x
q

)2
·

The estimate (5.1) follows at once.

Now suppose that r is a good modulus, and consider any progression b (mod r)
with (b, r) = 1. Since r is square-free we check easily that∑

`|r

∑∗

ψ (mod `)

ψ(b)ψ(n)

=

{
φ(r/d) if (n, r) = d, and n ≡ b (mod r/d) for some d

∣∣ r,
0 otherwise.

Therefore ∑
n≤x/q

n≡b (mod r)

f(nq + a) =
1

φ(r)

∑
`|r

∑∗

ψ (mod `)

ψ(b)
∑
n≤x/q

f(nq + a)ψ(n)

+O
(∑
d|r
d>1

φ(r/d)

φ(r)

∑
n≤x/q
d|n

n≡b (mod r/d)

1
)
.

The error term above is plainly

�
∑
d|r
d>1

φ(r/d)

φ(r)

x

qr
=

(r − φ(r))

φ(r)

x

qr
·

Further, since r is good, if ` > 1 and ` divides r then ` is good so that∑∗

ψ (mod `)

ψ(b)
∑
n≤x/q

f(nq + a)ψ(n)�
∑∗

ψ (mod `)

∣∣∣ ∑
n≤x/q

f(nq + a)ψ(n)
∣∣∣ ≤ ηx

q
·
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We conclude that∑
n≤x/q

n≡b (mod r)

f(nq+a) =
1

φ(r)

∑
n≤x/q

f(nq+a)+O

(
d(r)

φ(r)
η
x

q

)
+O

(
x

qφ(r)

(
1− φ(r)

r

))
.

If (r, q) = 1 then we may choose b so that bq + a ≡ 0 (mod r), and so the left
hand side of the last displayed equation equals∑

n≤x
n≡a (mod q)

r|n

f(n) = f(r)F (x/r; q, a/r) +O

(
x

qr

(
1− φ(r)

r

))
.

Hence, for good moduli r that are coprime to q we have

F (x; q, a) = f(r)φ(r)F (x/r; q, a/r) +O

(
x

q

(
ηd(r) +

(
1− φ(r)

r

)))

= rf(r)F (x/r; q, a/r) +O

(
x

q

(
ηd(r) +

(
1− φ(r)

r

)))
,

proving our Proposition. �

Proposition 5.2. Let x ≥ q20 and set A = log x/ log q. Let a and b be any two
given reduced residues (mod q). Then we have

F (x; q, ab)F (x; q, 1) = F (x; q, a)F (x; q, b) +O

(
x

q

1√
logA

max
c (mod q)
(c,q)=1

|F (x; q, c)|
)
.

Proof. We may assume that A is large, and set η = C/
√

logA for some suffi-
ciently large constant C > 0. We will produce two numbers r and s with the following
properties:

(i) both r and s have at most two prime factors and these prime factors are ≥ 1/η,

(ii) r and s are both in G(1, η), G(a, η), G(b, η) and G(ab, η),

(iii) the ratio r/s lies between 1− η and 1 + η, and

(iv) r ≡ bs (mod q).

Assuming that this can be done, let us now prove Proposition 5.2. Four applications
of Proposition 5.1 give:

F (x; q, ab) = rf(r)F (x/r; q, ab/r) +O(ηx/q),(5.2)

F (x; q, 1) = sf(s)F (x/s; q, 1/s) +O(ηx/q),(5.3)

F (x; q, a) = sf(s)F (x/s; q, a/s) +O(ηx/q),(5.4)

F (x; q, b) = rf(r)F (x/r; q, b/r) +O(ηx/q) .(5.5)
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By assumption we have a/s ≡ ab/r (mod q), and moreover |r/s− 1| ≤ η. Hence

F (x/s; q, a/s) = F (x/s; q, ab/r)

= F (x/r; q, ab/r) +O(|x/r − x/s|/q)
= F (x/r; q, ab/r) +O(ηx/(qr)),

and, taking a = 1,

F (x/r; q, b/r) = F (x/s; q, 1/s) +O(ηx/(qr)).

Therefore multiplying (5.2) and (5.3), and (5.4) and (5.5) we obtain that

F (x; q, ab)F (x; q, 1) = rsf(r)f(s)F (x/r; q, ab/r)F (x/s; q, 1/s)

+O
(
η
x

q
max

c (mod q)
(c,q)=1

|F (x; q, c)|
)

= F (x; q, a)F (x; q, b) +O
(
η
x

q
max

c (mod q)
(c,q)=1

|F (x; q, c)|
)
,

which proves the Proposition.

It remains to show the existence of r and s. If there is no Siegel-Landau zero for a
character (mod q) then we can take r and s to be primes. To see this note that if there
is no Siegel-Landau zero then minor modifications to the proof of Proposition 18.5 of
[19] imply that there exist constants c,B > 0 such that∑

z<p≤(1+η)z
p≡a (mod q)

log p =
ηz

φ(q)

{
1 +O

(
1

zc/ log q
+

1

log z

)}
(5.6)

for all z ≥ qB and (a, q) = 1. We may assume that A ≥ B2. Let P1 denote the set of
primes in the interval [qB,

√
x/q] which are in the set

G(1, η) ∩ G(a, η) ∩ G(b, η) ∩ G(ab, η) .

By Proposition 5.1, ∑
p∈P1

1

p
=

∑
qB≤p≤

√
x/q

1

p
+O

( 1

η2

)
·(5.7)

We divide the interval [qB,
√
x/q] into intervals of the form (z, (1 + η)z]. Any two

primes r and s inP1∩(z, (1+η)z] meet criteria (i), (ii) and (iii) above, so it only remains
to satisfy criterion (iv). If criterion (iv) does not hold then the primes inP1∩(z, (1+η)z]
lie in at most φ(q)/2 reduced residue classes (mod q). Therefore, by (5.6) we must have∑

z<p≤(1+η)z
p∈P1

log p ≤ ηz

2

{
1 +O

(
1

zc/ log q
+

1

log z

)}
,

so that ∑
p∈P1

1

p
≤ 1

2

∑
qB≤p≤

√
x/q

1

p
+O(1),

which contradicts (5.7), since
∑

qB≤p≤
√
x/q

1/p � logA.
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Now assume that there is a real character χ (mod q) with a Siegel-Landau zero β.
Then Proposition 18.5 of [19] yields that∑

p≤z
p≡a (mod q)

log p =
1

φ(q)

{
z − χ(a)

zβ

β
+O

(
z

log2 z

)}
(5.8)

for all z ≥ qB and (a, q) = 1. Notice that the primes are concentrated in the residue
classes c (mod q) with χ(c) = −1, and it is therefore difficult to solve r ≡ bs (mod q)
in primes r and s if χ(b) = −1. However products of two primes, will now be con-
centrated on the residue classes c (mod q) for which χ(c) = 1, as one may deduce
directly from (5.8):

∑
p1p2≤z

p1p2≡a (mod q)

p1>p2≥qB

log p1 log p2 =
1

φ(q)
log(
√
z/qB)

{
z + χ(a)

zβ

β
+O

(
z

log z

)}
,

(5.9)

for all z ≥ q3B and (a, q) = 1.

So now let P2 denote the set of products of two primes p1 > p2 ≥ qB with the
property that p1p2 ≤

√
x/q, which are in the set

G(1, η) ∩ G(a, η) ∩ G(b, η) ∩ G(ab, η),

and imitate as best we can the proof above. Proposition 5.1 tells us, again, that P2
contains lots of elements, and that we can find an interval (z, (1+η)z] containing many
elements from P1 and P2. Then criterion (iv) is met by choosing either two elements
from P1 (when χ(b) = 1), or an element each from P1 and P2 (when χ(b) = −1), and
the proof of the Proposition is complete. Although we will not go into the details, the
easiest way to formulate this proof is to combine (5.8) and (5.9) into the equation

(5.10)
∑
p≤z

p≡a (mod q)

log p+
1

log(
√
z/qB)

∑
p1p2≤z

p1p2≡a (mod q)

p1>p2≥qB

log p1 log p2

=
2z

φ(q)

{
1 +O

(
1

log z

)}
,

for all z ≥ q3B and (a, q) = 1, removing the effect of the Siegel-Landau zero, so that
we do not need to split this proof into cases depending on the value of χ(b). �

Remark. It is amusing to note that we cannot prove (5.10) under the assumption
that there is no Siegel-Landau zero. In this case there is an additional 1/zc/ log q in the
error term, as in (5.6). It would be interesting to know whether this can be removed, so
as to prove (5.10) uniformly. Note that (5.10) is a complicated formulation of Selberg’s
formula [22] for z sufficiently large.

The proof of Proposition 5.2 is the only proof in this paper that requires non-trivial
information about the zeros of L-functions and it is pleasing to give an alternate proof
that is “elementary”. Thus, in the spirit of Selberg’s paper, one can ask whether one
can give an elementary proof of (5.10) in this range? The proof of Proposition 5.2
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goes through easily with ∼ 2z/φ(q) on the right side of (5.10), a formula that was
proved, whether or not there is a Siegel-Landau zero, by Friedlander [10] using only
sieve methods. Our proof of Proposition 5.2 can easily be modified to work provided
the quantity on the right side of (5.10) is between z/φ(q) and 3z/φ(q), for z > qB

for some fixed B > 0; in fact our (non-elementary) proof gives such a result (as in the
discussion of the previous paragraph) but, better, Friedlander’s proof is easily modified
to give this result, so that all of the results in this paper can be proved avoiding use of
zeros of L-functions.

Lastly, we need a result which characterizes periodic functions that are almost mul-
tiplicative. We will show that such functions are close to being characters. L. Babai,
K. Friedl and A. Lukács [1] have explored such questions in greater generality recently,
but for the sake of completeness we provide a proof.

Proposition 5.3. Let 0 ≤ ε < 1/2. Let g : (Z/qZ)∗ → C be a function with
g(1) = 1, and |g(ab)− g(a)g(b)| ≤ ε for all a and b coprime to q. Then there exists a
character χ (mod q) such that |χ(a)− g(a)| ≤ ε/(1− 2ε), for all (a, q) = 1.

Proof. For any character χ (mod q), define

ĝ(χ) =
∑

a (mod q)

g(a)χ(a).

We claim that there exists a character χ (mod q) with |ĝ(χ)| ≥ (1−2ε)φ(q). Granting
this claim, we see that for any (a, q) = 1

|(g(a)− χ(a))ĝ(χ)| =
∣∣∣ ∑
b (mod q)

g(a)g(b)χ(b)− χ(a)
∑

ab (mod q)

g(ab)χ(ab)
∣∣∣

=
∣∣∣ ∑
b (mod q)

(g(a)g(b)− g(ab))χ(b)
∣∣∣ ≤ εφ(q),

which proves the Proposition.

Note that ∑
χ (mod q)

|ĝ(χ)|2 = φ(q)
∑∗

a (mod q)

|g(a)|2(5.11)

(where, as usual,
∑∗

denotes a sum over integers coprime with q). Further,∑
χ (mod q)

ĝ(χ)2ĝ(χ) = φ(q)
∑∗

a,b

g(a)g(b)g(ab) = φ(q)
∑∗

a,b

|g(a)g(b)|2 + E

where

|E| ≤ φ(q)
∑∗

a,b

|g(ab)− g(a)g(b)||g(a)g(b)|

≤ εφ(q)
∑∗

a,b

|g(a)g(b)| ≤ εφ(q)2
∑∗

a

|g(a)|2,
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so that, by (5.11),

max
χ (mod q)

|ĝ(χ)| · φ(q)
∑∗

a

|g(a)|2 ≥
∣∣∣ ∑
χ (mod q)

ĝ(χ)2ĝ(χ)
∣∣∣

≥ φ(q)
(∑∗

a

|g(a)|2
)2
− εφ(q)2

∑∗

a

|g(a)|2.

We deduce that there exists a χ (mod q) with |g(χ)| ≥
∑∗

a
|g(a)|2 − εφ(q). Now,

using Cauchy’s inequality, we have∑∗

a

|g(a)|2 ≥
∣∣∣∑∗

a

g(a)g(a−1)
∣∣∣ ≥ (1− ε)φ(q),

since |g(1)− g(a)g(a−1)| ≤ ε, so that we may conclude the existence of a χ (mod q)
with |ĝ(χ)| ≥ (1− 2ε)φ(q), as claimed. �

Proof of Theorem 1.1 for large moduli. Select c (mod q) with (c, q) = 1 for
which |F (x; q, c)| is maximized. We may suppose that

|F (x; q, c)| � x

q

1√
logA

,

else there is nothing to prove. With this assumption, taking a = b = c in Proposi-
tion 5.2, and noting that |F (x; q, c2)| ≤ |F (x; q, c)|, we deduce that

|F (x; q, 1)| ≥ 1

2
|F (x; q, c)| .(5.12)

Let us define g by setting F (x; q, a) = g(a)F (x; q, 1). Then g is periodic with period q,
g(1) = 1, and by Proposition 5.2 we have

|g(ab)− g(a)g(b)| = O
( 1√

logA

x

q|F (x; q, 1)|

)
·

By Proposition 5.3 it follows that there is a character χ (mod q) such that for all
(a, q) = 1

|g(a)− χ(a)| = O
( 1√

logA

x

q|F (x; q, 1)|

)
;(5.13)

that is

F (x; q, a) = χ(a)F (x; q, 1) +O
(x
q

1√
logA

)
which is (1.3e); and we also deduce that∑

n≤x
f(n)χ(n) =

∑
a (mod q)

χ(a)F (x; q, a) = F (x; q, 1)
∑

a (mod q)

χ(a)g(a)(5.14)

= φ(q)F (x; q, 1) +O
( 1√

logA
x
φ(q)

q

)
.

If χψ is non-principal then

Dq(f, χ(n)n−it;x)2 ≥ 1

17
logA,
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for all |t| ≤ A by Lemma 3.4. Therefore by Corollary 2.2 we have∑
n≤x

f(n)χ(n)� φ(q)

q

x

A1/20
,

which implies the result, using (5.12) and (5.14), when r does not divide q. If r divides
q, with χψ non-principal, then, proceeding as above,∑

n≤x
(n,q)=1

f(n)ψ(n) = F (x; q, 1)
∑

a (mod q)
(a,q)=1

ψ(a)g(a) = O
(
x
φ(q)

q

1√
logA

)
,

by (5.13) and the orthogonality of the characters χ and ψ, which gives the result.

If r | q and χ is induced by ψ then from (5.14) we get

F (x; q, a) = g(a)F (x; q, 1) = χ(a)F (x; q, 1) +O
(x
q

1√
logA

)
=
ψ(a)

φ(q)

∑
n≤x

(n,q)=1

f(n)ψ(n) +O
(x
q

1√
logA

)
,

as desired. �
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