ON THE RESEARCH CONTRIBUTIONS OF HUGH C. WILLIAMS

ANDREW GRANVILLE

At this special computational number theory meeting here in the delightful surround-
ings of Banff in the spring, we are listening to some interesting lectures while taking time
to celebrate the career of one of Canada’s most distinguished computational number the-
orists. Hugh Williams, author of almost two hundred articles, an extraordinary book,
colleague and advisor to many researchers, iCORE! chair in algorithmic number theory
and cryptography, recipient of various honours and member of several editorial and ad-
visory boards, is sixty very soon. In this article we give a brief sampling of the many
contributions of Hugh C. Williams. (Photo 1, by the side)

Hugh was born on July 237¢, 1943 in London, Ontario. His father was a self-taught
civil engineer and his mother a legal secretary. (Photo 2, by the side) Neither of his
parents were particularly interested in mathematics and neither was the young Hugh, but
he remembers at ten years of age being kept in after school to work on his mathematics,
after unsatisfactory performance in class, which irked him. As a young teen he started to
read popular mathematics books, by such authors as E.T. Bell and Constance Reid. But
it was his Grade 10 math teacher. Mr. W. Russell, who changed Hugh’s perspective on
mathematics. Mr. Russell was in reality the football coach drafted in to teach the class.
However by persuading Hugh to view mathematics as a big challenge to be overcome, he
got Hugh to work hard. This coach introduced Hugh to Euclidean geometry, successfully
encouraging him to come to grips with the difficulties. From then on Hugh was hooked
on the beauty of mathematics. Hugh’s general interest in mathematics was made more
specific by Constance Reid’s discussion of early primality testing in her book “From Zero
to Infinity”, a gift from his parents, who supported his awakening interest in mathematics.
His love of the Pell equation was inspired by Carmichael’s “The Theory of Numbers and
Diophantine Analysis”

After graduating from Burlington Central High School in 1967, Hugh went on to
the University of Waterloo where he completed his three degrees, marrying Lynn in the
summer of 1967, and obtaining his doctorate in 1969. Hugh’s interests in computational
number theory were uncommon at the time in Canada, so he was pretty much on his own
as a student. Having learnt about the work of Lehmer, Shanks, Brillhart and others from
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Reid’s book, he looked south for his inspiration, and we will see how so many of the topics
developed by Hugh’s ideas was inspired by their brilliance.

After a brief posting at York working with Ralph Stanton, Hugh spent the next thirty
one years at the University of Manitoba, where his first child, Helen, was born in March
1971, followed by Cassandra two-and-a-half years later. Upon retiring he move on to the
University of Calgary and the new iCORE chair as well as becoming director of the “Centre
for Information Security and Cryptography”.

Hugh'’s first publication was in 1965, as an undergraduate, in joint work with R.A.
German and C.R. Zarnke. In this paper, a harbinger of things to come, they wrote down
the solution to the Cattle Problem of Archimedes?. In fact the solution had been known
for about a century in terms of a high power of a certain algebraic integer, but no-one
had written down the actual integer in decimal, as it contains over two hundred thousand
digits! Following up on these old results the authors of [WGZ65] wrote down all 206, 545
decimal digits, an extraordinary accomplishment when dealing with machines that only
contained 32K of memory! The trick in those days was to take information on and off of
punch cards, and remarkably this gigantic calculation took just 469 C.P.U. minutes®. The
paper is a model of tidy description, and discussion of the relevant issues for performing
such a giant calculation on the then available machinery. (Photo 3, by the side)

At the time of writing Hugh has had 195 papers reviewed on MathSciNet. His level
of output has made this biographer’s task difficult and it is with reluctance that I have
been forced to choose a small subset of his articles, hopefully including the most important
and influential, to give the reader some idea of Hugh’s career. In this task I have been
helped by the recommendations of various colleagues*. Hugh’s primary interest has been
in the Mathematics of Computation: To date he has published over sixty articles in the
journal of that title, and has served with great diligence as an editor for 25 years. Hugh
has had more than fifty co-authors, many of them students, testament to the positive
energy he puts into the younger generation: I have frequently witnessed him making the
effort to congratulate a new researcher on their first conference paper and to ask for a
preprint. His favorite co-author has been Richard Mollin (30) then Johannes Buchmann
(14), C.R. Zarnke (10) and Dan Shanks (7); and he has written often with his postdocs
and students: Renate Scheidler (7), Gordon Cormack, Gilbert Fung, Michael Jacobson,
Richard Lukes (5), Gunter Dueck, Andreas Stein, A.J. Stephens (4), C.D. Patterson, Eric
Seah (3) R. Holte, J.S. Judd (2), Len Baniuk, John Broere, Peter Buhr, Greg Matthew,
Brian Schmid and Marsha Tennenhouse (1).

In the rest of this article I will briefly touch on several different subjects that have been
visited by Hugh on various occasions, discussing some of the background and glimpsing

2Hugh’s interest in this problem was inspired by his early reading of Beiler’s, Recreations in the
Theory of Numbers: The Queen of Mathematics Entertains”.

3In comparison, the same (mathematical) algorithm written in Maple on my Pentium IV, without
serious consideration of dealing with such enormous integers, still took 531 seconds to run.

4Special thanks go to Renate Scheidler, as well as John Brillhart, Johannes Buchmann, Duncan
Buell, Hendrik Lenstra, Carl Pomerance, Gary Walsh and Alf van der Poorten, for their recommendations,
particularly one of these who answered: “They’re all good, read all 190”. For the photographs herein I
would like to thank Lynn Williams and Richard Mollin
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Hugh’s contributions.

LUCAS’ FUNCTIONS.

Hugh was long interested in the subject of primality testing:

“My interest in this problem first developed on reading Constance Reid’s book, From Zero
to Infinity when I was in my early teens. In Chapter 3 she briefly described Lucas’ method
for determining the primality of the 39-digit 2! — 1, and I was hooked. At the time it
seemed absolutely incredible to me that a very large number like this could be established
as a prime without the need for an unimaginably large number of trial divisions. I must
confess that it still does. The problem of primality testing has continued to enthrall me
ever since.” — Hugh C. Williams (1998) [Wil98].

Lucas’ functions are defined as follows: Given integers a, b with (a,b) = 1 define

an_ﬁn

a—f

Uy = and v, =a” + 67,

where X2 —aX — b= (X — a)(X — 3). Note that

ug =0, u; =1, and Up492 = aty41 + bu, for all n > 0;

and vy =2, v; = a, and V42 = avpy1 + bu, for all n > 0;

Well-known examples include the Fibonacci numbers F,, = u,(1, 1), the Mersenne numbers
M, = u,(3,—2) = 2" —1, the Fermat numbers vyr (3, —2) = 22" 4 1, and a special sequence
s = var(1,1). Such sequences were defined and investigated before Lucas, but the reason
they are called Lucas, or Lucas-Lehmer sequences, is in honour of the terrific work these
authors did using these sequences. For primality testing Lucas proved the remarkable

Theorem. (Lucas) If p = +3 (mod 10) and p divides up,y1, but p does not divide uq for
d < p with d|p + 1, then p is prime.

This remarkable criterion often allows one to test whether a number p is prime. Lu-
cas was very interested in the primality of Mersenne numbers: His criterion involves the
numbers s, mentioned above which can be defined by s; = 3 and then s;11 = si — 2 for
each k > 1. Lucas proved that if n = 3 (mod 4) and M,, divides s,, 1 then M, is prime,
and used this to show that M;jo7 is prime. One might ask how Lucas could do such a
calculation with just his bare hands? First note that one only needs to compute the s;
(mod M,). Next note that if we multiply together two positive integers < Mjo7 written
in binary, then by using 2'2” = 1 (mod Mjs7), we can write the multiplication down as a
127-by-127 table of 0’s and 1’s, and then add these numbers as in binary. This technique
is beautifully described in chapter 3 of Hugh’s book [Wil98], as well as the connections
Lucas found with the geometry of weaving and other topics.
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PRIMALITY TESTING

In 1928 D.H. Lehmer gave the following primality test (based on earlier work of Pock-
lington and Proth): Suppose that N — 1 = FR where F is completely factored with
F > R and (F,R) = 1. If, for all ¢ dividing F, there exists a such that N|a¥ =1 — 1 and
(aN=1/2 —1 N) = 1, then N is prime. This test proved useful for creating tables of
primes of the form 2" +1, k-2"+1, k-¢"™ + 1 where k < ¢", and so on. Williams ([MW77,
CW80, BCW81]) has used such criterion to determine primality of many such integers.

When it is difficult to factor N — 1, it may be that N + 1 is easy to factor. In
1975 Morrison showed that in this situation one can create a primality test: Suppose that
N + 1 = FR where F is completely factored with F' > R and (F,R) = 1. In this case we
cannot use the arithmetic of (Z/NZ)* to verify the primality of N. Instead, suppose we

have an integer A with (%) = —1 such that for all ¢ dividing F' there exists a, b satisfying

a? — 4b = A for which N|uyy1(a,b) and (u(y11)/4(a,b), N) = 1: if so then N is prime.
This test proved useful in creating tables of primes of the form &k -2" — 1, k-¢™ — 1 with
k<q™, 2"3™k —1, (p—1)p™ — 1 and so on. Again Williams ([Wil72, 78, 81b, 87, SW00))
has used such criterion to determine primality of many such integers, and a combination
of such ideas was used to show 156 - 5292 & 1 are twin primes.

One practical difficulty with this plan: We all know how to obtain a™ mod N quickly
by fast exponentiation. But if this analogous method is to work we are going to need to be
able to determine ugp mod N quickly. Williams showed how this can be done in no more
than double the time it takes to do fast exponentiation. As an example remember that we
can compute a'%*% mod N rapidly by computing

R

a,a2,a%, a8, a6, a7, a3, a8, 136, q272 278 546 1092 1093 (104 N))
in turn; simply using the two identities a®" = a™a™ (mod N) and a?**™! = a*"a (mod N).
Thus this calculation takes 13 rather than 1093 steps! Similarly one can use the identities

Uy = UpUp, Uznt1 = 5 (van, + auay,),

1
Vo =02 — 20", Wgpy1 = 3 (avay + Augy),

when wishing to quickly compute 11093 (mod N), or indeed any ug (mod N) or vg (mod N).
Williams and Judd (1976, 77) subsequently generalized primality testing with N + 1 to
other polynomials in N such as: N>+ 1, N24+ N +1and N> — N + 1.

FACTORING

In the 1930s D.N. and D.H. Lehmer came up with an idea for factoring a given integer
n which would work well provided one of the prime factors p of n had the property that
p — 1 only has small prime factors. They did not see this as practical in the calculating
environment of the time and so did not pursue or publish it. The test went as follows:
Note that if R is the least common multiple of the integers < B and if p — 1 divides
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R then a® = 1 (mod p) for any integer a which is coprime to p; in particular p divides
ged(a® — 1,n) and if we are lucky these are equal. To make this into a “test” we write
R =rory...ry and let ag = a with a;41 = a;" (mod n) for ¢ = 0,1,...,m — 1; we hope
that 1 <ged(n,a; — 1) < n for some i, giving us a factorization of n (into two parts). The
Lehmers’ method was rediscovered by Pollard (1974), who also added a second step if p—1
has just one big prime factor, making the method very practical for the computing power
of that time.

In 1976 Conway and Guy [Guy76] suggested that there should be an analagous p + 1
method of factoring using u,, and v,,. Williams [Wil82b] showed how to make this practical
using Lucas sequences. He showed, somewhat surprisingly, that one can assume (without
loss of generality) that b = 1 (in the definition of the Lucas sequences). To make this a “p+1

method” one evidently needs that (%) = —1 which cannot be guaranteed (indeed since

we don’t know p without factoring n this might seem to be a serious obstacle). However
Williams noted that there is a 50/50 chance that (A/p) = —1 for each random choice of a,
and thus suggested randomly choosing a. We now hope that 1 <ged(n, u,,) < n for some
i or, equivalently, 1 <ged(n, v,, — 2) < n. Williams generalized Pollard’s second step too.
He ran trials with great success on Cunningham project numbers, and Fibonacci numbers,
discovering quite a few new factors.

SHOULD ONE PUBLISH TABLES 7

Many of Williams’ works have ended with tables of data, though often he restricts
himself to a very accurate and detailed description of the algorithm and a precise analysis
of the computed data. What to publish in an article on algorthmic and computational
matters is a question of some taste (and perhaps too rarely recognized as such). Williams’
articles are artful in their composition. If one wants to truly understand the matter at hand,
Williams always provides sufficient detail, but nothing superfluous. In fact the question of
what to include has long been an issue amongst the leaders of our field, and indeed Gauss
himself responded as follows when asked why he did not publish a complete table of the
data he obtained when calculating all quadratic forms of each given discriminant up to
several thousand:

“I think it quite superfluous to preserve ... it, and much more so to print it, because

e Anyone, after a little practice, can easily, without much expenditure of time, compute
for himself a Table of any particular discriminant, if he should happen to want it ...

e Because the work has a certain charm of its own, so that it is a real pleasure to
spend a quarter of an hour in dong it for oneself; ... and the more so because

e It is very seldom that there is any occasion to do it.” — K.F. Gauss (1841).

Our subject added his own thoughts on the matter some years later:

“It is ... the author’s view ... that this kind of activity is actually a great deal of fun.”
— Hugh C. Williams (1998).

THE M.I.T. CRYPTOSYSTEM

The most famous of all number theory cryptosystems, now known as R.S.A., was
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originally known by the title of this section. Early on, many suggestions were made as to
how R.S.A. might be breakable by various attacks, suggesting some care would be needed
in implementing it. In “Some remarks concerning the M.I.'T. public-key cryptosystem”,
Schmid and Williams [WS79] showed how to implement M.I.T. (R.S.A.) so as to avoid any
such attacks. This was one of the first papers of this type, a foretaste of things to come!

The paper includes, as an aside, a nice way to find large, provably prime, primes;
indeed this seems to be the first time this, by now, very standard procedure appeared.
The idea is to iterate the following: Suppose we are given a prime q. What we want to do
is find a “small” prime p =1 mod ¢, in other words of the form p = 1+ aq. We expect to
be able to do so with a not much bigger than log ¢, and in any case with a < A := |2 log? q.
To do this the authors suggest to first sieve the integers 1 + aq with a < A using the small
primes. Next to determine which of the remaining integers are also base 3 pseudoprimes.
When one finds such a number p = 1 4 aq one is more-or-less certain that it is prime, and
one can easily verify this by the method of Brillhart-Lehmer-Selfridge since prime ¢ is a
large factor of p — 1. Note that by iterating this algorithm log ¢ times we quickly obtain a
prime which is > ¢2.

If one has a fast factoring algorithm then R.S.A. is evidently insecure. On the other
hand it is not clear whether one can find a fast factoring algorithm if one has a fast al-
gorithm to break any R.S.A. implementation. However it does seem to be tantalizingly
close to telling us exactly that, and the question then arises to find a public-key crypto-
graphic scheme whose security (when properly implemented) is equivalent to the difficulty
of factoring. In 1980 Williams (and independently Rabin) came up with such a cryptosys-
tem. Again Williams used Lucas sequences to do this: R.S.A. revolves around the order
of a (mod n), and Williams looked again (as in the “p+ 1 factoring algorithm” mentioned
above) at the orders of Lucas sequences (mod n) (which is, essentially, the same as looking
at the order of a +bvd (mod n), though the use of Lucas sequences allows us to only deal
with integers). Williams used the idea that a 4 bv/d has order p — (d/p) in the appropriate
multiplicative group (mod p), which typically equals p + 1 or p — 1, adding significant
flexibility. In a certain sense this allowed him to take squareroots (mod pq) if one can
break the cryptosystem which allows him to factor pg (and thus one sees that, at heart,
this involves much the same set of ideas as Rabin’s well-known algorithm).

WHAT IS SECURE?

Other than for the sheer intellectual pleasure, why would one care that a cryptosystem
is as secure as the difficulty of factoring an integer? Surely one only wants something to
be so complicated that some enemy could not untangle the complications? This question
is beautifully addressed by Williams and Buchmann:

“In modern cryptography the trick is to find a hard problem that can be used as the basis

of the security of the scheme. That is, your opponent should, in order to break the system,

be forced to solve a problem that is widely thought to be computationally difficult. As ...

a ... rigorous proof of the difficulty of any of these problems seems not to be forthcoming
. we can only certify the difficulty ... by a dubious measure:
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An admissible problem is one that has resisted solution over many years of concerted
attack by very knowledgeable and skilled [sic] practitioners.”
— J. Buchmann and H. C. Williams (1990)

AN EARLY SIEVING PROBLEM — FACTORING

Fermat, in a letter to Frenicle in 1643, explained a factoring algorithm he created,
by working with the example n = 2027651281. He wished to write n as the difference
of two squares, hopefully with the larger square close to y/n. Fermat begins by defining
r := [y/n] = 45029 and noting that n —r? = 40440. With this information to hand he then
notes that

(r+1)* =n = (r = n) + (2r + 1) = —40440 + 90059 = 49619.

But 49619 = 19 mod 100 and so is not a square. Next

(r+2)* —n=((r+1)>—n) + (2r +3) = 49619 + 90061 = 139680.

But 13960 = 80 mod 100 and so is not a square. Fermat then writes that one should
continue like this until one finds that (r+12)* — n = 1040400 = 10202 so that n =
(r+12)* — 10202 = 46061 x 44021. Note that at each stage one simply adds 90059, then
90061, then 90063, and so on. Thus Fermat remarks that “instead of 11 additions the
regular method of factoring would require division by all primes in [7,44021]”. This is
perhaps the first recorded comparison of the complexity of different algorithms!

In general we wish to find x such that z? — n is a square. Thus we must have that
22 —n =0 mod FE for all integers E. Like Fermat we can “narrow down” the possibilities
for x by determining what residue classes it can belong to mod FE4, Es, E3,... This is an
instance of

THE GENERALIZED SIEVING PROBLEM

Given

e Bounds A < B

e Moduli 1 <my <mg < -+ < mywith (m;,m;) =1

o Sets R; = {r;; : 0<r;; <m;} of acceptable residues,
determine all z, A <z < B, for which (x mod m;) € R; for all 7.

This is a general formulation of a question at the heart of many important problems.
Indeed computationally it has been useful for the following problems :

e Factoring

e Primality testing

e Representation of an integer by a quadratic form

e Finding “ pseudosquares”

¢ Find integer solutions of a polynomial (in several variables)

e Quadratic polynomials generating many primes

e Determining large (small) values of L(1, x) and thus h (v/—d)
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e \/d with long period (in its continued fraction).

In any particular generalized sieving problem there may be further requirements on
x, such as

“Is x a square ?7”; or
“Is x a prime 77, etc.

The process of checking through values of x with these additional restrictions is called
filtering.

An important consideration is that Patterson (1991) showed in his thesis that the
generalized sieving problem considered as a “decision problem”, is NP-complete (in other
words, it would take a miracle to have an efficient general method!).

CONSTRUCTION OF AUTOMATIC SIEVING DEVICES

One of Williams’ passions is the construction of devices, very very fast devices, that
can work on the generalized sieving problem. This subject has a rich history, the early part
of which is beautifully described in Williams book “Edouard Lucas and primality testing”,
and the latter part of which is mostly due to Williams and his collaborators at Manitoba.
Let me quote Williams own description [LPW95] of the construction of such machines:

“To see how a machine that performs this sieving operation can be fabricated, we
note that each modulus m; can be represented by a loop or ring, which is divided into m;
positions. Those positions that represent acceptable residues are tagged in some manner
and the machine examines one positions from each ring at a fixed location called a window
or tap. The rings are advanced in unison and a solution is detected when the window is
filled exclusively with tags. A trial counter records the number of shifts performed by the
machine. Thus the machine can be set up to start searching from some point N by setting
the i*" ring such that N (mod m;) is in the window when the mechanism is turned on;
after s shifts the value being tested is N + s. A device of this type is called a number sieve
or, frequently, just a sieve.”

We will list the important such machines, either important for the new ideas they
brought to the subject, or for their engineering. There were several machines built or
designed early on:

Machine Year Description
F.W. Lawrence 1896 Cardboard or Wooden Rings
Brass Studs for electrical contact
M. Kraitchik Feb. 1912 “Model” in wood
with working rings and gears
P. Carissan Mar. 1912 Strips of paper, not rings

The above machines were all based on beautiful ideas that were to influence future con-
struction but these machines themselves produced no significant results!
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Machine Year Rings Trials/Sec
P.& E. Carissan 1919 14 35-40
Bicycle Chain 1927 19 50
Optical Gears 1932 30 5,000
16mm Movie Film | 1936 18 50
DLS-127 1966 31 1,000,000
DLS-157 1969 37 1,000,000
Shift Register 1975 42 20,000,000
UMSU 1983 32 133,000,000
OASIiS 1989 16 215,000,000
MSSU 1991 30 192,000,000
Bronson, Buell 1992 22 1,024,000,000

All of these machines worked and produced worthwhile results. The main part of the
history is dominated by two figures: D.H. Lehmer and his wonderfully ingenious cre-
ations, from the bicycle chain sieve of 1927 through to the shift register sieve of 1975; and
H.C. Williams and his teams at Manitoba and now at Calgary. MSSU, the “Manitoba
scalable sieve unit”, has produced many results of note.

We will now discuss various problems in which Williams’ machines have substantially
pushed the boundaries.

Pseudosquares.

Let L, =1 mod 8 be the least positive non-square for which (L,/q) = 1 for all odd
primes q < p.

e If odd n < L, then n is a square if and only if (n/q) = 1 for all odd primes ¢ < p.
Thus if L, grows fast we can create a fast test to determine whether a number is a square.

e (Kraitchik)-Selfridge-Weinberger [Wil78]: If n < L,,n = 1 mod 8 and ¢"~1/2 =
—1 or 1 (mod n) for all primes ¢ < p (with —1 obtained at least once), then n is a prime
or prime power.

If L, grows fast enough then this gives us a polynomial time primality test. Assuming

the Riemann Hypothesis for Dirichlet L-functions we have L, > e\/m; in fact, we expect
L, grows like 27(P) ny eeP/108P  The sieve results on this problem are as follows:

Kraitchik (1924) determined L, for p < 47, obtaining Ls7 = 9,257,329 for exam-
ple. Lehmer and various collaborators (1928-1973) determined L, for p < 61 (bicy-
cle chain sieve), p < 79 (SWAC), p < 127 (DLS-127), p < 151 (DLS-157). Williams
and his collaborators (1988-) determined L, for p < 191 (UMSU), p < 223 (OASIS),
p < 229 (OASIS), p < 271 (MSSU), and recently have gone beyond 300. Note that
Lo71 = 10198100582036287689 ~ 10

The pseudosquare problem can be run in parallel. Thirty MSSU machines allowed
1.774 x 10'? integers to be sifted each second in 1996!

Large L(1,(d/.)) values.
—1
Of course if (g) = 1 for lots of small primes ¢ then L(1, (d/.)) = [, prime (1 — é (g))
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is “large”. If d < 0 this leads to large h (—d). Littlewood (1928) showed that the Riemann
Hypothesis for Dirichlet L-functions implies that L(1,(d/.)) < {2 + o(1)}e” loglog|d|. In
1973 Shanks became intrigued in “testing” this bound by constructing d where L(1, (d/.)) is
large, and found that the ratio never gets as big as 2. Lukes, Patterson, Williams (1996) did
vast calculations of L(1, (d/.))/eY loglog |d|, and found that “large values” were typically <
1.5. Recent theoretical evidence suggests that L(1, (d/.)) < €7 (loglog |d|+log log log |d|+C')
for some constant C, which is now being tested computationally.

Prime Producing Polynomials.
Hardy-Littlewood (1923) conjectured that, for d =1 — 4A,

#{n < N :n?+n+ Ais prime} ~ C(d)N/log N

c(d) =] (1—%).

p>3

where

Therefore to have C(d) large, we want (d/p) = —1 for all small primes p: another gener-
alized sieving problem! Shanks noted that the given product for C(d) does not converge
rapidly, and so he rewrote it as

0=y L 0-5) 1T (1 i ﬁ> |

pld q>3

which is much more amenable to rapid calculation (so long as one can compute L(1,(d/.))
rapidly, which is another speciality of both Shanks and Williams).

The most famous example of a quadratic polynomial that produces many prime values
is the Euler polynomial n? +n + 41 which is prime for 0 < n < 39. (Heegner (1952), Baker
and Stark (late 1960s) showed that A = 41 is the largest A for which n? +n + A is prime
for all 0 < n < A —2.). The prime k—tuplets conjecture suggests that for any N there
exists an integer A for which n? + n + A is prime for 0 < n < N. However no example
has yet been found with N = 40, so the Euler polynomial is still the champion! In the
nineties, Ruby found the polynomial 36n? — 810n + 2753 which is prime for 0 < n < 42.

Although the Euler polynomial is still the monic polynomial with the largest run of
primes at the start, it is not the monic polynmial with the highest C(.) value, and so
we would expect, by the Hardy-Littlewood conjecture, that it does not have the highest
“density” of primes. Indeed this is confirmed by the following examples:

C (—163) = 3.3197732...  #{n < 10°:n? 4+ n + 41 prime} = 261080
C(—111763) = 3.631998. .. #{n < 10°:n? 4+ n + 27941 prime} = 286128
D.H. Lehmer, E. Lehmer, and D. Shanks (1970), gave extensive tables of d with C'(d)
larger than any previous, and these tables have been extended by Fung and Williams
(1990) who found A; such that #{n < 10%: n? + n + A; prime } = 361841, and A, such

that C' (1 —4As) = 5.0976398...; and by Jacobson and Williams (2003) who found As
such that C' (1 —4A3) = 5.65726388.. ..
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Periodic continued fractions with long periods.

Williams (1981) suggested that the period of v/d is always < ¢v/dloglogd; and that d
can be found with the period this large by taking d = q or 2¢, with ¢ prime, = —1 mod 4,
and (d/p) = —1 for many small primes p.

Patterson and Williams (1985), and Stephens and Williams (1988) constructed lots of
examples from this generalized sieving problem construction.

Special quadratic discriminants.
Mollin, Williams and I [GMWO00] proved that if —d < 0 is a fundamental discriminant

such that (—Td> £ —1 for all p < \/d/2, then d = 5,8,12,13,17,. .., 2044, 2244 or 3705.
The proof went as follows:

e For d > 10'® one proved and used an explicit version of the Polya-Vinogradov
inequality.

e For d < 10'®, this is a generalized sieving problem and was achieved on the MSSU
with five months CPU time.

RABINOWICZ-MOLLIN-WILLIAMS CRITERIA

At the 1912 International Congress of Mathematicians Rabinowicz announced and
proved the following elegant result: If —d = 1 mod 4 is squarefree then z? + = + d%l is
prime for 0 < z < %L — 2 if and only if h (—d) = 1.

The Heegner-Baker-Stark result, mentioned above, states that this happens only for
—d = -3,-7,—11,—19, —43, —67, —163 (this last example giving the Euler polynomial
x? +x +41).

When d > 0 with d =1 (mod 4) one considers the following criterion:

d—1 d—1
(1) —x2—|—x—|—T is prime for 1 <z < —

One can show that (f) implies h (d) = 1.

Mollin-Williams (1989). Assume the Riemann Hypothesis for Dirichlet L-functions.
Then (}) holds if and only if d = 5,13,17,21,29,37,53,77,101, 173,197, 293,437 or 677.
Also (1) implies h(d) = 1.

Dirichlet’s class number formula tells us that if —d < —6 then h (—d) = @L (L, (=2));

and if d > 0 then h(d)loges = VdL (1, (4)) In general we expect that |L (1, (4)) | =
(log log \d\)o(l) so, essentially, h (—d) ~ v/d, and thus we expect that there are finitely many
d with h(—d) = 1 (which is nonetheless very hard to prove!). However h (d)loges ~ v/d
so feasibly h (d) is often small and R = loge, is often large: Calculations have suggested
that this is usually the case, and conjectures of Gauss and of Cohen and Lenstra give more
precise insight. Williams and his collaborators have verified these conjectures in many
calculations. With Jacobson, they have even been able to calculate h (d) and €4 with d as
large as 10100,
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In the result stated above we always have d > 0 with h (d) = 1 and €, small:

If d = m? + 4 then ¢ = m_T\/E. In this case one easily finds that h(d) = 1 for
d=>5,13,29,53,173,293, and Yokoi conjectured that these were all.

If d = 4m? + 1 then ¢4 = 2m — v/d. In this case one easily finds that h(d) = 1 for
d=>5,17,37,101,197,677, and Chowla conjectured that these were all.

If d = m? — 4 then ¢ = m—2\/E' In this case one easily finds that h(d) = 1 for
d=>5,21,77,437.

These cases account for all the d satisfying (i) according to the above result of Mollin

and Williams, which was proved by using explicit lower bounds on L (1, (ﬂ)) It is
known, assuming the Riemann Hypothesis for Dirichlet L-functions that L (1, (ﬁ)) >
1/(40,00010g* d) for d > 1001. A result of Tatuzawa (1951), following up on famous
ideas of Siegel, gives the very useful unconditional bound L (1, (ﬁ)) > .655n/d" for all

d > e'/" 4+ 75,000 with at most one exception (actually we don’t believe that there are
any exceptions but we cannot prove that). Thus, with enough computation Mollin and
Williams used this to show (1) implies h (d) = 1 with “at most one exception”.

Rather surprisingly there have been recent significant developments in this area with-
out deep analytic or computational tools:

Biro (2003). The Chowla and Yokoi conjectures are true.

The techniques described above have allowed Mollin and Williams to prove many
results about h (d) being small when ¢4 is small, and to provide intriguing connections to
prime producing polynomials. As one final example:

Louboutin, Mollin, Williams (1993). If d = m? + r where r|4m and if the square of
every ideal in Q (\/3) 18 principal then d is from a given list of 227 possibilities. If GRH
18 true this list is complete. If not we are missing at most one value of d.

Mollin and Williams have an analogous 1992 result for all d with ¢; < 2d.

ARITHMETIC IN Q(v/d) WHERE d IS A FUNDAMENTAL DISCRIMINANT

We will quickly set up some notation (copied from [BW90]). The ring of integers is
[1,w] where

Vid if d=2,3 (mod 4);
(14 d)/2 if d=1 (mod 4).

A primitive ideal takes the form [a,b + w] where a divides N(b+ w). A reduced ideal is
primitive, and either |a| > a or [@| > a for all a € 1.

Assume d > 0, d = 1 (mod 4). Let pg = 2b+ 1 and qp = 2a. For each i > 0 let
a; = |(p; + Vd)/q;] and then p;i1 = a;q; — p; and gi11 = (d — p2,1)/q;- Let Ij1q =
[4;/2, (pj + Vd) /2].

The ideals Iy = [a,b+ w], I, I5,... give the successive ideals of Gauss’s reduction
algorithm. Note that this sequence is eventually periodic, say with I, ; = I; for all j > 1.
(There is a quadratic form that “corresponds” to I;, namely gjz? + 2p;jzy — gj_1y?).
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In fact
; d
Ij = (\Ifj)fj+1 where \I/j = M
4;
Let
(9n == \Ifl\Ifg e \Ijn—l == (un_g + Un_g\/a)/Qa
where

Un/Un = [(IO; agy ..., an];
then 6,1 is the fundamental unit of Q(v/d).

The infrastructure. For 1 <i < j < p+ 1 define the distance
j—1
8 (Li, I;) = log (6;/6;) = > _ log ¢y
=i

Note that § (I, Ip+1) = log 0,11 = log €4, which is the regulator, R.

If Iy = (1) = [l,w] and 1 < 4,5 < p then we can “ multiply” I; by I; with the
composition algorithm, and then reduce (in polynomial time) to obtain some ideal I for
which

5(Ik,fl) ~ 5 (Iz,Il) + (S(Ij,fl)

with error bounded in absolute value by logd. This leads to a fast algorithm for moving

around the ideals in what may be a very large (% \/E> cycle of reduced forms.

Picture 4: I would like a picture here of the cycle of forms.

In 1972 Shanks introduced this new idea, for real quadratic fields. His write-up lacked
details, which were provided in full by Lenstra (1980), who gave a thorough analysis. The
infrastructure concept (and its use algorithmically) was generalized to all number fields
with unit rank 1 by Buchmann and Williams (1988), something which has been used by
several authors recently.

Shanks also introduced the “baby steps-giant steps” algorithm. In essence the idea
is as follows: Given a cyclic group G of order n generated by an element g, and another
element h of GG, we wish to determine r such that ¢g" = h. One idea is to simply search
through the last g, g2, g3, ... until we get h; one would expect this to take around n steps.
Shanks’ idea is to write down the two lists of numbers h, hg~, hg=2, hg™3,..., hg— (™1,
and 1, g™, g*™,...g"™ where £ = [n/m], and then compare the two lists finding an element
in common; then hg~* = ¢’™ so we can take r = i 4+ jm. If m ~ \/n then this algorithm
will take around n'/2 steps, a massive saving. Suitably modified (since the cycle of reduced
forms is not a group), this algorithm can be used on the cycle of reduced ideals, using the
infrastructure to construct the necessary lists of ideals.
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Exploiting “baby steps-giant steps” and “infrastructure”.

One of Williams’ primary interests has been in exploiting the infrastructure to obtain
fast algorithms for many problems that use the algebra of real quadratic fields. Picture
5: ”Dan Shanks tells Hugh to “pick up the infrastructure baton and run with
it”.

Here are a few applications:

Stephens and Williams (1989). O (D1/4+6) algorithm for Eisenstein’s 1844 problem :
Given fundamental D = 5 (mod 8) determine whether there exists a solution in integers
x,y to x° — Dy? = 4 with (z,y) = 1.

Buchmann and Williams (1988). Given an ideal I of Q(\/d) determine whether it is
principal. Algorithm in time O <10gN (I)+ \/Rdo(l)>.

Buchmann and Williams (1990). Came up with a beautiful “one-way function” based

on determining ideals in the cycle of reduced ideals in the principal class. Can be used for
logins for example (instead of a hash function).

Indeed they showed that if you can invert this one-way function, you can factor d!

Buchmann, Thiel and Williams (1995). Gave a short representation of elements of a
real quadratic order in terms of infrastructure.

This shows that the question of whether a given ideal I is principal is in complexity
class NP.

The Ankeny-Artin-Chowla conjecture. If prime p =1 mod 4 and (u + v\/ﬁ) /2 is
the fundamental unit of Q (\/13) , then p does not divide v.

Calculations on this have a long history:

For all p < By In
2000 Ankeny, Artin, Chowla 1952
10° Goldberg 1954
6.25 x 109 Beach, Zarnke and Williams 1971
108 Soleng 1986
10° Stephens, Williams. 1988 (in fact all D < 10?)
10" te Riele, Van de Poorten, Williams 108971

Ankeny, Artin, and Chowla came up with a delightful formula to determine whether
v is divisible by p:

2hv/u = H r — H n mod p,

1<r<p-1 1<n<p-1

B ()

N =
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though this is impractical in a modern computing environment.

Mollin and Walsh (1986) noted that Erdds’ conjecture, that there are no three consec-
utive powerful numbers, is relevant: For if z—1 = a3b?, x and +1 = A3B? are all powerful
then 22 — Dy? = 1 where D = aA divides y = a AbB. They observed that there are compos-
ite D for which D divides y in the fundamental unit 4+ /Dy (of the order [1,+/D]), such
as D = 2x 23 and 2 x 5 x 43. Stephens and Williams found all of the other such D < 107,
namely 23 X 79, 2 x 3 x 7 x 19 x 73, 3 x 69997,41 x 79 x 541,2 x 1562159, 3 x 5 x 273281.

The algorithm used by Williams and his collaborators uses infrastructure in the cycle of
reduced forms in the principal class, and the baby step-giant steps algorithm, to determine
a multiple of v mod p in time D/4+o(1),

Key Exchange Protocols.

Diffie and Hellman’s (1976) famous protocol runs as follows:
In F, generated by g:

Alf selects x at random and transmits ¢g* to Renate;

Renate selects y at random and transmits ¢g¥ to Alf;
Both Alf and Renate can determine g*¥ = (¢g%)” = (g¥)", the secret key, but not eaves-
dropping Gary, who, even with Canada’s best at his disposal, has still not figured out how
to determine z from ¢ and g*.

We still do not know how secure this really is — the discrete log problem has resisted
attack to date and so might satisfy the criteria given by Buchmann and Williams (dis-
cussed above). However it certainly has not withstood the same scrutiny as more intrinsic
mathematical problems.

In 1988, in the first issue of the Journal of Cryptology, McCurley gave an analagous
key exchange protocol in Z/nZ which is as hard to break as factoring n. In the same issue
Buchmann and Williams gave an analagous key exchange protocol in the class group of
an imaginary quadratic field, which is more complicated than Diffie-Hellman but probably
more secure. With Diillman they subsequently implemented this, giving also a new, faster
reduction algorithm.

Buchmann, Scheidler and Williams (1994, also J. Cryptology) gave an analagous key
exchange protocol in the infrastructure of the cycle of reduced ideals in the principal class.
This is not a group, but it is close when using the 4(.,.) metric (described above). The
paper contains a beautiful analysis and discussion of all relevant practical and theoretical
issues.

THE NEXT CHAPTER

We have reviewed some of the key accomplishments in the career of Hugh Williams, so
far. There are several main themes in his papers that we have discussed revolving around:
Lucas sequences, building sieving machines, and the use of the infrastructure of @(\/3)

On the other hand, I have not done justice to his work on computing class numbers and
regulators of quadratic fields, a constant theme throughout his career, instead focusing on
applications. Also I have not discussed his important contributions to the use of Morrison
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and Brillhart’s continued fraction factoring algorithm, and in particular his insightful 1987
attempt, with Wunderlich, to parallellize this algorithm. And there are more...

All these works develop concepts that have become increasingly important in our
subject in part due to Hugh’s influence and they are being used more widely today than
ever before, by his students, by his collaborators and by others. There were no greater
influences on Hugh, intellectually, than Dick Lehmer and Dan Shanks, and through him
we see their ideas proliferating to the modern day.

Hugh has recently moved on, to a new job in a new city, with a different focus, and
very recently as a new grandfather. We hope his forthcoming years will be as productive,
influential and interesting as the ones to date. Picture 6: Hugh with Alexa Jayne
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