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ABSTRACT. We use Filaseta's theorem, which is a corollary of

Faltings' theorem, to establish the proposition in the title.

1. In this paper we shall examine Fermat's equation

_ 2+ Y = Z®

with positive integer exponents n > 2.

Faltings [2] has established that for every exponent n > 3,
(1)n has only finitely many solutions in pairwise coprime integers
" X, ¥, z. Filaseta [3] has used Faltings' theorem to show that, for
each integer r 2 3, there exists an integer N(r), such that if
m >N (r) and n = mr then (1)n has only tri?ial solutions. We note

that N(r) is not effectively computable.

We will use Filaseta's theorem and an elementary lemma on
set densities to establish that
HneN | 1 SnsSN and (1)n has only trivial solutions}

lim : =1.
N> N

This improves on the result of Ankeny and Erdds [1] who established
this theorem, though with the extra condition that n is coprime to

X, ¥y and z.
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Finally, we shall note that our theorem holds true for any Fermat
curve aXn + an = cZn, with a, b, ¢ non-zero integers, where, for the case
tazxhb=c we define (2}, il)l) to also be a 'trivial' solution.

2. For completeness, we present the proof of Filaseta's theorem.

Theorem 1. If r 2 3 then there exists a positive integer N(r) such that

my

if m > N(r) then the equation 4+ Y7 = 2% has only the trivial solution

(x,¥,2z) with xyz = 0.

Proof: If r = 3 the equation has only the trivial solution, as was shown by
Euler. If r > 3,then by Faltings' theorem, there exists only finitely many
triples of non-zero coprime integers (x,y,z) such that x° + yr = zr; we

note that |z| = max {|x|, |yl, |2]} > 1. So there exists a positive integer

L(x) such that lz[ < L(r) for all solutioms (x,y,z) as above.

If m > N(x) = [}gg %(r) + 1 and if (a,b,c) is a non-trivial
solution in coprime integers of "+ Yrm = Zrm then Ic] 22, (am, bm, cm)

. ] . . . . T r r
is a non~trivial solution in coprime integers of X + Y = Z°, hence

Icml z 2" > L(x) > Icm[, which is a contradiction.

Now we prove a lemma about densities. Let P be a set of(k 2 1) prime

numbers, let N be a positive integer and

Sp N {n€ W™ | 1 £n SN and there exists p € P such that p|nl}.
b4

Lemma. With the above notation

k
16,0 21 -n (- 1)
N’N =1 p&’( P)

2N
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Proof: Let Q = ng p. Then
' N N ki N
#(s =z |- =z — | + ...+ L
e P‘P["] Pome® ["“’2] ["J
P,¥p,
=-3 u(d)[§]= N- I ud) [ﬂ]
dlq d d]Q :
d#1
But .
N N N N
I ud) {—]— L uw(d) [—} =]  w@ (3 -[_]
dlq 4 ale d alq I
k
< I 1 = 2 Therefore
dQ

#

Ff1-1 wal 2 = 51 -1 (—1)‘(—21‘
d‘Q d/ pEP PJ i

HLi #(SE,N)>1_ i <- ) - 2%,
N

D -

Now we shall indicate the main result. Let P, = 2 < P, = 3<p, < ..
be the sequence of prime numbers, for each k 2 2 let P = {pz, P3s <ee s Pk}'
For each prime Pj let N(pj) be the integer considered in Filaseta's

theorem and for each k 2 2 let N =22§§k{p5 N(Pj)}.

For each integer N 2 1 we also consider the sets
' = N <ns$ i .
st,N {ne N l k n N and there exists pJ e P

and FN ={ne N | 3 £ n £ N such that equation (1)n has only trivial solutioms}.

, Such that P | n}




58

A. Granville

We note that S' C s [ s’ U {1,2, ... , N}
PN = PN PN K

With above notations, we have:

Theorem 2. lim #(FN)
N + = 1
: N
Proof: Let € > 0. Since

I - -l-'- = ...—1'.—-——— = 0
p prime P =

there exists k 2 2 such that

=1

k
20 (1—-1—)+ 1 < €.
j=1 ) Pr

Let N' = (Zk_1 4+ N, ) N, and N > N', By Filaseta's theorem,
k” Tk

s!' c FN’ because if n € S'P N then Nk <np £ N and there exists
k’ k

. = p. z p, .) h > B
pje Pk such that pjl‘n 5 SO n me > Nk pJ N(pJ) ence m N(pJ

and therefore n = pJ. m eFN.

= < 1 3
As #(SPR,N) Nk < #(s Pk’N) it fqllows that
#(s #fs, ) ( O
(Pk’N) oM« (Pk’N <\ s
N N N - "N
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On the other hand, by the lemma,

#s, )
P,oN

k ' k-1
kK - -1 _2_N.=
N j=2 P.
k k-1 .
1—2116—13-___2 .
j=1 P N

k ) 2L N, #(%;)
Thus 1 - 21 (} - ——)— < <1
1

, ; N N
j= P;

Q t
‘hence ifN 2 N 2 Nk‘Z Py thgn

#F 3
N
1 € S N < 1.

This shows that lim =1,
Now N
which completes the proof of the theorem.
3. A final remark concerns the equations
) ax™ + by" = cz"

where a,b,c are non-zero integers, and solueions with (X,Y,Z) € (-1,0,1)

are considered trivial.

For n > 3 the genus of (2)n is still greater than one, and a

non-trivial soln of (2) has at least ome of Ix], {l, lz] > |.

Hence the proof of Filaseta's theorem as well as the proof of
theorem 2 still hold true for this equation and we conclude that the density
of exponents n, for which (2)n has no solution (x,y,z) with

xyz # 0, gcd (x,y,z) =1, is equal to 1.
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